Abstract

LiFi is networked, bidirectional wireless communication with light. It is used to connect fixed and mobile devices at very high data rates by harnessing the visible light and infrared spectrum. Combined, these spectral resources are 2600 times larger than the entire radio frequency (RF) spectrum. This paper provides the motivation behind why LiFi is a very timely technology, especially for 6th generation (6G) cellular communications. It discusses and reviews essential networking technologies, such as interference mitigation and hybrid LiFi/Wi-Fi networking topologies. We also consider the seamless integration of LiFi into existing wireless networks to form heterogeneous networks across the optical and RF domains and discuss implications and solutions in terms of load balancing. Finally, we provide the results of a real-world hybrid LiFi/Wi-Fi network deployment in a software defined networking testbed. In addition, results from a LiFi deployment in a school classroom are provided, which show that Wi-Fi network performance can be improved significantly by offloading traffic to the LiFi.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mobility-aware load balancing for hybrid LiFi and WiFi networks

Xiping Wu and Harald Haas
J. Opt. Commun. Netw. 11(12) 588-597 (2019)

Joint Link Scheduling and Brightness Control for Greening VLC-Based Indoor Access Networks

Sihua Shao, Abdallah Khreishah, and Issa Khalil
J. Opt. Commun. Netw. 8(3) 148-161 (2016)

Multi-users network model and the corresponding networking scheme for indoor VLC systems

Tao Shang, Tao Jiang, Yin Tang Yang, Ping Wang, and Yu Liu
Opt. Express 23(9) 11600-11618 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Zheludev, “The life and times of the LED—a 100-year history,” Nat. Photonics 1, 189–192 (2007).
    [Crossref]
  2. T.-S. Chu and M. Gans, “High speed infrared local wireless communication,” IEEE Commun. Mag. 25(8), 4–10 (1987).
    [Crossref]
  3. F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67, 1474–1486 (1979).
    [Crossref]
  4. J. R. Barry, J. M. Kahn, E. A. Lee, and D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Netw. 5, 44–54 (1991).
    [Crossref]
  5. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
    [Crossref]
  6. N. Holonyak, S. F. Bevacqua, C. V. Bielan, F. A. Carranti, B. G. Hess, and S. J. Lubowski, “Electrical properties of Ga(As1-xPx) p-n junctions,” Proc. IEEE 51, 364 (1963).
    [Crossref]
  7. S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN p-n junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, L1998–L2001 (1991).
    [Crossref]
  8. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112–L2114 (1989).
    [Crossref]
  9. Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proceedings of the 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (2001), vol. 2, pp. 81–85.
  10. Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of the 12th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) (2000), vol. 2, pp. 1325–1329.
  11. J. Grubor, S. C. J. Lee, K. D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of the 33rd European Conference and Exhibition of Optical Communication—Post-Deadline Papers (2007), pp. 1–2.
  12. M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of the IEEE 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.
  13. N. T. Le, M. S. Ifthekhar, Y. M. Jang, and N. Saha, “Survey on optical camera communications: challenges and opportunities,” IET Optoelectron. 9, 172–183 (2015).
    [Crossref]
  14. M. Kinoshita, T. Yamazato, H. Okada, T. Fujii, S. Arai, T. Yendo, and K. Kamakura, “Motion modeling of mobile transmitter for image sensor based I2V-VLC, V2I-VLC, and V2V-VLC,” in IEEE Globecom Workshops (GC Wkshps) (2014), pp. 450–455.
  15. P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J. 7, 7904212 (2015).
    [Crossref]
  16. S. Cincotta, A. Neild, C. He, and J. Armstrong, “Visible light positioning using an aperture and a quadrant photodiode,” in IEEE Globecom Workshops (GC Wkshps) (2017), pp. 1–6.
  17. H. Steendam, T. Q. Wang, and J. Armstrong, “Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver,” J. Lightwave Technol. 35, 309–319 (2017).
    [Crossref]
  18. A. A. Al-Hameed, S. H. Younus, A. T. Hussein, M. T. Alresheed, and J. M. H. Elmirghani, “LiDAL: light detection and localization,” IEEE Access 7, 85645–85687 (2019).
    [Crossref]
  19. B. Zhou, A. Liu, and V. Lau, “Joint user location and orientation estimation for visible light communication systems with unknown power emission,” IEEE Trans. Wireless Commun. 18, 5181–5195 (2019).
    [Crossref]
  20. H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34, 1533–1544 (2016).
    [Crossref]
  21. C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightwave Technol. 34, 137–156 (2016).
    [Crossref]
  22. Cisco Visual Networking Index, “Global mobile data traffic forecast update, 2017–2022,” White Paper (2019), https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html .
  23. I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” in IEEE International Conference on Communications (ICC) (2013), pp. 3825–3829.
  24. IEEE P802.11-Light Communication Task Group, “Status of IEEE 802.11 Light Communication TG” (2019), http://www.ieee802.org/11/Reports/tgbb_update.htm .
  25. E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag. 14(3), 42–50 (2019).
    [Crossref]
  26. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tutorials 16, 2231–2258 (2014).
    [Crossref]
  27. H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
    [Crossref]
  28. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
    [Crossref]
  29. V. Jungnickel, V. Pohl, S. Nonnig, and C. von Helmolt, “A physical model of the wireless infrared communication channel,” IEEE J. Sel. Areas Commun. 20, 631–640 (2002).
    [Crossref]
  30. E. Sarbazi, M. Uysal, M. Abdallah, and K. Qaraqe, “Indoor channel modelling and characterization for visible light communications,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.
  31. M. Uysal, F. Miramirkhani, T. Baykas, and K. Qaraqe, “IEEE 802.11bb Reference Channel Models for Indoor Environments” (2018), https://www.researchgate.net/publication/327572598_IEEE_80211bb_Reference_Channel_Models_for_Indoor_Environments .
  32. J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28, 3512–3518 (2010).
    [Crossref]
  33. L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in 4th IEEE International Conference on Circuits and Systems for Communications (ICCSC) (2008), pp. 678–682.
  34. J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30, 61–67 (2012).
    [Crossref]
  35. J. Ding, C.-L. I, and Z. Xu, “Indoor optical wireless channel characteristics with distinct source radiation patterns,” IEEE Photon. J. 8, 7900115 (2016).
    [Crossref]
  36. H. Chen and Z. Xu, “OLED panel radiation pattern and its impact on VLC channel characteristics,” IEEE Photon. J. 10, 7901410 (2018).
    [Crossref]
  37. F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21, 1035–1038 (2017).
    [Crossref]
  38. M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
    [Crossref]
  39. F. J. Lopez-Hernandez, R. Perez-Jimenez, and A. Santamaria, “Ray-tracing algorithms for fast calculation of the impulse response on diffuse IR-wireless indoor channels,” Opt. Eng. 39, 2775–2780 (2000).
    [Crossref]
  40. J. B. Carruthers and P. Kannan, “Iterative site-based modeling for wireless infrared channels,” IEEE Trans. Antennas Propag. 50, 759–765 (2002).
    [Crossref]
  41. F. J. Lopez-Hermandez and M. J. Betancor, “DUSTIN: algorithm for calculation of impulse response on IR wireless indoor channels,” Electron. Lett. 33, 1804–1806 (1997).
    [Crossref]
  42. O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo-based ray-tracing algorithm,” IEEE Trans. Commun. 53, 124–130 (2005).
    [Crossref]
  43. H. Schulze, “Frequency-domain simulation of the indoor wireless optical communication channel,” IEEE Trans. Commun. 64, 2551–2562 (2016).
    [Crossref]
  44. F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications,” IEEE Photon. J. 7, 1–16 (2015).
    [Crossref]
  45. K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217–219 (2011).
    [Crossref]
  46. T. Komine and M. Nakagawa, “A study of shadowing on indoor visible-light wireless communication utilizing plural white LED lightings,” in Proceedings of the 1st International Symposium on Wireless Communication Systems (2004), pp. 36–40.
  47. C. Le Bas, S. Sahuguede, A. Julien-Vergonjanne, A. Behlouli, P. Combeau, and L. Aveneau, “Human body impact on mobile visible light communication link,” in Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (2016), pp. 1–6.
  48. Z. Dong, T. Shang, Y. Gao, and Q. Li, “Study on VLC channel modeling under random shadowing,” IEEE Photon. J. 9, 7908416 (2017).
    [Crossref]
  49. P. Chvojka, S. Zvanovec, P. A. Haigh, and Z. Ghassemlooy, “Channel characteristics of visible light communications within dynamic indoor environment,” J. Lightwave Technol. 33, 1719–1725 (2015).
    [Crossref]
  50. M. Kavehrad, M. I. S. Chowdhury, and Z. Zhou, “MIMO technology for optical wireless communications using LED arrays and fly-eye receivers,” in Short-Range Optical Wireless (Wiley, 2015), pp. 169–191.
  51. T. D. C. Little and M. Rahaim, “Network topologies for mixed RF-VLC HetNets,” in IEEE Summer Topicals Meeting Series (SUM) (2015), pp. 163–164.
  52. K. Chandra, R. V. Prasad, and I. Niemegeers, “An architectural framework for 5G indoor communications,” in International Wireless Communications and Mobile Computing Conference (IWCMC) (2015), pp. 1144–1149.
  53. H. Ma, L. Lampe, and S. Hranilovic, “Hybrid visible light and power line communication for indoor multiuser downlink,” J. Opt. Commun. Netw. 9, 635–647 (2017).
    [Crossref]
  54. R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019).
    [Crossref]
  55. M. T. Alresheedi, A. T. Hussein, and J. M. H. Elmirghani, “Uplink design in VLC systems with IR sources and beam steering,” IET Commun. 11, 311–317 (2017).
    [Crossref]
  56. E. S. S. Edirisinghe, P. H. R. S. S. Karunarathna, D. M. T. B. Dissanayake, and G. M. R. I. Godaliyadda, “Design and implementation of a bi-directional visible light communication system,” in IEEE 10th International Conference on Industrial and Information Systems (ICIIS) (2015), pp. 519–524.
  57. P. Pérez-Nicoli, F. Silveira, X. Zhang, and A. Amara, “Uplink wireless transmission overview in bi-directional VLC systems,” in IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2016), pp. 588–591.
  58. M. B. Rahaim, A. M. Vegni, and T. D. C. Little, “A hybrid radio frequency and broadcast visible light communication system,” in IEEE GLOBECOM Workshops (2011), pp. 792–796.
  59. S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. C. Little, and J. Wu, “An indoor hybrid WiFi-VLC Internet access system,” in IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (2014), pp. 569–574.
  60. Y. Wang, S. Videv, and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” in IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (2014), pp. 548–552.
  61. A. M. Vegni and T. D. C. Little, “Handover in VLC systems with cooperating mobile devices,” in International Conference on Computing, Networking and Communications (ICNC) (2012), pp. 126–130.
  62. S. Liang, H. Tian, B. Fan, and R. Bai, “A novel vertical handover algorithm in a hybrid visible light communication and LTE system,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.
  63. X. Wu and H. Haas, “Handover skipping for LiFi,” IEEE Access 7, 38369–38378 (2019).
    [Crossref]
  64. T. Nguyen, M. Z. Chowdhury, and Y. M. Jang, “A novel link switching scheme using pre-scanning and RSS prediction in visible light communication networks,” EURASIP J. Wireless Commun. Netw. 2013, 293 (2013).
    [Crossref]
  65. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
    [Crossref]
  66. R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22, 8–16 (2015).
    [Crossref]
  67. X. Li, F. Jin, R. Zhang, J. Wang, Z. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15, 39–53 (2016).
    [Crossref]
  68. S. Feng, X. Li, R. Zhang, M. Jiang, and L. Hanzo, “Hybrid positioning aided amorphous-cell assisted user-centric visible light downlink techniques,” IEEE Access 4, 2705–2713 (2016).
    [Crossref]
  69. X. Li, Y. Huo, R. Zhang, and L. Hanzo, “User-centric visible light communications for energy-efficient scalable video streaming,” IEEE Trans. Green Commun. Netw. 1, 59–73 (2017).
    [Crossref]
  70. A. Gomez, K. Shi, C. Quintana, R. Maher, G. Faulkner, P. Bayvel, B. C. Thomsen, and D. O’Brien, “Design and demonstration of a 400 Gb/s indoor optical wireless communications link,” J. Lightwave Technol. 34, 5332–5339 (2016).
    [Crossref]
  71. F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
    [Crossref]
  72. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4 × 12.5 Gb/s WDM optical wireless communication system for indoor applications,” J. Lightwave Technol. 29, 1988–1996 (2011).
    [Crossref]
  73. T. Koonen, J. Oh, K. Mekonnen, and E. Tangdiongga, “Ultra-high capacity indoor optical wireless communication using steered pencil beams,” in International Topical Meeting on Microwave Photonics (MWP) (2015), pp. 1–4.
  74. A. T. Hussein, M. T. Alresheedi, and J. M. H. Elmirghani, “20 Gb/s mobile indoor visible light communication system employing beam steering and computer generated holograms,” J. Lightwave Technol. 33, 5242–5260 (2015).
    [Crossref]
  75. M. Rahaim and T. D. C. Little, “Optical interference analysis in visible light communication networks,” in IEEE International Conference on Communication Workshop (ICCW) (2015), pp. 1410–1415.
  76. X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun. 63, 1319–1329 (2015).
    [Crossref]
  77. A. A. Qidan, M. Morales-Cespedes, and A. G. Armada, “The role of WiFi in LiFi hybrid networks based on blind interference alignment,” in IEEE 87th Vehicular Technology Conference (VTC Spring) (2018), pp. 1–5.
  78. D. Miras, L. Maret, M. Maman, M. Laugeois, X. Popon, and D. Ktenas, “A high data rate LiFi integrated system with inter-cell interference management,” in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6.
  79. K. Cui, J. Quan, and Z. Xu, “Performance of indoor optical femtocell by visible light communication,” Opt. Commun. 298-299, 59–66 (2013).
    [Crossref]
  80. H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Inter-cell interference mitigation and indoor positioning system based on carrier allocation visible light communication,” in 5th International Conference on Signal Processing and Communication Systems (ICSPCS) (2011), pp. 1–7.
  81. B. Ghimire and H. Haas, “Self-organising interference coordination in optical wireless networks,” EURASIP J. Wirel. Commun. Netw. 2012, 131 (2012).
    [Crossref]
  82. C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightwave Technol. 33, 3986–4000 (2015).
    [Crossref]
  83. D. Bykhovsky and S. Arnon, “Multiple access resource allocation in visible light communication systems,” J. Lightwave Technol. 32, 1594–1600 (2014).
    [Crossref]
  84. K.-H. Park and M.-S. Alouini, “Optimization of an angle-aided mirror diversity receiver for indoor MIMO-VLC systems,” in IEEE Global Communications Conference (GLOBECOM) (2016), pp. 1–6.
  85. O. González, M. F. Guerra-Medina, I. R. Martín, F. Delgado, and R. Pérez-Jiménez, “Adaptive WHTS-assisted SDMA-OFDM scheme for fair resource allocation in multi-user visible light communications,” J. Opt. Commun. Netw. 8, 427–440 (2016).
    [Crossref]
  86. Z. Chen, D. A. Basnayaka, and H. Haas, “Space division multiple access for optical attocell network using angle diversity transmitters,” J. Lightwave Technol. 35, 2118–2131 (2017).
    [Crossref]
  87. R. Bai, H. Tian, B. Fan, and S. Liang, “Coordinated transmission based interference mitigation in VLC network,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.
  88. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–656 (1948).
    [Crossref]
  89. A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of free-space optical intensity channels,” IEEE Trans. Inf. Theory 55, 4449–4461 (2009).
    [Crossref]
  90. A. Chaaban, Z. Rezki, and M. S. Alouini, “On the capacity of the intensity-modulation direct-detection optical broadcast channel,” IEEE Trans. Wireless Commun. 15, 3114–3130 (2016).
    [Crossref]
  91. S. Ma, R. Yang, H. Li, Z. L. Dong, H. Gu, and S. Li, “Achievable rate with closed-form for SISO channel and broadcast channel in visible light communication networks,” J. Lightwave Technol. 35, 2778–2787 (2017).
    [Crossref]
  92. J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun. 59, 3122–3134 (2011).
    [Crossref]
  93. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
    [Crossref]
  94. H. Elgala and T. D. C. Little, “SEE-OFDM: spectral and energy efficient OFDM for optical IM/DD systems,” in IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (2014), pp. 851–855.
  95. Q. Wang, B. Song, B. Corcoran, D. Boland, L. Zhuang, Y. Xie, A. J. Lowery, A. J. Lowery, and A. J. Lowery, “FPGA-based layered/enhanced ACO-OFDM transmitter,” in Optical Fiber Communication Conference (2017), paper Tu3D.6.
  96. P. W. Berenguer, P. Hellwig, D. Schulz, J. Hilt, G. Kleinpeter, J. K. Fischer, and V. Jungnickel, “Real-time optical wireless communication: field-trial in an industrial production environment,” in European Conference on Optical Communication (ECOC) (2018), pp. 1–3.
  97. C. Chen, R. Bian, and H. Haas, “Omnidirectional transmitter and receiver design for wireless infrared uplink transmission in LiFi,” in IEEE International Conference on Communications Workshops (ICC Workshops) (2018), pp. 1–6.
  98. M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
    [Crossref]
  99. W. Ma and L. Zhang, “QoE-driven optimized load balancing design for hybrid LiFi and WiFi networks,” IEEE Commun. Lett. 22, 2354–2357 (2018).
    [Crossref]
  100. M. Obeed, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Joint optimization of power allocation and load balancing for hybrid VLC/RF networks,” J. Opt. Commun. Netw. 10, 553–562 (2018).
    [Crossref]
  101. Y. Wang, D. A. Basnayaka, X. Wu, and H. Haas, “Optimization of load balancing in hybrid LiFi/RF networks,” IEEE Trans. Commun. 65, 1708–1720 (2017).
    [Crossref]
  102. Y. Wang, X. Wu, and H. Haas, “Load balancing game with shadowing effect for indoor hybrid LiFi/RF networks,” IEEE Trans. Wireless Commun. 16, 2366–2378 (2017).
    [Crossref]
  103. Y. Wang and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” J. Lightwave Technol. 33, 4671–4682 (2015).
    [Crossref]
  104. M. Kashef, M. Ismail, M. Abdallah, K. A. Qaraqe, and E. Serpedin, “Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks,” IEEE J. Sel. Areas Commun. 34, 883–893 (2016).
    [Crossref]
  105. I. Stefan and H. Haas, “Analysis of optimal placement of LED arrays for visible light communication,” in IEEE 77th Vehicular Technology Conference (VTC Spring) (2013).

2019 (5)

A. A. Al-Hameed, S. H. Younus, A. T. Hussein, M. T. Alresheed, and J. M. H. Elmirghani, “LiDAL: light detection and localization,” IEEE Access 7, 85645–85687 (2019).
[Crossref]

B. Zhou, A. Liu, and V. Lau, “Joint user location and orientation estimation for visible light communication systems with unknown power emission,” IEEE Trans. Wireless Commun. 18, 5181–5195 (2019).
[Crossref]

E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag. 14(3), 42–50 (2019).
[Crossref]

R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019).
[Crossref]

X. Wu and H. Haas, “Handover skipping for LiFi,” IEEE Access 7, 38369–38378 (2019).
[Crossref]

2018 (3)

W. Ma and L. Zhang, “QoE-driven optimized load balancing design for hybrid LiFi and WiFi networks,” IEEE Commun. Lett. 22, 2354–2357 (2018).
[Crossref]

M. Obeed, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Joint optimization of power allocation and load balancing for hybrid VLC/RF networks,” J. Opt. Commun. Netw. 10, 553–562 (2018).
[Crossref]

H. Chen and Z. Xu, “OLED panel radiation pattern and its impact on VLC channel characteristics,” IEEE Photon. J. 10, 7901410 (2018).
[Crossref]

2017 (12)

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21, 1035–1038 (2017).
[Crossref]

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

H. Steendam, T. Q. Wang, and J. Armstrong, “Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver,” J. Lightwave Technol. 35, 309–319 (2017).
[Crossref]

Z. Dong, T. Shang, Y. Gao, and Q. Li, “Study on VLC channel modeling under random shadowing,” IEEE Photon. J. 9, 7908416 (2017).
[Crossref]

Y. Wang, D. A. Basnayaka, X. Wu, and H. Haas, “Optimization of load balancing in hybrid LiFi/RF networks,” IEEE Trans. Commun. 65, 1708–1720 (2017).
[Crossref]

Y. Wang, X. Wu, and H. Haas, “Load balancing game with shadowing effect for indoor hybrid LiFi/RF networks,” IEEE Trans. Wireless Commun. 16, 2366–2378 (2017).
[Crossref]

S. Ma, R. Yang, H. Li, Z. L. Dong, H. Gu, and S. Li, “Achievable rate with closed-form for SISO channel and broadcast channel in visible light communication networks,” J. Lightwave Technol. 35, 2778–2787 (2017).
[Crossref]

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

Z. Chen, D. A. Basnayaka, and H. Haas, “Space division multiple access for optical attocell network using angle diversity transmitters,” J. Lightwave Technol. 35, 2118–2131 (2017).
[Crossref]

M. T. Alresheedi, A. T. Hussein, and J. M. H. Elmirghani, “Uplink design in VLC systems with IR sources and beam steering,” IET Commun. 11, 311–317 (2017).
[Crossref]

H. Ma, L. Lampe, and S. Hranilovic, “Hybrid visible light and power line communication for indoor multiuser downlink,” J. Opt. Commun. Netw. 9, 635–647 (2017).
[Crossref]

X. Li, Y. Huo, R. Zhang, and L. Hanzo, “User-centric visible light communications for energy-efficient scalable video streaming,” IEEE Trans. Green Commun. Netw. 1, 59–73 (2017).
[Crossref]

2016 (11)

A. Gomez, K. Shi, C. Quintana, R. Maher, G. Faulkner, P. Bayvel, B. C. Thomsen, and D. O’Brien, “Design and demonstration of a 400 Gb/s indoor optical wireless communications link,” J. Lightwave Technol. 34, 5332–5339 (2016).
[Crossref]

X. Li, F. Jin, R. Zhang, J. Wang, Z. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15, 39–53 (2016).
[Crossref]

S. Feng, X. Li, R. Zhang, M. Jiang, and L. Hanzo, “Hybrid positioning aided amorphous-cell assisted user-centric visible light downlink techniques,” IEEE Access 4, 2705–2713 (2016).
[Crossref]

O. González, M. F. Guerra-Medina, I. R. Martín, F. Delgado, and R. Pérez-Jiménez, “Adaptive WHTS-assisted SDMA-OFDM scheme for fair resource allocation in multi-user visible light communications,” J. Opt. Commun. Netw. 8, 427–440 (2016).
[Crossref]

A. Chaaban, Z. Rezki, and M. S. Alouini, “On the capacity of the intensity-modulation direct-detection optical broadcast channel,” IEEE Trans. Wireless Commun. 15, 3114–3130 (2016).
[Crossref]

H. Schulze, “Frequency-domain simulation of the indoor wireless optical communication channel,” IEEE Trans. Commun. 64, 2551–2562 (2016).
[Crossref]

J. Ding, C.-L. I, and Z. Xu, “Indoor optical wireless channel characteristics with distinct source radiation patterns,” IEEE Photon. J. 8, 7900115 (2016).
[Crossref]

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34, 1533–1544 (2016).
[Crossref]

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightwave Technol. 34, 137–156 (2016).
[Crossref]

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

M. Kashef, M. Ismail, M. Abdallah, K. A. Qaraqe, and E. Serpedin, “Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks,” IEEE J. Sel. Areas Commun. 34, 883–893 (2016).
[Crossref]

2015 (9)

N. T. Le, M. S. Ifthekhar, Y. M. Jang, and N. Saha, “Survey on optical camera communications: challenges and opportunities,” IET Optoelectron. 9, 172–183 (2015).
[Crossref]

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J. 7, 7904212 (2015).
[Crossref]

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications,” IEEE Photon. J. 7, 1–16 (2015).
[Crossref]

P. Chvojka, S. Zvanovec, P. A. Haigh, and Z. Ghassemlooy, “Channel characteristics of visible light communications within dynamic indoor environment,” J. Lightwave Technol. 33, 1719–1725 (2015).
[Crossref]

Y. Wang and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” J. Lightwave Technol. 33, 4671–4682 (2015).
[Crossref]

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightwave Technol. 33, 3986–4000 (2015).
[Crossref]

A. T. Hussein, M. T. Alresheedi, and J. M. H. Elmirghani, “20 Gb/s mobile indoor visible light communication system employing beam steering and computer generated holograms,” J. Lightwave Technol. 33, 5242–5260 (2015).
[Crossref]

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun. 63, 1319–1329 (2015).
[Crossref]

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22, 8–16 (2015).
[Crossref]

2014 (3)

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

D. Bykhovsky and S. Arnon, “Multiple access resource allocation in visible light communication systems,” J. Lightwave Technol. 32, 1594–1600 (2014).
[Crossref]

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tutorials 16, 2231–2258 (2014).
[Crossref]

2013 (2)

T. Nguyen, M. Z. Chowdhury, and Y. M. Jang, “A novel link switching scheme using pre-scanning and RSS prediction in visible light communication networks,” EURASIP J. Wireless Commun. Netw. 2013, 293 (2013).
[Crossref]

K. Cui, J. Quan, and Z. Xu, “Performance of indoor optical femtocell by visible light communication,” Opt. Commun. 298-299, 59–66 (2013).
[Crossref]

2012 (3)

B. Ghimire and H. Haas, “Self-organising interference coordination in optical wireless networks,” EURASIP J. Wirel. Commun. Netw. 2012, 131 (2012).
[Crossref]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30, 61–67 (2012).
[Crossref]

2011 (3)

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217–219 (2011).
[Crossref]

J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun. 59, 3122–3134 (2011).
[Crossref]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4 × 12.5 Gb/s WDM optical wireless communication system for indoor applications,” J. Lightwave Technol. 29, 1988–1996 (2011).
[Crossref]

2010 (1)

2009 (2)

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of free-space optical intensity channels,” IEEE Trans. Inf. Theory 55, 4449–4461 (2009).
[Crossref]

2007 (1)

N. Zheludev, “The life and times of the LED—a 100-year history,” Nat. Photonics 1, 189–192 (2007).
[Crossref]

2005 (1)

O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo-based ray-tracing algorithm,” IEEE Trans. Commun. 53, 124–130 (2005).
[Crossref]

2002 (2)

V. Jungnickel, V. Pohl, S. Nonnig, and C. von Helmolt, “A physical model of the wireless infrared communication channel,” IEEE J. Sel. Areas Commun. 20, 631–640 (2002).
[Crossref]

J. B. Carruthers and P. Kannan, “Iterative site-based modeling for wireless infrared channels,” IEEE Trans. Antennas Propag. 50, 759–765 (2002).
[Crossref]

2000 (1)

F. J. Lopez-Hernandez, R. Perez-Jimenez, and A. Santamaria, “Ray-tracing algorithms for fast calculation of the impulse response on diffuse IR-wireless indoor channels,” Opt. Eng. 39, 2775–2780 (2000).
[Crossref]

1997 (2)

F. J. Lopez-Hermandez and M. J. Betancor, “DUSTIN: algorithm for calculation of impulse response on IR wireless indoor channels,” Electron. Lett. 33, 1804–1806 (1997).
[Crossref]

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

1993 (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

1991 (2)

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN p-n junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, L1998–L2001 (1991).
[Crossref]

J. R. Barry, J. M. Kahn, E. A. Lee, and D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Netw. 5, 44–54 (1991).
[Crossref]

1989 (1)

H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112–L2114 (1989).
[Crossref]

1987 (1)

T.-S. Chu and M. Gans, “High speed infrared local wireless communication,” IEEE Commun. Mag. 25(8), 4–10 (1987).
[Crossref]

1979 (1)

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67, 1474–1486 (1979).
[Crossref]

1963 (1)

N. Holonyak, S. F. Bevacqua, C. V. Bielan, F. A. Carranti, B. G. Hess, and S. J. Lubowski, “Electrical properties of Ga(As1-xPx) p-n junctions,” Proc. IEEE 51, 364 (1963).
[Crossref]

1948 (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–656 (1948).
[Crossref]

Abdallah, M.

M. Kashef, M. Ismail, M. Abdallah, K. A. Qaraqe, and E. Serpedin, “Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks,” IEEE J. Sel. Areas Commun. 34, 883–893 (2016).
[Crossref]

E. Sarbazi, M. Uysal, M. Abdallah, and K. Qaraqe, “Indoor channel modelling and characterization for visible light communications,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

Afgani, M. Z.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of the IEEE 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.

Akasaki, I.

H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112–L2114 (1989).
[Crossref]

Al-Hameed, A. A.

A. A. Al-Hameed, S. H. Younus, A. T. Hussein, M. T. Alresheed, and J. M. H. Elmirghani, “LiDAL: light detection and localization,” IEEE Access 7, 85645–85687 (2019).
[Crossref]

Alouini, M. S.

A. Chaaban, Z. Rezki, and M. S. Alouini, “On the capacity of the intensity-modulation direct-detection optical broadcast channel,” IEEE Trans. Wireless Commun. 15, 3114–3130 (2016).
[Crossref]

Alouini, M.-S.

M. Obeed, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Joint optimization of power allocation and load balancing for hybrid VLC/RF networks,” J. Opt. Commun. Netw. 10, 553–562 (2018).
[Crossref]

K.-H. Park and M.-S. Alouini, “Optimization of an angle-aided mirror diversity receiver for indoor MIMO-VLC systems,” in IEEE Global Communications Conference (GLOBECOM) (2016), pp. 1–6.

Alresheed, M. T.

A. A. Al-Hameed, S. H. Younus, A. T. Hussein, M. T. Alresheed, and J. M. H. Elmirghani, “LiDAL: light detection and localization,” IEEE Access 7, 85645–85687 (2019).
[Crossref]

Alresheedi, M. T.

M. T. Alresheedi, A. T. Hussein, and J. M. H. Elmirghani, “Uplink design in VLC systems with IR sources and beam steering,” IET Commun. 11, 311–317 (2017).
[Crossref]

A. T. Hussein, M. T. Alresheedi, and J. M. H. Elmirghani, “20 Gb/s mobile indoor visible light communication system employing beam steering and computer generated holograms,” J. Lightwave Technol. 33, 5242–5260 (2015).
[Crossref]

Amano, H.

H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112–L2114 (1989).
[Crossref]

Amara, A.

P. Pérez-Nicoli, F. Silveira, X. Zhang, and A. Amara, “Uplink wireless transmission overview in bi-directional VLC systems,” in IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2016), pp. 588–591.

Andrews, J. G.

J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun. 59, 3122–3134 (2011).
[Crossref]

Arai, S.

M. Kinoshita, T. Yamazato, H. Okada, T. Fujii, S. Arai, T. Yendo, and K. Kamakura, “Motion modeling of mobile transmitter for image sensor based I2V-VLC, V2I-VLC, and V2V-VLC,” in IEEE Globecom Workshops (GC Wkshps) (2014), pp. 450–455.

Armada, A. G.

A. A. Qidan, M. Morales-Cespedes, and A. G. Armada, “The role of WiFi in LiFi hybrid networks based on blind interference alignment,” in IEEE 87th Vehicular Technology Conference (VTC Spring) (2018), pp. 1–5.

Armstrong, J.

H. Steendam, T. Q. Wang, and J. Armstrong, “Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver,” J. Lightwave Technol. 35, 309–319 (2017).
[Crossref]

S. Cincotta, A. Neild, C. He, and J. Armstrong, “Visible light positioning using an aperture and a quadrant photodiode,” in IEEE Globecom Workshops (GC Wkshps) (2017), pp. 1–6.

Arnon, S.

Aveneau, L.

C. Le Bas, S. Sahuguede, A. Julien-Vergonjanne, A. Behlouli, P. Combeau, and L. Aveneau, “Human body impact on mobile visible light communication link,” in Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (2016), pp. 1–6.

Ayala, A.

O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo-based ray-tracing algorithm,” IEEE Trans. Commun. 53, 124–130 (2005).
[Crossref]

Ayyash, M.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. C. Little, and J. Wu, “An indoor hybrid WiFi-VLC Internet access system,” in IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (2014), pp. 569–574.

Baccelli, F.

J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun. 59, 3122–3134 (2011).
[Crossref]

Bai, R.

R. Bai, H. Tian, B. Fan, and S. Liang, “Coordinated transmission based interference mitigation in VLC network,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.

S. Liang, H. Tian, B. Fan, and R. Bai, “A novel vertical handover algorithm in a hybrid visible light communication and LTE system,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.

Bakaul, M.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

Bapst, U.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67, 1474–1486 (1979).
[Crossref]

Barbarossa, S.

E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag. 14(3), 42–50 (2019).
[Crossref]

Barry, J. R.

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217–219 (2011).
[Crossref]

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

J. R. Barry, J. M. Kahn, E. A. Lee, and D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Netw. 5, 44–54 (1991).
[Crossref]

Basnayaka, D. A.

Baykas, T.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

Bayvel, P.

Behlouli, A.

C. Le Bas, S. Sahuguede, A. Julien-Vergonjanne, A. Behlouli, P. Combeau, and L. Aveneau, “Human body impact on mobile visible light communication link,” in Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (2016), pp. 1–6.

Berenguer, P. W.

P. W. Berenguer, P. Hellwig, D. Schulz, J. Hilt, G. Kleinpeter, J. K. Fischer, and V. Jungnickel, “Real-time optical wireless communication: field-trial in an industrial production environment,” in European Conference on Optical Communication (ECOC) (2018), pp. 1–3.

Betancor, M. J.

F. J. Lopez-Hermandez and M. J. Betancor, “DUSTIN: algorithm for calculation of impulse response on IR wireless indoor channels,” Electron. Lett. 33, 1804–1806 (1997).
[Crossref]

Bevacqua, S. F.

N. Holonyak, S. F. Bevacqua, C. V. Bielan, F. A. Carranti, B. G. Hess, and S. J. Lubowski, “Electrical properties of Ga(As1-xPx) p-n junctions,” Proc. IEEE 51, 364 (1963).
[Crossref]

Bian, R.

R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019).
[Crossref]

C. Chen, R. Bian, and H. Haas, “Omnidirectional transmitter and receiver design for wireless infrared uplink transmission in LiFi,” in IEEE International Conference on Communications Workshops (ICC Workshops) (2018), pp. 1–6.

Bielan, C. V.

N. Holonyak, S. F. Bevacqua, C. V. Bielan, F. A. Carranti, B. G. Hess, and S. J. Lubowski, “Electrical properties of Ga(As1-xPx) p-n junctions,” Proc. IEEE 51, 364 (1963).
[Crossref]

Boccardi, F.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Boland, D.

Q. Wang, B. Song, B. Corcoran, D. Boland, L. Zhuang, Y. Xie, A. J. Lowery, A. J. Lowery, and A. J. Lowery, “FPGA-based layered/enhanced ACO-OFDM transmitter,” in Optical Fiber Communication Conference (2017), paper Tu3D.6.

Burchardt, H.

I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” in IEEE International Conference on Communications (ICC) (2013), pp. 3825–3829.

Bykhovsky, D.

Calvanese Strinati, E.

E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag. 14(3), 42–50 (2019).
[Crossref]

Carranti, F. A.

N. Holonyak, S. F. Bevacqua, C. V. Bielan, F. A. Carranti, B. G. Hess, and S. J. Lubowski, “Electrical properties of Ga(As1-xPx) p-n junctions,” Proc. IEEE 51, 364 (1963).
[Crossref]

Carruthers, J. B.

J. B. Carruthers and P. Kannan, “Iterative site-based modeling for wireless infrared channels,” IEEE Trans. Antennas Propag. 50, 759–765 (2002).
[Crossref]

Cassiau, N.

E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag. 14(3), 42–50 (2019).
[Crossref]

Chaaban, A.

A. Chaaban, Z. Rezki, and M. S. Alouini, “On the capacity of the intensity-modulation direct-detection optical broadcast channel,” IEEE Trans. Wireless Commun. 15, 3114–3130 (2016).
[Crossref]

Chandra, K.

K. Chandra, R. V. Prasad, and I. Niemegeers, “An architectural framework for 5G indoor communications,” in International Wireless Communications and Mobile Computing Conference (IWCMC) (2015), pp. 1144–1149.

Chen, C.

Chen, H.

H. Chen and Z. Xu, “OLED panel radiation pattern and its impact on VLC channel characteristics,” IEEE Photon. J. 10, 7901410 (2018).
[Crossref]

Chen, Z.

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

Chowdhury, M. I. S.

M. Kavehrad, M. I. S. Chowdhury, and Z. Zhou, “MIMO technology for optical wireless communications using LED arrays and fly-eye receivers,” in Short-Range Optical Wireless (Wiley, 2015), pp. 169–191.

Chowdhury, M. Z.

T. Nguyen, M. Z. Chowdhury, and Y. M. Jang, “A novel link switching scheme using pre-scanning and RSS prediction in visible light communication networks,” EURASIP J. Wireless Commun. Netw. 2013, 293 (2013).
[Crossref]

Chu, T.-S.

T.-S. Chu and M. Gans, “High speed infrared local wireless communication,” IEEE Commun. Mag. 25(8), 4–10 (1987).
[Crossref]

Chvojka, P.

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

Cincotta, S.

S. Cincotta, A. Neild, C. He, and J. Armstrong, “Visible light positioning using an aperture and a quadrant photodiode,” in IEEE Globecom Workshops (GC Wkshps) (2017), pp. 1–6.

Combeau, P.

C. Le Bas, S. Sahuguede, A. Julien-Vergonjanne, A. Behlouli, P. Combeau, and L. Aveneau, “Human body impact on mobile visible light communication link,” in Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (2016), pp. 1–6.

Corcoran, B.

Q. Wang, B. Song, B. Corcoran, D. Boland, L. Zhuang, Y. Xie, A. J. Lowery, A. J. Lowery, and A. J. Lowery, “FPGA-based layered/enhanced ACO-OFDM transmitter,” in Optical Fiber Communication Conference (2017), paper Tu3D.6.

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

Cui, K.

K. Cui, J. Quan, and Z. Xu, “Performance of indoor optical femtocell by visible light communication,” Opt. Commun. 298-299, 59–66 (2013).
[Crossref]

Dawson, M. D.

Dehos, C.

E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag. 14(3), 42–50 (2019).
[Crossref]

Delgado, F.

Ding, J.

J. Ding, C.-L. I, and Z. Xu, “Indoor optical wireless channel characteristics with distinct source radiation patterns,” IEEE Photon. J. 8, 7900115 (2016).
[Crossref]

Dissanayake, D. M. T. B.

E. S. S. Edirisinghe, P. H. R. S. S. Karunarathna, D. M. T. B. Dissanayake, and G. M. R. I. Godaliyadda, “Design and implementation of a bi-directional visible light communication system,” in IEEE 10th International Conference on Industrial and Information Systems (ICIIS) (2015), pp. 519–524.

Dong, Z.

Z. Dong, T. Shang, Y. Gao, and Q. Li, “Study on VLC channel modeling under random shadowing,” IEEE Photon. J. 9, 7908416 (2017).
[Crossref]

Dong, Z. L.

Edirisinghe, E. S. S.

E. S. S. Edirisinghe, P. H. R. S. S. Karunarathna, D. M. T. B. Dissanayake, and G. M. R. I. Godaliyadda, “Design and implementation of a bi-directional visible light communication system,” in IEEE 10th International Conference on Industrial and Information Systems (ICIIS) (2015), pp. 519–524.

Elgala, H.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. C. Little, and J. Wu, “An indoor hybrid WiFi-VLC Internet access system,” in IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (2014), pp. 569–574.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of the IEEE 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.

H. Elgala and T. D. C. Little, “SEE-OFDM: spectral and energy efficient OFDM for optical IM/DD systems,” in IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (2014), pp. 851–855.

Elmirghani, J. M. H.

A. A. Al-Hameed, S. H. Younus, A. T. Hussein, M. T. Alresheed, and J. M. H. Elmirghani, “LiDAL: light detection and localization,” IEEE Access 7, 85645–85687 (2019).
[Crossref]

M. T. Alresheedi, A. T. Hussein, and J. M. H. Elmirghani, “Uplink design in VLC systems with IR sources and beam steering,” IET Commun. 11, 311–317 (2017).
[Crossref]

A. T. Hussein, M. T. Alresheedi, and J. M. H. Elmirghani, “20 Gb/s mobile indoor visible light communication system employing beam steering and computer generated holograms,” J. Lightwave Technol. 33, 5242–5260 (2015).
[Crossref]

Fan, B.

R. Bai, H. Tian, B. Fan, and S. Liang, “Coordinated transmission based interference mitigation in VLC network,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.

S. Liang, H. Tian, B. Fan, and R. Bai, “A novel vertical handover algorithm in a hybrid visible light communication and LTE system,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.

Faulkner, G.

A. Gomez, K. Shi, C. Quintana, R. Maher, G. Faulkner, P. Bayvel, B. C. Thomsen, and D. O’Brien, “Design and demonstration of a 400 Gb/s indoor optical wireless communications link,” J. Lightwave Technol. 34, 5332–5339 (2016).
[Crossref]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Feng, S.

S. Feng, X. Li, R. Zhang, M. Jiang, and L. Hanzo, “Hybrid positioning aided amorphous-cell assisted user-centric visible light downlink techniques,” IEEE Access 4, 2705–2713 (2016).
[Crossref]

Fischer, J. K.

P. W. Berenguer, P. Hellwig, D. Schulz, J. Hilt, G. Kleinpeter, J. K. Fischer, and V. Jungnickel, “Real-time optical wireless communication: field-trial in an industrial production environment,” in European Conference on Optical Communication (ECOC) (2018), pp. 1–3.

Freund, R.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Fujii, T.

M. Kinoshita, T. Yamazato, H. Okada, T. Fujii, S. Arai, T. Yendo, and K. Kamakura, “Motion modeling of mobile transmitter for image sensor based I2V-VLC, V2I-VLC, and V2V-VLC,” in IEEE Globecom Workshops (GC Wkshps) (2014), pp. 450–455.

Gans, M.

T.-S. Chu and M. Gans, “High speed infrared local wireless communication,” IEEE Commun. Mag. 25(8), 4–10 (1987).
[Crossref]

Ganti, R. K.

J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun. 59, 3122–3134 (2011).
[Crossref]

Gao, Y.

Z. Dong, T. Shang, Y. Gao, and Q. Li, “Study on VLC channel modeling under random shadowing,” IEEE Photon. J. 9, 7908416 (2017).
[Crossref]

Gfeller, F. R.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67, 1474–1486 (1979).
[Crossref]

Ghassemlooy, Z.

P. Chvojka, S. Zvanovec, P. A. Haigh, and Z. Ghassemlooy, “Channel characteristics of visible light communications within dynamic indoor environment,” J. Lightwave Technol. 33, 1719–1725 (2015).
[Crossref]

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J. 7, 7904212 (2015).
[Crossref]

Ghimire, B.

B. Ghimire and H. Haas, “Self-organising interference coordination in optical wireless networks,” EURASIP J. Wirel. Commun. Netw. 2012, 131 (2012).
[Crossref]

Godaliyadda, G. M. R. I.

E. S. S. Edirisinghe, P. H. R. S. S. Karunarathna, D. M. T. B. Dissanayake, and G. M. R. I. Godaliyadda, “Design and implementation of a bi-directional visible light communication system,” in IEEE 10th International Conference on Industrial and Information Systems (ICIIS) (2015), pp. 519–524.

Gomez, A.

Gonzalez, O.

O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo-based ray-tracing algorithm,” IEEE Trans. Commun. 53, 124–130 (2005).
[Crossref]

González, O.

Gonzalez-Jimenez, J. L.

E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag. 14(3), 42–50 (2019).
[Crossref]

Green, R. P.

Grubor, J.

J. Grubor, S. C. J. Lee, K. D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of the 33rd European Conference and Exhibition of Optical Communication—Post-Deadline Papers (2007), pp. 1–2.

Gu, E.

Gu, H.

Guerra-Medina, M. F.

Haas, H.

R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019).
[Crossref]

X. Wu and H. Haas, “Handover skipping for LiFi,” IEEE Access 7, 38369–38378 (2019).
[Crossref]

Y. Wang, X. Wu, and H. Haas, “Load balancing game with shadowing effect for indoor hybrid LiFi/RF networks,” IEEE Trans. Wireless Commun. 16, 2366–2378 (2017).
[Crossref]

Z. Chen, D. A. Basnayaka, and H. Haas, “Space division multiple access for optical attocell network using angle diversity transmitters,” J. Lightwave Technol. 35, 2118–2131 (2017).
[Crossref]

Y. Wang, D. A. Basnayaka, X. Wu, and H. Haas, “Optimization of load balancing in hybrid LiFi/RF networks,” IEEE Trans. Commun. 65, 1708–1720 (2017).
[Crossref]

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightwave Technol. 34, 137–156 (2016).
[Crossref]

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34, 1533–1544 (2016).
[Crossref]

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightwave Technol. 33, 3986–4000 (2015).
[Crossref]

Y. Wang and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” J. Lightwave Technol. 33, 4671–4682 (2015).
[Crossref]

B. Ghimire and H. Haas, “Self-organising interference coordination in optical wireless networks,” EURASIP J. Wirel. Commun. Netw. 2012, 131 (2012).
[Crossref]

I. Stefan and H. Haas, “Analysis of optimal placement of LED arrays for visible light communication,” in IEEE 77th Vehicular Technology Conference (VTC Spring) (2013).

C. Chen, R. Bian, and H. Haas, “Omnidirectional transmitter and receiver design for wireless infrared uplink transmission in LiFi,” in IEEE International Conference on Communications Workshops (ICC Workshops) (2018), pp. 1–6.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of the IEEE 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.

Y. Wang, S. Videv, and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” in IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (2014), pp. 548–552.

I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” in IEEE International Conference on Communications (ICC) (2013), pp. 3825–3829.

Haigh, P. A.

Han, D.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J. 7, 7904212 (2015).
[Crossref]

Han, S.-K.

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Inter-cell interference mitigation and indoor positioning system based on carrier allocation visible light communication,” in 5th International Conference on Signal Processing and Communication Systems (ICSPCS) (2011), pp. 1–7.

Hanzo, L.

X. Li, Y. Huo, R. Zhang, and L. Hanzo, “User-centric visible light communications for energy-efficient scalable video streaming,” IEEE Trans. Green Commun. Netw. 1, 59–73 (2017).
[Crossref]

S. Feng, X. Li, R. Zhang, M. Jiang, and L. Hanzo, “Hybrid positioning aided amorphous-cell assisted user-centric visible light downlink techniques,” IEEE Access 4, 2705–2713 (2016).
[Crossref]

X. Li, F. Jin, R. Zhang, J. Wang, Z. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15, 39–53 (2016).
[Crossref]

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun. 63, 1319–1329 (2015).
[Crossref]

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22, 8–16 (2015).
[Crossref]

Haruyama, S.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of the 12th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) (2000), vol. 2, pp. 1325–1329.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proceedings of the 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (2001), vol. 2, pp. 81–85.

He, C.

S. Cincotta, A. Neild, C. He, and J. Armstrong, “Visible light positioning using an aperture and a quadrant photodiode,” in IEEE Globecom Workshops (GC Wkshps) (2017), pp. 1–6.

Heath, R. W.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Hellwig, P.

P. W. Berenguer, P. Hellwig, D. Schulz, J. Hilt, G. Kleinpeter, J. K. Fischer, and V. Jungnickel, “Real-time optical wireless communication: field-trial in an industrial production environment,” in European Conference on Optical Communication (ECOC) (2018), pp. 1–3.

Henderson, R. K.

Hess, B. G.

N. Holonyak, S. F. Bevacqua, C. V. Bielan, F. A. Carranti, B. G. Hess, and S. J. Lubowski, “Electrical properties of Ga(As1-xPx) p-n junctions,” Proc. IEEE 51, 364 (1963).
[Crossref]

Hilt, J.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

P. W. Berenguer, P. Hellwig, D. Schulz, J. Hilt, G. Kleinpeter, J. K. Fischer, and V. Jungnickel, “Real-time optical wireless communication: field-trial in an industrial production environment,” in European Conference on Optical Communication (ECOC) (2018), pp. 1–3.

Hiramatsu, K.

H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112–L2114 (1989).
[Crossref]

Holonyak, N.

N. Holonyak, S. F. Bevacqua, C. V. Bielan, F. A. Carranti, B. G. Hess, and S. J. Lubowski, “Electrical properties of Ga(As1-xPx) p-n junctions,” Proc. IEEE 51, 364 (1963).
[Crossref]

Hranilovic, S.

Huo, Y.

X. Li, Y. Huo, R. Zhang, and L. Hanzo, “User-centric visible light communications for energy-efficient scalable video streaming,” IEEE Trans. Green Commun. Netw. 1, 59–73 (2017).
[Crossref]

Hussein, A. T.

A. A. Al-Hameed, S. H. Younus, A. T. Hussein, M. T. Alresheed, and J. M. H. Elmirghani, “LiDAL: light detection and localization,” IEEE Access 7, 85645–85687 (2019).
[Crossref]

M. T. Alresheedi, A. T. Hussein, and J. M. H. Elmirghani, “Uplink design in VLC systems with IR sources and beam steering,” IET Commun. 11, 311–317 (2017).
[Crossref]

A. T. Hussein, M. T. Alresheedi, and J. M. H. Elmirghani, “20 Gb/s mobile indoor visible light communication system employing beam steering and computer generated holograms,” J. Lightwave Technol. 33, 5242–5260 (2015).
[Crossref]

I, C.-L.

J. Ding, C.-L. I, and Z. Xu, “Indoor optical wireless channel characteristics with distinct source radiation patterns,” IEEE Photon. J. 8, 7900115 (2016).
[Crossref]

Ifthekhar, M. S.

N. T. Le, M. S. Ifthekhar, Y. M. Jang, and N. Saha, “Survey on optical camera communications: challenges and opportunities,” IET Optoelectron. 9, 172–183 (2015).
[Crossref]

Ismail, M.

M. Kashef, M. Ismail, M. Abdallah, K. A. Qaraqe, and E. Serpedin, “Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks,” IEEE J. Sel. Areas Commun. 34, 883–893 (2016).
[Crossref]

Jang, Y. M.

N. T. Le, M. S. Ifthekhar, Y. M. Jang, and N. Saha, “Survey on optical camera communications: challenges and opportunities,” IET Optoelectron. 9, 172–183 (2015).
[Crossref]

T. Nguyen, M. Z. Chowdhury, and Y. M. Jang, “A novel link switching scheme using pre-scanning and RSS prediction in visible light communication networks,” EURASIP J. Wireless Commun. Netw. 2013, 293 (2013).
[Crossref]

Jiang, M.

S. Feng, X. Li, R. Zhang, M. Jiang, and L. Hanzo, “Hybrid positioning aided amorphous-cell assisted user-centric visible light downlink techniques,” IEEE Access 4, 2705–2713 (2016).
[Crossref]

Jin, F.

X. Li, F. Jin, R. Zhang, J. Wang, Z. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15, 39–53 (2016).
[Crossref]

Julien-Vergonjanne, A.

C. Le Bas, S. Sahuguede, A. Julien-Vergonjanne, A. Behlouli, P. Combeau, and L. Aveneau, “Human body impact on mobile visible light communication link,” in Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (2016), pp. 1–6.

Jung, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in 4th IEEE International Conference on Circuits and Systems for Communications (ICCSC) (2008), pp. 678–682.

Jungnickel, V.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

V. Jungnickel, V. Pohl, S. Nonnig, and C. von Helmolt, “A physical model of the wireless infrared communication channel,” IEEE J. Sel. Areas Commun. 20, 631–640 (2002).
[Crossref]

P. W. Berenguer, P. Hellwig, D. Schulz, J. Hilt, G. Kleinpeter, J. K. Fischer, and V. Jungnickel, “Real-time optical wireless communication: field-trial in an industrial production environment,” in European Conference on Optical Communication (ECOC) (2018), pp. 1–3.

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

J. R. Barry, J. M. Kahn, E. A. Lee, and D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Netw. 5, 44–54 (1991).
[Crossref]

Kamakura, K.

M. Kinoshita, T. Yamazato, H. Okada, T. Fujii, S. Arai, T. Yendo, and K. Kamakura, “Motion modeling of mobile transmitter for image sensor based I2V-VLC, V2I-VLC, and V2V-VLC,” in IEEE Globecom Workshops (GC Wkshps) (2014), pp. 450–455.

Kannan, P.

J. B. Carruthers and P. Kannan, “Iterative site-based modeling for wireless infrared channels,” IEEE Trans. Antennas Propag. 50, 759–765 (2002).
[Crossref]

Karunarathna, P. H. R. S. S.

E. S. S. Edirisinghe, P. H. R. S. S. Karunarathna, D. M. T. B. Dissanayake, and G. M. R. I. Godaliyadda, “Design and implementation of a bi-directional visible light communication system,” in IEEE 10th International Conference on Industrial and Information Systems (ICIIS) (2015), pp. 519–524.

Kashef, M.

M. Kashef, M. Ismail, M. Abdallah, K. A. Qaraqe, and E. Serpedin, “Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks,” IEEE J. Sel. Areas Commun. 34, 883–893 (2016).
[Crossref]

Kavehrad, M.

M. Kavehrad, M. I. S. Chowdhury, and Z. Zhou, “MIMO technology for optical wireless communications using LED arrays and fly-eye receivers,” in Short-Range Optical Wireless (Wiley, 2015), pp. 169–191.

Kelly, A. E.

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

Khalighi, M. A.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tutorials 16, 2231–2258 (2014).
[Crossref]

Khreishah, A.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. C. Little, and J. Wu, “An indoor hybrid WiFi-VLC Internet access system,” in IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (2014), pp. 569–574.

Kim, D.-R.

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Inter-cell interference mitigation and indoor positioning system based on carrier allocation visible light communication,” in 5th International Conference on Signal Processing and Communication Systems (ICSPCS) (2011), pp. 1–7.

Kim, H.-S.

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Inter-cell interference mitigation and indoor positioning system based on carrier allocation visible light communication,” in 5th International Conference on Signal Processing and Communication Systems (ICSPCS) (2011), pp. 1–7.

Kinoshita, M.

M. Kinoshita, T. Yamazato, H. Okada, T. Fujii, S. Arai, T. Yendo, and K. Kamakura, “Motion modeling of mobile transmitter for image sensor based I2V-VLC, V2I-VLC, and V2V-VLC,” in IEEE Globecom Workshops (GC Wkshps) (2014), pp. 450–455.

Kito, M.

H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112–L2114 (1989).
[Crossref]

Kleinpeter, G.

P. W. Berenguer, P. Hellwig, D. Schulz, J. Hilt, G. Kleinpeter, J. K. Fischer, and V. Jungnickel, “Real-time optical wireless communication: field-trial in an industrial production environment,” in European Conference on Optical Communication (ECOC) (2018), pp. 1–3.

Knipp, D.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of the IEEE 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.

Komine, T.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proceedings of the 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (2001), vol. 2, pp. 81–85.

T. Komine and M. Nakagawa, “A study of shadowing on indoor visible-light wireless communication utilizing plural white LED lightings,” in Proceedings of the 1st International Symposium on Wireless Communication Systems (2004), pp. 36–40.

Koonen, T.

T. Koonen, J. Oh, K. Mekonnen, and E. Tangdiongga, “Ultra-high capacity indoor optical wireless communication using steered pencil beams,” in International Topical Meeting on Microwave Photonics (MWP) (2015), pp. 1–4.

J. Grubor, S. C. J. Lee, K. D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of the 33rd European Conference and Exhibition of Optical Communication—Post-Deadline Papers (2007), pp. 1–2.

Kottke, C.

Krause, W. J.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

Ktenas, D.

E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag. 14(3), 42–50 (2019).
[Crossref]

D. Miras, L. Maret, M. Maman, M. Laugeois, X. Popon, and D. Ktenas, “A high data rate LiFi integrated system with inter-cell interference management,” in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6.

Lampe, L.

Langer, K. D.

J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28, 3512–3518 (2010).
[Crossref]

J. Grubor, S. C. J. Lee, K. D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of the 33rd European Conference and Exhibition of Optical Communication—Post-Deadline Papers (2007), pp. 1–2.

Lapidoth, A.

A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of free-space optical intensity channels,” IEEE Trans. Inf. Theory 55, 4449–4461 (2009).
[Crossref]

Lau, V.

B. Zhou, A. Liu, and V. Lau, “Joint user location and orientation estimation for visible light communication systems with unknown power emission,” IEEE Trans. Wireless Commun. 18, 5181–5195 (2019).
[Crossref]

Laugeois, M.

D. Miras, L. Maret, M. Maman, M. Laugeois, X. Popon, and D. Ktenas, “A high data rate LiFi integrated system with inter-cell interference management,” in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6.

Le, N. T.

N. T. Le, M. S. Ifthekhar, Y. M. Jang, and N. Saha, “Survey on optical camera communications: challenges and opportunities,” IET Optoelectron. 9, 172–183 (2015).
[Crossref]

Le Bas, C.

C. Le Bas, S. Sahuguede, A. Julien-Vergonjanne, A. Behlouli, P. Combeau, and L. Aveneau, “Human body impact on mobile visible light communication link,” in Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (2016), pp. 1–6.

Le Minh, H.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J. 7, 7904212 (2015).
[Crossref]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Lee, E. A.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

J. R. Barry, J. M. Kahn, E. A. Lee, and D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Netw. 5, 44–54 (1991).
[Crossref]

Lee, K.

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217–219 (2011).
[Crossref]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in 4th IEEE International Conference on Circuits and Systems for Communications (ICCSC) (2008), pp. 678–682.

Lee, S. C. J.

J. Grubor, S. C. J. Lee, K. D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of the 33rd European Conference and Exhibition of Optical Communication—Post-Deadline Papers (2007), pp. 1–2.

Le-Minh, H.

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in 4th IEEE International Conference on Circuits and Systems for Communications (ICCSC) (2008), pp. 678–682.

Li, H.

Li, Q.

Z. Dong, T. Shang, Y. Gao, and Q. Li, “Study on VLC channel modeling under random shadowing,” IEEE Photon. J. 9, 7908416 (2017).
[Crossref]

Li, S.

Li, X.

X. Li, Y. Huo, R. Zhang, and L. Hanzo, “User-centric visible light communications for energy-efficient scalable video streaming,” IEEE Trans. Green Commun. Netw. 1, 59–73 (2017).
[Crossref]

X. Li, F. Jin, R. Zhang, J. Wang, Z. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15, 39–53 (2016).
[Crossref]

S. Feng, X. Li, R. Zhang, M. Jiang, and L. Hanzo, “Hybrid positioning aided amorphous-cell assisted user-centric visible light downlink techniques,” IEEE Access 4, 2705–2713 (2016).
[Crossref]

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun. 63, 1319–1329 (2015).
[Crossref]

Liang, S.

S. Liang, H. Tian, B. Fan, and R. Bai, “A novel vertical handover algorithm in a hybrid visible light communication and LTE system,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.

R. Bai, H. Tian, B. Fan, and S. Liang, “Coordinated transmission based interference mitigation in VLC network,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.

Lim, C.

Little, T.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Little, T. D. C.

M. B. Rahaim, A. M. Vegni, and T. D. C. Little, “A hybrid radio frequency and broadcast visible light communication system,” in IEEE GLOBECOM Workshops (2011), pp. 792–796.

M. Rahaim and T. D. C. Little, “Optical interference analysis in visible light communication networks,” in IEEE International Conference on Communication Workshop (ICCW) (2015), pp. 1410–1415.

T. D. C. Little and M. Rahaim, “Network topologies for mixed RF-VLC HetNets,” in IEEE Summer Topicals Meeting Series (SUM) (2015), pp. 163–164.

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. C. Little, and J. Wu, “An indoor hybrid WiFi-VLC Internet access system,” in IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (2014), pp. 569–574.

H. Elgala and T. D. C. Little, “SEE-OFDM: spectral and energy efficient OFDM for optical IM/DD systems,” in IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (2014), pp. 851–855.

A. M. Vegni and T. D. C. Little, “Handover in VLC systems with cooperating mobile devices,” in International Conference on Computing, Networking and Communications (ICNC) (2012), pp. 126–130.

Liu, A.

B. Zhou, A. Liu, and V. Lau, “Joint user location and orientation estimation for visible light communication systems with unknown power emission,” IEEE Trans. Wireless Commun. 18, 5181–5195 (2019).
[Crossref]

Lopez-Hermandez, F. J.

F. J. Lopez-Hermandez and M. J. Betancor, “DUSTIN: algorithm for calculation of impulse response on IR wireless indoor channels,” Electron. Lett. 33, 1804–1806 (1997).
[Crossref]

Lopez-Hernandez, F. J.

F. J. Lopez-Hernandez, R. Perez-Jimenez, and A. Santamaria, “Ray-tracing algorithms for fast calculation of the impulse response on diffuse IR-wireless indoor channels,” Opt. Eng. 39, 2775–2780 (2000).
[Crossref]

Lowery, A. J.

Q. Wang, B. Song, B. Corcoran, D. Boland, L. Zhuang, Y. Xie, A. J. Lowery, A. J. Lowery, and A. J. Lowery, “FPGA-based layered/enhanced ACO-OFDM transmitter,” in Optical Fiber Communication Conference (2017), paper Tu3D.6.

Q. Wang, B. Song, B. Corcoran, D. Boland, L. Zhuang, Y. Xie, A. J. Lowery, A. J. Lowery, and A. J. Lowery, “FPGA-based layered/enhanced ACO-OFDM transmitter,” in Optical Fiber Communication Conference (2017), paper Tu3D.6.

Q. Wang, B. Song, B. Corcoran, D. Boland, L. Zhuang, Y. Xie, A. J. Lowery, A. J. Lowery, and A. J. Lowery, “FPGA-based layered/enhanced ACO-OFDM transmitter,” in Optical Fiber Communication Conference (2017), paper Tu3D.6.

Lozano, A.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Lubowski, S. J.

N. Holonyak, S. F. Bevacqua, C. V. Bielan, F. A. Carranti, B. G. Hess, and S. J. Lubowski, “Electrical properties of Ga(As1-xPx) p-n junctions,” Proc. IEEE 51, 364 (1963).
[Crossref]

Luo, P.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J. 7, 7904212 (2015).
[Crossref]

Ma, H.

Ma, S.

Ma, W.

W. Ma and L. Zhang, “QoE-driven optimized load balancing design for hybrid LiFi and WiFi networks,” IEEE Commun. Lett. 22, 2354–2357 (2018).
[Crossref]

Maher, R.

Maman, M.

D. Miras, L. Maret, M. Maman, M. Laugeois, X. Popon, and D. Ktenas, “A high data rate LiFi integrated system with inter-cell interference management,” in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6.

Maret, L.

E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag. 14(3), 42–50 (2019).
[Crossref]

D. Miras, L. Maret, M. Maman, M. Laugeois, X. Popon, and D. Ktenas, “A high data rate LiFi integrated system with inter-cell interference management,” in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6.

Martín, I. R.

Marzetta, T. L.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Massoubre, D.

McKendry, J. J. D.

Mekonnen, K.

T. Koonen, J. Oh, K. Mekonnen, and E. Tangdiongga, “Ultra-high capacity indoor optical wireless communication using steered pencil beams,” in International Topical Meeting on Microwave Photonics (MWP) (2015), pp. 1–4.

Mendoza, B. R.

O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo-based ray-tracing algorithm,” IEEE Trans. Commun. 53, 124–130 (2005).
[Crossref]

Messerschmitt, D. G.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

J. R. Barry, J. M. Kahn, E. A. Lee, and D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Netw. 5, 44–54 (1991).
[Crossref]

Miramirkhani, F.

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21, 1035–1038 (2017).
[Crossref]

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications,” IEEE Photon. J. 7, 1–16 (2015).
[Crossref]

Miras, D.

D. Miras, L. Maret, M. Maman, M. Laugeois, X. Popon, and D. Ktenas, “A high data rate LiFi integrated system with inter-cell interference management,” in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6.

Morales-Cespedes, M.

A. A. Qidan, M. Morales-Cespedes, and A. G. Armada, “The role of WiFi in LiFi hybrid networks based on blind interference alignment,” in IEEE 87th Vehicular Technology Conference (VTC Spring) (2018), pp. 1–5.

Moser, S. M.

A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of free-space optical intensity channels,” IEEE Trans. Inf. Theory 55, 4449–4461 (2009).
[Crossref]

Mukai, T.

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN p-n junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, L1998–L2001 (1991).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “A study of shadowing on indoor visible-light wireless communication utilizing plural white LED lightings,” in Proceedings of the 1st International Symposium on Wireless Communication Systems (2004), pp. 36–40.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proceedings of the 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (2001), vol. 2, pp. 81–85.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of the 12th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) (2000), vol. 2, pp. 1325–1329.

Nakamura, S.

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN p-n junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, L1998–L2001 (1991).
[Crossref]

Narmanlioglu, O.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21, 1035–1038 (2017).
[Crossref]

Neild, A.

S. Cincotta, A. Neild, C. He, and J. Armstrong, “Visible light positioning using an aperture and a quadrant photodiode,” in IEEE Globecom Workshops (GC Wkshps) (2017), pp. 1–6.

Nerreter, S.

Nguyen, T.

T. Nguyen, M. Z. Chowdhury, and Y. M. Jang, “A novel link switching scheme using pre-scanning and RSS prediction in visible light communication networks,” EURASIP J. Wireless Commun. Netw. 2013, 293 (2013).
[Crossref]

Niemegeers, I.

K. Chandra, R. V. Prasad, and I. Niemegeers, “An architectural framework for 5G indoor communications,” in International Wireless Communications and Mobile Computing Conference (IWCMC) (2015), pp. 1144–1149.

Nirmalathas, A.

Nonnig, S.

V. Jungnickel, V. Pohl, S. Nonnig, and C. von Helmolt, “A physical model of the wireless infrared communication channel,” IEEE J. Sel. Areas Commun. 20, 631–640 (2002).
[Crossref]

O’Brien, D.

A. Gomez, K. Shi, C. Quintana, R. Maher, G. Faulkner, P. Bayvel, B. C. Thomsen, and D. O’Brien, “Design and demonstration of a 400 Gb/s indoor optical wireless communications link,” J. Lightwave Technol. 34, 5332–5339 (2016).
[Crossref]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in 4th IEEE International Conference on Circuits and Systems for Communications (ICCSC) (2008), pp. 678–682.

Obeed, M.

Oh, J.

T. Koonen, J. Oh, K. Mekonnen, and E. Tangdiongga, “Ultra-high capacity indoor optical wireless communication using steered pencil beams,” in International Topical Meeting on Microwave Photonics (MWP) (2015), pp. 1–4.

Oh, Y.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in 4th IEEE International Conference on Circuits and Systems for Communications (ICCSC) (2008), pp. 678–682.

Okada, H.

M. Kinoshita, T. Yamazato, H. Okada, T. Fujii, S. Arai, T. Yendo, and K. Kamakura, “Motion modeling of mobile transmitter for image sensor based I2V-VLC, V2I-VLC, and V2V-VLC,” in IEEE Globecom Workshops (GC Wkshps) (2014), pp. 450–455.

Panayirci, E.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21, 1035–1038 (2017).
[Crossref]

Park, H.

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217–219 (2011).
[Crossref]

Park, K.-H.

K.-H. Park and M.-S. Alouini, “Optimization of an angle-aided mirror diversity receiver for indoor MIMO-VLC systems,” in IEEE Global Communications Conference (GLOBECOM) (2016), pp. 1–6.

Parthiban, R.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

Perez-Jimenez, R.

O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo-based ray-tracing algorithm,” IEEE Trans. Commun. 53, 124–130 (2005).
[Crossref]

F. J. Lopez-Hernandez, R. Perez-Jimenez, and A. Santamaria, “Ray-tracing algorithms for fast calculation of the impulse response on diffuse IR-wireless indoor channels,” Opt. Eng. 39, 2775–2780 (2000).
[Crossref]

Pérez-Jiménez, R.

Pérez-Nicoli, P.

P. Pérez-Nicoli, F. Silveira, X. Zhang, and A. Amara, “Uplink wireless transmission overview in bi-directional VLC systems,” in IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2016), pp. 588–591.

Png, L. C.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J. 7, 7904212 (2015).
[Crossref]

Pohl, V.

V. Jungnickel, V. Pohl, S. Nonnig, and C. von Helmolt, “A physical model of the wireless infrared communication channel,” IEEE J. Sel. Areas Commun. 20, 631–640 (2002).
[Crossref]

Popon, X.

D. Miras, L. Maret, M. Maman, M. Laugeois, X. Popon, and D. Ktenas, “A high data rate LiFi integrated system with inter-cell interference management,” in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6.

Popovski, P.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Prasad, R. V.

K. Chandra, R. V. Prasad, and I. Niemegeers, “An architectural framework for 5G indoor communications,” in International Wireless Communications and Mobile Computing Conference (IWCMC) (2015), pp. 1144–1149.

Qaraqe, K.

E. Sarbazi, M. Uysal, M. Abdallah, and K. Qaraqe, “Indoor channel modelling and characterization for visible light communications,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

Qaraqe, K. A.

M. Kashef, M. Ismail, M. Abdallah, K. A. Qaraqe, and E. Serpedin, “Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks,” IEEE J. Sel. Areas Commun. 34, 883–893 (2016).
[Crossref]

Qidan, A. A.

A. A. Qidan, M. Morales-Cespedes, and A. G. Armada, “The role of WiFi in LiFi hybrid networks based on blind interference alignment,” in IEEE 87th Vehicular Technology Conference (VTC Spring) (2018), pp. 1–5.

Quan, J.

K. Cui, J. Quan, and Z. Xu, “Performance of indoor optical femtocell by visible light communication,” Opt. Commun. 298-299, 59–66 (2013).
[Crossref]

Quintana, C.

Rae, B. R.

Rahaim, M.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

T. D. C. Little and M. Rahaim, “Network topologies for mixed RF-VLC HetNets,” in IEEE Summer Topicals Meeting Series (SUM) (2015), pp. 163–164.

M. Rahaim and T. D. C. Little, “Optical interference analysis in visible light communication networks,” in IEEE International Conference on Communication Workshop (ICCW) (2015), pp. 1410–1415.

Rahaim, M. B.

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. C. Little, and J. Wu, “An indoor hybrid WiFi-VLC Internet access system,” in IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (2014), pp. 569–574.

M. B. Rahaim, A. M. Vegni, and T. D. C. Little, “A hybrid radio frequency and broadcast visible light communication system,” in IEEE GLOBECOM Workshops (2011), pp. 792–796.

Rezki, Z.

A. Chaaban, Z. Rezki, and M. S. Alouini, “On the capacity of the intensity-modulation direct-detection optical broadcast channel,” IEEE Trans. Wireless Commun. 15, 3114–3130 (2016).
[Crossref]

Rodriguez, S.

O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo-based ray-tracing algorithm,” IEEE Trans. Commun. 53, 124–130 (2005).
[Crossref]

Saha, N.

N. T. Le, M. S. Ifthekhar, Y. M. Jang, and N. Saha, “Survey on optical camera communications: challenges and opportunities,” IET Optoelectron. 9, 172–183 (2015).
[Crossref]

Sahuguede, S.

C. Le Bas, S. Sahuguede, A. Julien-Vergonjanne, A. Behlouli, P. Combeau, and L. Aveneau, “Human body impact on mobile visible light communication link,” in Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (2016), pp. 1–6.

Salhab, A. M.

Santamaria, A.

F. J. Lopez-Hernandez, R. Perez-Jimenez, and A. Santamaria, “Ray-tracing algorithms for fast calculation of the impulse response on diffuse IR-wireless indoor channels,” Opt. Eng. 39, 2775–2780 (2000).
[Crossref]

Sarbazi, E.

E. Sarbazi, M. Uysal, M. Abdallah, and K. Qaraqe, “Indoor channel modelling and characterization for visible light communications,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

Schulz, D.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

P. W. Berenguer, P. Hellwig, D. Schulz, J. Hilt, G. Kleinpeter, J. K. Fischer, and V. Jungnickel, “Real-time optical wireless communication: field-trial in an industrial production environment,” in European Conference on Optical Communication (ECOC) (2018), pp. 1–3.

Schulze, H.

H. Schulze, “Frequency-domain simulation of the indoor wireless optical communication channel,” IEEE Trans. Commun. 64, 2551–2562 (2016).
[Crossref]

Senoh, M.

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN p-n junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, L1998–L2001 (1991).
[Crossref]

Serpedin, E.

M. Kashef, M. Ismail, M. Abdallah, K. A. Qaraqe, and E. Serpedin, “Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks,” IEEE J. Sel. Areas Commun. 34, 883–893 (2016).
[Crossref]

Shang, T.

Z. Dong, T. Shang, Y. Gao, and Q. Li, “Study on VLC channel modeling under random shadowing,” IEEE Photon. J. 9, 7908416 (2017).
[Crossref]

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–656 (1948).
[Crossref]

Shao, S.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. C. Little, and J. Wu, “An indoor hybrid WiFi-VLC Internet access system,” in IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (2014), pp. 569–574.

Shi, K.

Silveira, F.

P. Pérez-Nicoli, F. Silveira, X. Zhang, and A. Amara, “Uplink wireless transmission overview in bi-directional VLC systems,” in IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2016), pp. 588–591.

Skafidas, E.

Son, Y.-H.

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Inter-cell interference mitigation and indoor positioning system based on carrier allocation visible light communication,” in 5th International Conference on Signal Processing and Communication Systems (ICSPCS) (2011), pp. 1–7.

Song, B.

Q. Wang, B. Song, B. Corcoran, D. Boland, L. Zhuang, Y. Xie, A. J. Lowery, A. J. Lowery, and A. J. Lowery, “FPGA-based layered/enhanced ACO-OFDM transmitter,” in Optical Fiber Communication Conference (2017), paper Tu3D.6.

Steendam, H.

Stefan, I.

I. Stefan and H. Haas, “Analysis of optimal placement of LED arrays for visible light communication,” in IEEE 77th Vehicular Technology Conference (VTC Spring) (2013).

I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” in IEEE International Conference on Communications (ICC) (2013), pp. 3825–3829.

Tanaka, Y.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proceedings of the 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (2001), vol. 2, pp. 81–85.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of the 12th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) (2000), vol. 2, pp. 1325–1329.

Tang, X.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J. 7, 7904212 (2015).
[Crossref]

Tangdiongga, E.

T. Koonen, J. Oh, K. Mekonnen, and E. Tangdiongga, “Ultra-high capacity indoor optical wireless communication using steered pencil beams,” in International Topical Meeting on Microwave Photonics (MWP) (2015), pp. 1–4.

Tavakkolnia, I.

Thomsen, B. C.

Tian, H.

S. Liang, H. Tian, B. Fan, and R. Bai, “A novel vertical handover algorithm in a hybrid visible light communication and LTE system,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.

R. Bai, H. Tian, B. Fan, and S. Liang, “Coordinated transmission based interference mitigation in VLC network,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.

Tsai, H.-M.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J. 7, 7904212 (2015).
[Crossref]

Tsonev, D.

Uysal, M.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21, 1035–1038 (2017).
[Crossref]

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications,” IEEE Photon. J. 7, 1–16 (2015).
[Crossref]

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tutorials 16, 2231–2258 (2014).
[Crossref]

E. Sarbazi, M. Uysal, M. Abdallah, and K. Qaraqe, “Indoor channel modelling and characterization for visible light communications,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

Vegni, A. M.

A. M. Vegni and T. D. C. Little, “Handover in VLC systems with cooperating mobile devices,” in International Conference on Computing, Networking and Communications (ICNC) (2012), pp. 126–130.

M. B. Rahaim, A. M. Vegni, and T. D. C. Little, “A hybrid radio frequency and broadcast visible light communication system,” in IEEE GLOBECOM Workshops (2011), pp. 792–796.

Videv, S.

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightwave Technol. 33, 3986–4000 (2015).
[Crossref]

Y. Wang, S. Videv, and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” in IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (2014), pp. 548–552.

von Helmolt, C.

V. Jungnickel, V. Pohl, S. Nonnig, and C. von Helmolt, “A physical model of the wireless infrared communication channel,” IEEE J. Sel. Areas Commun. 20, 631–640 (2002).
[Crossref]

Vucic, J.

Walewski, J. W.

J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28, 3512–3518 (2010).
[Crossref]

J. Grubor, S. C. J. Lee, K. D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of the 33rd European Conference and Exhibition of Optical Communication—Post-Deadline Papers (2007), pp. 1–2.

Wang, J.

X. Li, F. Jin, R. Zhang, J. Wang, Z. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15, 39–53 (2016).
[Crossref]

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22, 8–16 (2015).
[Crossref]

Wang, K.

Wang, Q.

Q. Wang, B. Song, B. Corcoran, D. Boland, L. Zhuang, Y. Xie, A. J. Lowery, A. J. Lowery, and A. J. Lowery, “FPGA-based layered/enhanced ACO-OFDM transmitter,” in Optical Fiber Communication Conference (2017), paper Tu3D.6.

Wang, T. Q.

Wang, Y.

Y. Wang, D. A. Basnayaka, X. Wu, and H. Haas, “Optimization of load balancing in hybrid LiFi/RF networks,” IEEE Trans. Commun. 65, 1708–1720 (2017).
[Crossref]

Y. Wang, X. Wu, and H. Haas, “Load balancing game with shadowing effect for indoor hybrid LiFi/RF networks,” IEEE Trans. Wireless Commun. 16, 2366–2378 (2017).
[Crossref]

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34, 1533–1544 (2016).
[Crossref]

Y. Wang and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” J. Lightwave Technol. 33, 4671–4682 (2015).
[Crossref]

Y. Wang, S. Videv, and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” in IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (2014), pp. 548–552.

Wang, Z.

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22, 8–16 (2015).
[Crossref]

Wigger, M. A.

A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of free-space optical intensity channels,” IEEE Trans. Inf. Theory 55, 4449–4461 (2009).
[Crossref]

Won, E. T.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Wu, J.

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. C. Little, and J. Wu, “An indoor hybrid WiFi-VLC Internet access system,” in IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (2014), pp. 569–574.

Wu, X.

X. Wu and H. Haas, “Handover skipping for LiFi,” IEEE Access 7, 38369–38378 (2019).
[Crossref]

Y. Wang, X. Wu, and H. Haas, “Load balancing game with shadowing effect for indoor hybrid LiFi/RF networks,” IEEE Trans. Wireless Commun. 16, 2366–2378 (2017).
[Crossref]

Y. Wang, D. A. Basnayaka, X. Wu, and H. Haas, “Optimization of load balancing in hybrid LiFi/RF networks,” IEEE Trans. Commun. 65, 1708–1720 (2017).
[Crossref]

Xie, Y.

Q. Wang, B. Song, B. Corcoran, D. Boland, L. Zhuang, Y. Xie, A. J. Lowery, A. J. Lowery, and A. J. Lowery, “FPGA-based layered/enhanced ACO-OFDM transmitter,” in Optical Fiber Communication Conference (2017), paper Tu3D.6.

Xu, Z.

H. Chen and Z. Xu, “OLED panel radiation pattern and its impact on VLC channel characteristics,” IEEE Photon. J. 10, 7901410 (2018).
[Crossref]

X. Li, F. Jin, R. Zhang, J. Wang, Z. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15, 39–53 (2016).
[Crossref]

J. Ding, C.-L. I, and Z. Xu, “Indoor optical wireless channel characteristics with distinct source radiation patterns,” IEEE Photon. J. 8, 7900115 (2016).
[Crossref]

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22, 8–16 (2015).
[Crossref]

K. Cui, J. Quan, and Z. Xu, “Performance of indoor optical femtocell by visible light communication,” Opt. Commun. 298-299, 59–66 (2013).
[Crossref]

Yamazato, T.

M. Kinoshita, T. Yamazato, H. Okada, T. Fujii, S. Arai, T. Yendo, and K. Kamakura, “Motion modeling of mobile transmitter for image sensor based I2V-VLC, V2I-VLC, and V2V-VLC,” in IEEE Globecom Workshops (GC Wkshps) (2014), pp. 450–455.

Yang, R.

Yang, S.-H.

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Inter-cell interference mitigation and indoor positioning system based on carrier allocation visible light communication,” in 5th International Conference on Signal Processing and Communication Systems (ICSPCS) (2011), pp. 1–7.

Yendo, T.

M. Kinoshita, T. Yamazato, H. Okada, T. Fujii, S. Arai, T. Yendo, and K. Kamakura, “Motion modeling of mobile transmitter for image sensor based I2V-VLC, V2I-VLC, and V2V-VLC,” in IEEE Globecom Workshops (GC Wkshps) (2014), pp. 450–455.

Yin, L.

Younus, S. H.

A. A. Al-Hameed, S. H. Younus, A. T. Hussein, M. T. Alresheed, and J. M. H. Elmirghani, “LiDAL: light detection and localization,” IEEE Access 7, 85645–85687 (2019).
[Crossref]

Zafar, F.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

Zeng, L.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in 4th IEEE International Conference on Circuits and Systems for Communications (ICCSC) (2008), pp. 678–682.

Zhang, L.

W. Ma and L. Zhang, “QoE-driven optimized load balancing design for hybrid LiFi and WiFi networks,” IEEE Commun. Lett. 22, 2354–2357 (2018).
[Crossref]

Zhang, M.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J. 7, 7904212 (2015).
[Crossref]

Zhang, R.

X. Li, Y. Huo, R. Zhang, and L. Hanzo, “User-centric visible light communications for energy-efficient scalable video streaming,” IEEE Trans. Green Commun. Netw. 1, 59–73 (2017).
[Crossref]

X. Li, F. Jin, R. Zhang, J. Wang, Z. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15, 39–53 (2016).
[Crossref]

S. Feng, X. Li, R. Zhang, M. Jiang, and L. Hanzo, “Hybrid positioning aided amorphous-cell assisted user-centric visible light downlink techniques,” IEEE Access 4, 2705–2713 (2016).
[Crossref]

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun. 63, 1319–1329 (2015).
[Crossref]

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22, 8–16 (2015).
[Crossref]

Zhang, S.

Zhang, X.

P. Pérez-Nicoli, F. Silveira, X. Zhang, and A. Amara, “Uplink wireless transmission overview in bi-directional VLC systems,” in IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2016), pp. 588–591.

Zhao, C.

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22, 8–16 (2015).
[Crossref]

Zheludev, N.

N. Zheludev, “The life and times of the LED—a 100-year history,” Nat. Photonics 1, 189–192 (2007).
[Crossref]

Zhou, B.

B. Zhou, A. Liu, and V. Lau, “Joint user location and orientation estimation for visible light communication systems with unknown power emission,” IEEE Trans. Wireless Commun. 18, 5181–5195 (2019).
[Crossref]

Zhou, Z.

M. Kavehrad, M. I. S. Chowdhury, and Z. Zhou, “MIMO technology for optical wireless communications using LED arrays and fly-eye receivers,” in Short-Range Optical Wireless (Wiley, 2015), pp. 169–191.

Zhuang, L.

Q. Wang, B. Song, B. Corcoran, D. Boland, L. Zhuang, Y. Xie, A. J. Lowery, A. J. Lowery, and A. J. Lowery, “FPGA-based layered/enhanced ACO-OFDM transmitter,” in Optical Fiber Communication Conference (2017), paper Tu3D.6.

Zummo, S. A.

Zvanovec, S.

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–656 (1948).
[Crossref]

Electron. Lett. (1)

F. J. Lopez-Hermandez and M. J. Betancor, “DUSTIN: algorithm for calculation of impulse response on IR wireless indoor channels,” Electron. Lett. 33, 1804–1806 (1997).
[Crossref]

EURASIP J. Wirel. Commun. Netw. (1)

B. Ghimire and H. Haas, “Self-organising interference coordination in optical wireless networks,” EURASIP J. Wirel. Commun. Netw. 2012, 131 (2012).
[Crossref]

EURASIP J. Wireless Commun. Netw. (1)

T. Nguyen, M. Z. Chowdhury, and Y. M. Jang, “A novel link switching scheme using pre-scanning and RSS prediction in visible light communication networks,” EURASIP J. Wireless Commun. Netw. 2013, 293 (2013).
[Crossref]

IEEE Access (3)

X. Wu and H. Haas, “Handover skipping for LiFi,” IEEE Access 7, 38369–38378 (2019).
[Crossref]

S. Feng, X. Li, R. Zhang, M. Jiang, and L. Hanzo, “Hybrid positioning aided amorphous-cell assisted user-centric visible light downlink techniques,” IEEE Access 4, 2705–2713 (2016).
[Crossref]

A. A. Al-Hameed, S. H. Younus, A. T. Hussein, M. T. Alresheed, and J. M. H. Elmirghani, “LiDAL: light detection and localization,” IEEE Access 7, 85645–85687 (2019).
[Crossref]

IEEE Commun. Lett. (3)

W. Ma and L. Zhang, “QoE-driven optimized load balancing design for hybrid LiFi and WiFi networks,” IEEE Commun. Lett. 22, 2354–2357 (2018).
[Crossref]

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217–219 (2011).
[Crossref]

F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A mobile channel model for VLC and application to adaptive system design,” IEEE Commun. Lett. 21, 1035–1038 (2017).
[Crossref]

IEEE Commun. Mag. (5)

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55(2), 144–151 (2017).
[Crossref]

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

T.-S. Chu and M. Gans, “High speed infrared local wireless communication,” IEEE Commun. Mag. 25(8), 4–10 (1987).
[Crossref]

IEEE Commun. Surv. Tutorials (1)

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tutorials 16, 2231–2258 (2014).
[Crossref]

IEEE J. Sel. Areas Commun. (3)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

V. Jungnickel, V. Pohl, S. Nonnig, and C. von Helmolt, “A physical model of the wireless infrared communication channel,” IEEE J. Sel. Areas Commun. 20, 631–640 (2002).
[Crossref]

M. Kashef, M. Ismail, M. Abdallah, K. A. Qaraqe, and E. Serpedin, “Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks,” IEEE J. Sel. Areas Commun. 34, 883–893 (2016).
[Crossref]

IEEE Netw. (1)

J. R. Barry, J. M. Kahn, E. A. Lee, and D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Netw. 5, 44–54 (1991).
[Crossref]

IEEE Photon. J. (6)

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.-M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J. 7, 7904212 (2015).
[Crossref]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
[Crossref]

Z. Dong, T. Shang, Y. Gao, and Q. Li, “Study on VLC channel modeling under random shadowing,” IEEE Photon. J. 9, 7908416 (2017).
[Crossref]

J. Ding, C.-L. I, and Z. Xu, “Indoor optical wireless channel characteristics with distinct source radiation patterns,” IEEE Photon. J. 8, 7900115 (2016).
[Crossref]

H. Chen and Z. Xu, “OLED panel radiation pattern and its impact on VLC channel characteristics,” IEEE Photon. J. 10, 7901410 (2018).
[Crossref]

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications,” IEEE Photon. J. 7, 1–16 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

IEEE Trans. Antennas Propag. (1)

J. B. Carruthers and P. Kannan, “Iterative site-based modeling for wireless infrared channels,” IEEE Trans. Antennas Propag. 50, 759–765 (2002).
[Crossref]

IEEE Trans. Commun. (5)

O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo-based ray-tracing algorithm,” IEEE Trans. Commun. 53, 124–130 (2005).
[Crossref]

H. Schulze, “Frequency-domain simulation of the indoor wireless optical communication channel,” IEEE Trans. Commun. 64, 2551–2562 (2016).
[Crossref]

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun. 63, 1319–1329 (2015).
[Crossref]

Y. Wang, D. A. Basnayaka, X. Wu, and H. Haas, “Optimization of load balancing in hybrid LiFi/RF networks,” IEEE Trans. Commun. 65, 1708–1720 (2017).
[Crossref]

J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun. 59, 3122–3134 (2011).
[Crossref]

IEEE Trans. Green Commun. Netw. (1)

X. Li, Y. Huo, R. Zhang, and L. Hanzo, “User-centric visible light communications for energy-efficient scalable video streaming,” IEEE Trans. Green Commun. Netw. 1, 59–73 (2017).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of free-space optical intensity channels,” IEEE Trans. Inf. Theory 55, 4449–4461 (2009).
[Crossref]

IEEE Trans. Wireless Commun. (4)

A. Chaaban, Z. Rezki, and M. S. Alouini, “On the capacity of the intensity-modulation direct-detection optical broadcast channel,” IEEE Trans. Wireless Commun. 15, 3114–3130 (2016).
[Crossref]

Y. Wang, X. Wu, and H. Haas, “Load balancing game with shadowing effect for indoor hybrid LiFi/RF networks,” IEEE Trans. Wireless Commun. 16, 2366–2378 (2017).
[Crossref]

B. Zhou, A. Liu, and V. Lau, “Joint user location and orientation estimation for visible light communication systems with unknown power emission,” IEEE Trans. Wireless Commun. 18, 5181–5195 (2019).
[Crossref]

X. Li, F. Jin, R. Zhang, J. Wang, Z. Xu, and L. Hanzo, “Users first: user-centric cluster formation for interference-mitigation in visible-light networks,” IEEE Trans. Wireless Commun. 15, 39–53 (2016).
[Crossref]

IEEE Veh. Technol. Mag. (1)

E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag. 14(3), 42–50 (2019).
[Crossref]

IEEE Wireless Commun. (1)

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22, 8–16 (2015).
[Crossref]

IET Commun. (1)

M. T. Alresheedi, A. T. Hussein, and J. M. H. Elmirghani, “Uplink design in VLC systems with IR sources and beam steering,” IET Commun. 11, 311–317 (2017).
[Crossref]

IET Optoelectron. (1)

N. T. Le, M. S. Ifthekhar, Y. M. Jang, and N. Saha, “Survey on optical camera communications: challenges and opportunities,” IET Optoelectron. 9, 172–183 (2015).
[Crossref]

J. Lightwave Technol. (15)

J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30, 61–67 (2012).
[Crossref]

D. Bykhovsky and S. Arnon, “Multiple access resource allocation in visible light communication systems,” J. Lightwave Technol. 32, 1594–1600 (2014).
[Crossref]

Z. Chen, D. A. Basnayaka, and H. Haas, “Space division multiple access for optical attocell network using angle diversity transmitters,” J. Lightwave Technol. 35, 2118–2131 (2017).
[Crossref]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4 × 12.5 Gb/s WDM optical wireless communication system for indoor applications,” J. Lightwave Technol. 29, 1988–1996 (2011).
[Crossref]

P. Chvojka, S. Zvanovec, P. A. Haigh, and Z. Ghassemlooy, “Channel characteristics of visible light communications within dynamic indoor environment,” J. Lightwave Technol. 33, 1719–1725 (2015).
[Crossref]

A. T. Hussein, M. T. Alresheedi, and J. M. H. Elmirghani, “20 Gb/s mobile indoor visible light communication system employing beam steering and computer generated holograms,” J. Lightwave Technol. 33, 5242–5260 (2015).
[Crossref]

C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightwave Technol. 34, 137–156 (2016).
[Crossref]

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34, 1533–1544 (2016).
[Crossref]

J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28, 3512–3518 (2010).
[Crossref]

A. Gomez, K. Shi, C. Quintana, R. Maher, G. Faulkner, P. Bayvel, B. C. Thomsen, and D. O’Brien, “Design and demonstration of a 400 Gb/s indoor optical wireless communications link,” J. Lightwave Technol. 34, 5332–5339 (2016).
[Crossref]

Y. Wang and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” J. Lightwave Technol. 33, 4671–4682 (2015).
[Crossref]

H. Steendam, T. Q. Wang, and J. Armstrong, “Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver,” J. Lightwave Technol. 35, 309–319 (2017).
[Crossref]

S. Ma, R. Yang, H. Li, Z. L. Dong, H. Gu, and S. Li, “Achievable rate with closed-form for SISO channel and broadcast channel in visible light communication networks,” J. Lightwave Technol. 35, 2778–2787 (2017).
[Crossref]

R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019).
[Crossref]

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightwave Technol. 33, 3986–4000 (2015).
[Crossref]

J. Opt. Commun. Netw. (3)

Jpn. J. Appl. Phys. (2)

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN p-n junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30, L1998–L2001 (1991).
[Crossref]

H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112–L2114 (1989).
[Crossref]

Nat. Photonics (1)

N. Zheludev, “The life and times of the LED—a 100-year history,” Nat. Photonics 1, 189–192 (2007).
[Crossref]

Opt. Commun. (1)

K. Cui, J. Quan, and Z. Xu, “Performance of indoor optical femtocell by visible light communication,” Opt. Commun. 298-299, 59–66 (2013).
[Crossref]

Opt. Eng. (1)

F. J. Lopez-Hernandez, R. Perez-Jimenez, and A. Santamaria, “Ray-tracing algorithms for fast calculation of the impulse response on diffuse IR-wireless indoor channels,” Opt. Eng. 39, 2775–2780 (2000).
[Crossref]

Proc. IEEE (3)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

N. Holonyak, S. F. Bevacqua, C. V. Bielan, F. A. Carranti, B. G. Hess, and S. J. Lubowski, “Electrical properties of Ga(As1-xPx) p-n junctions,” Proc. IEEE 51, 364 (1963).
[Crossref]

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE 67, 1474–1486 (1979).
[Crossref]

Other (36)

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proceedings of the 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (2001), vol. 2, pp. 81–85.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of the 12th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) (2000), vol. 2, pp. 1325–1329.

J. Grubor, S. C. J. Lee, K. D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proceedings of the 33rd European Conference and Exhibition of Optical Communication—Post-Deadline Papers (2007), pp. 1–2.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of the IEEE 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (2006), pp. 129–134.

M. Kinoshita, T. Yamazato, H. Okada, T. Fujii, S. Arai, T. Yendo, and K. Kamakura, “Motion modeling of mobile transmitter for image sensor based I2V-VLC, V2I-VLC, and V2V-VLC,” in IEEE Globecom Workshops (GC Wkshps) (2014), pp. 450–455.

S. Cincotta, A. Neild, C. He, and J. Armstrong, “Visible light positioning using an aperture and a quadrant photodiode,” in IEEE Globecom Workshops (GC Wkshps) (2017), pp. 1–6.

Cisco Visual Networking Index, “Global mobile data traffic forecast update, 2017–2022,” White Paper (2019), https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html .

I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” in IEEE International Conference on Communications (ICC) (2013), pp. 3825–3829.

IEEE P802.11-Light Communication Task Group, “Status of IEEE 802.11 Light Communication TG” (2019), http://www.ieee802.org/11/Reports/tgbb_update.htm .

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Inter-cell interference mitigation and indoor positioning system based on carrier allocation visible light communication,” in 5th International Conference on Signal Processing and Communication Systems (ICSPCS) (2011), pp. 1–7.

K.-H. Park and M.-S. Alouini, “Optimization of an angle-aided mirror diversity receiver for indoor MIMO-VLC systems,” in IEEE Global Communications Conference (GLOBECOM) (2016), pp. 1–6.

R. Bai, H. Tian, B. Fan, and S. Liang, “Coordinated transmission based interference mitigation in VLC network,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.

H. Elgala and T. D. C. Little, “SEE-OFDM: spectral and energy efficient OFDM for optical IM/DD systems,” in IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (2014), pp. 851–855.

Q. Wang, B. Song, B. Corcoran, D. Boland, L. Zhuang, Y. Xie, A. J. Lowery, A. J. Lowery, and A. J. Lowery, “FPGA-based layered/enhanced ACO-OFDM transmitter,” in Optical Fiber Communication Conference (2017), paper Tu3D.6.

P. W. Berenguer, P. Hellwig, D. Schulz, J. Hilt, G. Kleinpeter, J. K. Fischer, and V. Jungnickel, “Real-time optical wireless communication: field-trial in an industrial production environment,” in European Conference on Optical Communication (ECOC) (2018), pp. 1–3.

C. Chen, R. Bian, and H. Haas, “Omnidirectional transmitter and receiver design for wireless infrared uplink transmission in LiFi,” in IEEE International Conference on Communications Workshops (ICC Workshops) (2018), pp. 1–6.

I. Stefan and H. Haas, “Analysis of optimal placement of LED arrays for visible light communication,” in IEEE 77th Vehicular Technology Conference (VTC Spring) (2013).

E. S. S. Edirisinghe, P. H. R. S. S. Karunarathna, D. M. T. B. Dissanayake, and G. M. R. I. Godaliyadda, “Design and implementation of a bi-directional visible light communication system,” in IEEE 10th International Conference on Industrial and Information Systems (ICIIS) (2015), pp. 519–524.

P. Pérez-Nicoli, F. Silveira, X. Zhang, and A. Amara, “Uplink wireless transmission overview in bi-directional VLC systems,” in IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2016), pp. 588–591.

M. B. Rahaim, A. M. Vegni, and T. D. C. Little, “A hybrid radio frequency and broadcast visible light communication system,” in IEEE GLOBECOM Workshops (2011), pp. 792–796.

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. C. Little, and J. Wu, “An indoor hybrid WiFi-VLC Internet access system,” in IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (2014), pp. 569–574.

Y. Wang, S. Videv, and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” in IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (2014), pp. 548–552.

A. M. Vegni and T. D. C. Little, “Handover in VLC systems with cooperating mobile devices,” in International Conference on Computing, Networking and Communications (ICNC) (2012), pp. 126–130.

S. Liang, H. Tian, B. Fan, and R. Bai, “A novel vertical handover algorithm in a hybrid visible light communication and LTE system,” in IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (2015), pp. 1–5.

T. Komine and M. Nakagawa, “A study of shadowing on indoor visible-light wireless communication utilizing plural white LED lightings,” in Proceedings of the 1st International Symposium on Wireless Communication Systems (2004), pp. 36–40.

C. Le Bas, S. Sahuguede, A. Julien-Vergonjanne, A. Behlouli, P. Combeau, and L. Aveneau, “Human body impact on mobile visible light communication link,” in Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (2016), pp. 1–6.

M. Kavehrad, M. I. S. Chowdhury, and Z. Zhou, “MIMO technology for optical wireless communications using LED arrays and fly-eye receivers,” in Short-Range Optical Wireless (Wiley, 2015), pp. 169–191.

T. D. C. Little and M. Rahaim, “Network topologies for mixed RF-VLC HetNets,” in IEEE Summer Topicals Meeting Series (SUM) (2015), pp. 163–164.

K. Chandra, R. V. Prasad, and I. Niemegeers, “An architectural framework for 5G indoor communications,” in International Wireless Communications and Mobile Computing Conference (IWCMC) (2015), pp. 1144–1149.

A. A. Qidan, M. Morales-Cespedes, and A. G. Armada, “The role of WiFi in LiFi hybrid networks based on blind interference alignment,” in IEEE 87th Vehicular Technology Conference (VTC Spring) (2018), pp. 1–5.

D. Miras, L. Maret, M. Maman, M. Laugeois, X. Popon, and D. Ktenas, “A high data rate LiFi integrated system with inter-cell interference management,” in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6.

T. Koonen, J. Oh, K. Mekonnen, and E. Tangdiongga, “Ultra-high capacity indoor optical wireless communication using steered pencil beams,” in International Topical Meeting on Microwave Photonics (MWP) (2015), pp. 1–4.

M. Rahaim and T. D. C. Little, “Optical interference analysis in visible light communication networks,” in IEEE International Conference on Communication Workshop (ICCW) (2015), pp. 1410–1415.

E. Sarbazi, M. Uysal, M. Abdallah, and K. Qaraqe, “Indoor channel modelling and characterization for visible light communications,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

M. Uysal, F. Miramirkhani, T. Baykas, and K. Qaraqe, “IEEE 802.11bb Reference Channel Models for Indoor Environments” (2018), https://www.researchgate.net/publication/327572598_IEEE_80211bb_Reference_Channel_Models_for_Indoor_Environments .

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of date rate by using equalization in an indoor visible light communication system,” in 4th IEEE International Conference on Circuits and Systems for Communications (ICCSC) (2008), pp. 678–682.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Here we illustrate a LiFi network. Each light acts as an optical access point, which serves multiple user equipment within its illumination area/cell. Users can also move, and they will be served by different light bulbs as they roam. This change of serving access point happens seamlessly. Several cells form a cluster, UEs at the cell edges can be served by multiple access points to avoid interference. This technique is referred to as cooperative multipoint (CoMP) transmission.
Fig. 2.
Fig. 2. (a) LiFi channel block diagram. (b) Illustration of the indoor free-space VLC channel.
Fig. 3.
Fig. 3. LiFi network illustration. A complete LiFi network includes downlink, uplink, and backhaul connections. In addition, the system should provide a handover function, mobility support, and multiple access capability.
Fig. 4.
Fig. 4. (a) Demonstration of CCI. (b) Static resource partitioning. (c) Fractional frequency reuse. (d) Interference coordination with angular diversity transmitters and receivers. (e) Cooperative multipoint joint transmission.
Fig. 5.
Fig. 5. (a) Relationship between Shannon capacity upper bound and channel capacity in a LiFi network. (b) Various cell layouts in LiFi networks. (c) Example of downlink performance in a LiFi network with an average cell radius of 2.5 m, and a source half-power semiangle of 40°.
Fig. 6.
Fig. 6. (a) Wi-Fi standalone network. (b) LiFi standalone network. (c) LiFi/Wi-Fi hybrid network. (d) Load balancing in LiFi/Wi-Fi hybrid network.
Fig. 7.
Fig. 7. Experimental SDN-enabled LiFi/Wi-Fi network testbed diagram, LiFi R&D Centre, UoE.
Fig. 8.
Fig. 8. Measured average data rate during handover of user device from LiFi to LiFi and LiFi to Wi-Fi.
Fig. 9.
Fig. 9. Simulation-based and measured SNR under varying distance under a LiFi attocell.
Fig. 10.
Fig. 10. Network topology of the LiFi APs in classroom 2 and the Wi-Fi AP serving both classrooms.
Fig. 11.
Fig. 11. CDF of the data rate for the Wi-Fi and LiFi users based on the 1 Mbps and 3 Mbps data rate targets.
Fig. 12.
Fig. 12. CDF of the data rate for the Wi-Fi and LiFi users assuming no data rate targets.
Fig. 13.
Fig. 13. Surge in Wi-Fi aggregated data rate in neighboring classrooms.

Tables (1)

Tables Icon

Table 1. Average Data Rates Achieved for the Wi-Fi and LiFi Networks

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

c = 1 2 W   log 2 ( 1 + σ 0 2 H 0 2 i I σ i 2 H i 2 + W N 0 ) ,