Abstract

Fixed optical transport is the predominant fronthaul technology for 4G mobile access networks, carrying the traffic between the central office and subtended antenna sites. With the new functional splits and related standards introduced in 5G, new capacity and quality-of-service requirements are imposed on optical transport. In this paper, we discuss low-cost high-capacity optical fronthaul solutions enabled by advanced modulation formats and wavelength-agnostic passive wavelength division multiplexing (WDM) technology. As the key component, a low-cost remotely tunable WDM transceiver is introduced, specifically designed on a hybrid InP-polymer platform. We also explain why an Ethernet-based 5G fronthaul solution requires additional means to improve the latency and timing performance of the conventional packet forwarding and multiplexing. We review the recent standardization effort on time-sensitive networking in support of 5G fronthaul and present an FPGA-based implementation providing low latency and low packet delay variation following the latest IEEE 802.1CM specification. These advanced technologies can facilitate an effective packet-optical transport for 5G.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. NGMN, “NGMN overview on 5G RAN functional decomposition,” 2018, https://www.ngmn.org/wp-content/uploads/Publications/2018/180226_NGMN_RANFSX_D1_V20_Final.pdf .
  2. N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
    [Crossref]
  3. “Evolution to centralized RAN with mobile fronthaul,” Nokia White Paper, 2016, https://onestore.nokia.com/asset/192728 .
  4. “Study on new radio access technology: radio access architecture and interfaces,” 3GPP Technical Report TR38.801, v14.0.0, 2017.
  5. “CPRI: Common Public Radio Interface: specification overview,” 2018, http://www.cpri.info/spec.html .
  6. O-RAN Alliance, “O-RAN Fronthaul Control, User and Synchronization Plane Specification, Version 3.0,” O-RAN.WG4.CUS.0-v03.00, April2020, https://www.o-ran.org/specifications .
  7. P. Sehier, P. Chanclou, N. Benzaoui, D. Chen, K. Kettunen, M. Lemke, Y. Pointurier, and P. Dom, “Transport evolution for the RAN of the future [Invited],” J. Opt. Commun. Netw. 11, B97–B108 (2019).
    [Crossref]
  8. P. J. Winzer and D. T. Neilson, “From scaling disparities to integrated parallelism: a decathlon for a decade,” J. Lightwave Technol. 35, 1099–1115 (2017).
    [Crossref]
  9. “IP packet delay variation metric for IP performance metrics (IPPM),” IETF RFC 3393, 2002.
  10. “Common Public Radio Interface: eCPRI interface specification,” 2019, https://www.gigalight.com/downloads/standards/ecpri-specification.pdf .
  11. “Precision clock synchronization protocol for networked measurement and control systems,” IEEE Std. 1588-2008, 2008.
  12. “Multichannel bi-directional DWDM applications with port agnostic single-channel optical interfaces,” ITU-T Recommendation G.698.4, 2018.
  13. S. Pachnicke, J. Zhu, M. Lawin, M. H. Eiselt, S. Mayne, B. Quemeneur, D. Sayles, H. Schwuchow, A. Wonfor, P. Marx, M. Fellhofer, P. Neuber, M. Dietrich, M. J. Wale, R. V. Penty, I. H. White, and J.-P. Elbers, “Tunable WDM-PON system with centralized wavelength control,” J. Lightwave Technol. 34, 812–818 (2016).
    [Crossref]
  14. C. Wagner, M. H. Eiselt, M. Lawin, S. J. Zou, K. Grobe, J. J. V. Olmos, and I. T. Monroy, “Impairment analysis of WDM-PON based on low-cost tunable lasers,” J. Lightwave Technol. 34, 5300–5307 (2016).
    [Crossref]
  15. M. Roppelt, M. Lawin, and M. Eiselt, “Single-fibre operation of a metro access system with network based wavelength control,” in European Conference and Exhibition on Optical Communication (2013), paper Tu.3.F.1.
  16. “IEEE Standard for Ethernet,” IEEE Std. 802.3-2015, 2015.
  17. C. Chase, Y. Rao, M. Huang, and C. Chang-Hasnain, “Tunable 1550nm VCSELs using high-contrast grating for next-generation networks,” Proc. SPIE 9008, 900807 (2014).
    [Crossref]
  18. S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
    [Crossref]
  19. N. Grote, N. Keil, C. Zawadzki, W. Brinker, D. de Felipe, and Z. Zhang, “Polymer photonic integration platform: technology and components,” in Opto-Electronics and Communications Conference (2012), pp. 285–286.
  20. PolyPhotonics Berlin, http://www.polyphotonics-berlin.de .
  21. M. Happach, D. de Felipe, V. N. Friedhoff, M. Kleinert, C. Zawadzki, W. Rehbein, W. Brinker, M. Möhrle, N. Keil, W. Hofmann, and M. Schell, “Temperature-tolerant wavelength-setting and -stabilization in a polymer-based tunable DBR laser,” J. Lightwave Technol. 35, 1797–1802 (2017).
    [Crossref]
  22. D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26, 1391–1394 (2014).
    [Crossref]
  23. M. Kleinert, Z. Zhang, D. de Felipe, C. Zawadzki, A. Maese Novo, W. Brinker, M. Möhrle, and N. Keil, “Recent progress in InP/polymer-based devices for telecom and data center applications,” Proc. SPIE 9365, 93650R (2015).
    [Crossref]
  24. J. Zou, M. Eiselt, M. Alfageme, J. Agusti, C. Teres, P. Ciria, R. Veisllari, M. Fontaine, and J.-P. Elbers, “Recent trials of G.metro-based passive WDM fronthaul in 5G testbeds,” in IEEE International Conference on Communications Workshops (2019).
  25. M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” in Optical Fiber Communication Conference (2010), paper NTuB3.
  26. A. Dochhan, T. Drenski, H. Griesser, M. Eiselt, and J.-P. Elbers, “Real-time discrete multi-tone transmission for passive optical networks in C- and O-band,” in European Conference and Exhibition on Optical Communication (2019), paper P76.
  27. N. Eiselt, D. Muench, A. Dochhan, H. Griesser, M. Eiselt, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G Ethernet-based fronthaul architecture,” J. Lightwave Technol. 36, 1807–1814 (2018).
    [Crossref]
  28. IEEE Time-Sensitive Networking (TSN) Task Group, https://1.ieee802.org/tsn/ .
  29. “IEEE Standard for Local and Metropolitan Area Networks—Time-sensitive Networking for Fronthaul,” IEEE Std. 802.1CM, 2018.
  30. H. Li, L. Han, R. Duan, and G. M. Garner, “Analysis of the synchronization requirements of 5G and corresponding solutions,” IEEE Commun. Stand. Mag. 1(1), 52–58 (2017).
    [Crossref]
  31. “IEEE standards for local and metropolitan area networks: virtual bridged local area networks,” IEEE Std. 802.1Q, 1998.
  32. “Timing characteristics of synchronous Ethernet equipment slave clock,” ITU-T Recommendation G.8262/Y.1362, 2018.
  33. J. L. Messenger, “Time-sensitive networking: an introduction,” IEEE Commun. Stand. Mag. 2(2), 29–33 (2018).
    [Crossref]
  34. “IEEE standard for local and metropolitan area networks—bridges and bridged networks—Amendment 26: frame preemption,” IEEE Std. 802.1Qbu, 2016.
  35. “IEEE standard for Ethernet Amendment 5: specification and management parameters for interspersing express traffic,” IEEE Std. 802.3br, 2016.
  36. “Final report on data plane programmability and infrastructure components,” 5G-PICTURE Project Deliverable D3.3, 2020, https://www.5g-picture-project.eu/download/5g-picture_D3.3.pdf .
  37. NGMN, “5G RAN CU—DU network architecture, transport options and dimensioning,” 2019, https://www.ngmn.org/wp-content/uploads/Publications/2019/190412_NGMN_RANFSX_D2a_v1.0.pdf .
  38. “5G wireless fronthaul requirements in a passive optical network context,” ITU-T Recommendation G.Sup66, 2019, https://www.itu.int/rec/T-REC-G.Sup66-201907-I/en .
  39. “Application of OTN to 5G Transport,” ITU-T Recommendation G.Sup.5gotn, 2018.
  40. L. Wilkinson, “OIF launches FlexE 2.1 Project and elects new board positions and working group representatives,” Press Release, 2018, https://www.oiforum.com/oif-launches-flexe-2-1-project-and-elects-new-board-positions-and-working-group-representatives/ .

2019 (1)

2018 (3)

N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
[Crossref]

N. Eiselt, D. Muench, A. Dochhan, H. Griesser, M. Eiselt, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G Ethernet-based fronthaul architecture,” J. Lightwave Technol. 36, 1807–1814 (2018).
[Crossref]

J. L. Messenger, “Time-sensitive networking: an introduction,” IEEE Commun. Stand. Mag. 2(2), 29–33 (2018).
[Crossref]

2017 (3)

2016 (2)

2015 (2)

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

M. Kleinert, Z. Zhang, D. de Felipe, C. Zawadzki, A. Maese Novo, W. Brinker, M. Möhrle, and N. Keil, “Recent progress in InP/polymer-based devices for telecom and data center applications,” Proc. SPIE 9365, 93650R (2015).
[Crossref]

2014 (2)

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26, 1391–1394 (2014).
[Crossref]

C. Chase, Y. Rao, M. Huang, and C. Chang-Hasnain, “Tunable 1550nm VCSELs using high-contrast grating for next-generation networks,” Proc. SPIE 9008, 900807 (2014).
[Crossref]

Agusti, J.

J. Zou, M. Eiselt, M. Alfageme, J. Agusti, C. Teres, P. Ciria, R. Veisllari, M. Fontaine, and J.-P. Elbers, “Recent trials of G.metro-based passive WDM fronthaul in 5G testbeds,” in IEEE International Conference on Communications Workshops (2019).

Alfageme, M.

J. Zou, M. Eiselt, M. Alfageme, J. Agusti, C. Teres, P. Ciria, R. Veisllari, M. Fontaine, and J.-P. Elbers, “Recent trials of G.metro-based passive WDM fronthaul in 5G testbeds,” in IEEE International Conference on Communications Workshops (2019).

Assimakopoulos, P.

N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
[Crossref]

Benzaoui, N.

Brinker, W.

M. Happach, D. de Felipe, V. N. Friedhoff, M. Kleinert, C. Zawadzki, W. Rehbein, W. Brinker, M. Möhrle, N. Keil, W. Hofmann, and M. Schell, “Temperature-tolerant wavelength-setting and -stabilization in a polymer-based tunable DBR laser,” J. Lightwave Technol. 35, 1797–1802 (2017).
[Crossref]

M. Kleinert, Z. Zhang, D. de Felipe, C. Zawadzki, A. Maese Novo, W. Brinker, M. Möhrle, and N. Keil, “Recent progress in InP/polymer-based devices for telecom and data center applications,” Proc. SPIE 9365, 93650R (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26, 1391–1394 (2014).
[Crossref]

N. Grote, N. Keil, C. Zawadzki, W. Brinker, D. de Felipe, and Z. Zhang, “Polymer photonic integration platform: technology and components,” in Opto-Electronics and Communications Conference (2012), pp. 285–286.

Cesar, J.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Chanclou, P.

P. Sehier, P. Chanclou, N. Benzaoui, D. Chen, K. Kettunen, M. Lemke, Y. Pointurier, and P. Dom, “Transport evolution for the RAN of the future [Invited],” J. Opt. Commun. Netw. 11, B97–B108 (2019).
[Crossref]

N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
[Crossref]

Chang-Hasnain, C.

C. Chase, Y. Rao, M. Huang, and C. Chang-Hasnain, “Tunable 1550nm VCSELs using high-contrast grating for next-generation networks,” Proc. SPIE 9008, 900807 (2014).
[Crossref]

Chase, C.

C. Chase, Y. Rao, M. Huang, and C. Chang-Hasnain, “Tunable 1550nm VCSELs using high-contrast grating for next-generation networks,” Proc. SPIE 9008, 900807 (2014).
[Crossref]

Chen, D.

Ciria, P.

J. Zou, M. Eiselt, M. Alfageme, J. Agusti, C. Teres, P. Ciria, R. Veisllari, M. Fontaine, and J.-P. Elbers, “Recent trials of G.metro-based passive WDM fronthaul in 5G testbeds,” in IEEE International Conference on Communications Workshops (2019).

Coe, T.

M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” in Optical Fiber Communication Conference (2010), paper NTuB3.

de Felipe, D.

M. Happach, D. de Felipe, V. N. Friedhoff, M. Kleinert, C. Zawadzki, W. Rehbein, W. Brinker, M. Möhrle, N. Keil, W. Hofmann, and M. Schell, “Temperature-tolerant wavelength-setting and -stabilization in a polymer-based tunable DBR laser,” J. Lightwave Technol. 35, 1797–1802 (2017).
[Crossref]

M. Kleinert, Z. Zhang, D. de Felipe, C. Zawadzki, A. Maese Novo, W. Brinker, M. Möhrle, and N. Keil, “Recent progress in InP/polymer-based devices for telecom and data center applications,” Proc. SPIE 9365, 93650R (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26, 1391–1394 (2014).
[Crossref]

N. Grote, N. Keil, C. Zawadzki, W. Brinker, D. de Felipe, and Z. Zhang, “Polymer photonic integration platform: technology and components,” in Opto-Electronics and Communications Conference (2012), pp. 285–286.

Dietrich, M.

Dillard, J.

M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” in Optical Fiber Communication Conference (2010), paper NTuB3.

Dixit, S.

N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
[Crossref]

Dochhan, A.

N. Eiselt, D. Muench, A. Dochhan, H. Griesser, M. Eiselt, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G Ethernet-based fronthaul architecture,” J. Lightwave Technol. 36, 1807–1814 (2018).
[Crossref]

A. Dochhan, T. Drenski, H. Griesser, M. Eiselt, and J.-P. Elbers, “Real-time discrete multi-tone transmission for passive optical networks in C- and O-band,” in European Conference and Exhibition on Optical Communication (2019), paper P76.

Dom, P.

Drenski, T.

A. Dochhan, T. Drenski, H. Griesser, M. Eiselt, and J.-P. Elbers, “Real-time discrete multi-tone transmission for passive optical networks in C- and O-band,” in European Conference and Exhibition on Optical Communication (2019), paper P76.

Duan, R.

H. Li, L. Han, R. Duan, and G. M. Garner, “Analysis of the synchronization requirements of 5G and corresponding solutions,” IEEE Commun. Stand. Mag. 1(1), 52–58 (2017).
[Crossref]

Eiselt, M.

N. Eiselt, D. Muench, A. Dochhan, H. Griesser, M. Eiselt, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G Ethernet-based fronthaul architecture,” J. Lightwave Technol. 36, 1807–1814 (2018).
[Crossref]

A. Dochhan, T. Drenski, H. Griesser, M. Eiselt, and J.-P. Elbers, “Real-time discrete multi-tone transmission for passive optical networks in C- and O-band,” in European Conference and Exhibition on Optical Communication (2019), paper P76.

J. Zou, M. Eiselt, M. Alfageme, J. Agusti, C. Teres, P. Ciria, R. Veisllari, M. Fontaine, and J.-P. Elbers, “Recent trials of G.metro-based passive WDM fronthaul in 5G testbeds,” in IEEE International Conference on Communications Workshops (2019).

M. Roppelt, M. Lawin, and M. Eiselt, “Single-fibre operation of a metro access system with network based wavelength control,” in European Conference and Exhibition on Optical Communication (2013), paper Tu.3.F.1.

Eiselt, M. H.

Eiselt, N.

Elbers, J.-P.

N. Eiselt, D. Muench, A. Dochhan, H. Griesser, M. Eiselt, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G Ethernet-based fronthaul architecture,” J. Lightwave Technol. 36, 1807–1814 (2018).
[Crossref]

S. Pachnicke, J. Zhu, M. Lawin, M. H. Eiselt, S. Mayne, B. Quemeneur, D. Sayles, H. Schwuchow, A. Wonfor, P. Marx, M. Fellhofer, P. Neuber, M. Dietrich, M. J. Wale, R. V. Penty, I. H. White, and J.-P. Elbers, “Tunable WDM-PON system with centralized wavelength control,” J. Lightwave Technol. 34, 812–818 (2016).
[Crossref]

A. Dochhan, T. Drenski, H. Griesser, M. Eiselt, and J.-P. Elbers, “Real-time discrete multi-tone transmission for passive optical networks in C- and O-band,” in European Conference and Exhibition on Optical Communication (2019), paper P76.

J. Zou, M. Eiselt, M. Alfageme, J. Agusti, C. Teres, P. Ciria, R. Veisllari, M. Fontaine, and J.-P. Elbers, “Recent trials of G.metro-based passive WDM fronthaul in 5G testbeds,” in IEEE International Conference on Communications Workshops (2019).

Fellhofer, M.

Fontaine, M.

J. Zou, M. Eiselt, M. Alfageme, J. Agusti, C. Teres, P. Ciria, R. Veisllari, M. Fontaine, and J.-P. Elbers, “Recent trials of G.metro-based passive WDM fronthaul in 5G testbeds,” in IEEE International Conference on Communications Workshops (2019).

Friedhoff, V. N.

Garner, G. M.

H. Li, L. Han, R. Duan, and G. M. Garner, “Analysis of the synchronization requirements of 5G and corresponding solutions,” IEEE Commun. Stand. Mag. 1(1), 52–58 (2017).
[Crossref]

Gierl, C.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Gomes, N. J.

N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
[Crossref]

Griesser, H.

N. Eiselt, D. Muench, A. Dochhan, H. Griesser, M. Eiselt, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G Ethernet-based fronthaul architecture,” J. Lightwave Technol. 36, 1807–1814 (2018).
[Crossref]

A. Dochhan, T. Drenski, H. Griesser, M. Eiselt, and J.-P. Elbers, “Real-time discrete multi-tone transmission for passive optical networks in C- and O-band,” in European Conference and Exhibition on Optical Communication (2019), paper P76.

Grobe, K.

Grote, N.

N. Grote, N. Keil, C. Zawadzki, W. Brinker, D. de Felipe, and Z. Zhang, “Polymer photonic integration platform: technology and components,” in Opto-Electronics and Communications Conference (2012), pp. 285–286.

Han, L.

H. Li, L. Han, R. Duan, and G. M. Garner, “Analysis of the synchronization requirements of 5G and corresponding solutions,” IEEE Commun. Stand. Mag. 1(1), 52–58 (2017).
[Crossref]

Happach, M.

Hofmann, W.

Huang, M.

C. Chase, Y. Rao, M. Huang, and C. Chang-Hasnain, “Tunable 1550nm VCSELs using high-contrast grating for next-generation networks,” Proc. SPIE 9008, 900807 (2014).
[Crossref]

Jungnickel, V.

N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
[Crossref]

Keil, N.

M. Happach, D. de Felipe, V. N. Friedhoff, M. Kleinert, C. Zawadzki, W. Rehbein, W. Brinker, M. Möhrle, N. Keil, W. Hofmann, and M. Schell, “Temperature-tolerant wavelength-setting and -stabilization in a polymer-based tunable DBR laser,” J. Lightwave Technol. 35, 1797–1802 (2017).
[Crossref]

M. Kleinert, Z. Zhang, D. de Felipe, C. Zawadzki, A. Maese Novo, W. Brinker, M. Möhrle, and N. Keil, “Recent progress in InP/polymer-based devices for telecom and data center applications,” Proc. SPIE 9365, 93650R (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26, 1391–1394 (2014).
[Crossref]

N. Grote, N. Keil, C. Zawadzki, W. Brinker, D. de Felipe, and Z. Zhang, “Polymer photonic integration platform: technology and components,” in Opto-Electronics and Communications Conference (2012), pp. 285–286.

Kettunen, K.

Kleinert, M.

M. Happach, D. de Felipe, V. N. Friedhoff, M. Kleinert, C. Zawadzki, W. Rehbein, W. Brinker, M. Möhrle, N. Keil, W. Hofmann, and M. Schell, “Temperature-tolerant wavelength-setting and -stabilization in a polymer-based tunable DBR laser,” J. Lightwave Technol. 35, 1797–1802 (2017).
[Crossref]

M. Kleinert, Z. Zhang, D. de Felipe, C. Zawadzki, A. Maese Novo, W. Brinker, M. Möhrle, and N. Keil, “Recent progress in InP/polymer-based devices for telecom and data center applications,” Proc. SPIE 9365, 93650R (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26, 1391–1394 (2014).
[Crossref]

Kögel, B.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Küppers, F.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Lawin, M.

Le, Q. T.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Lemke, M.

Li, B.

N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
[Crossref]

Li, H.

H. Li, L. Han, R. Duan, and G. M. Garner, “Analysis of the synchronization requirements of 5G and corresponding solutions,” IEEE Commun. Stand. Mag. 1(1), 52–58 (2017).
[Crossref]

Maese Novo, A.

M. Kleinert, Z. Zhang, D. de Felipe, C. Zawadzki, A. Maese Novo, W. Brinker, M. Möhrle, and N. Keil, “Recent progress in InP/polymer-based devices for telecom and data center applications,” Proc. SPIE 9365, 93650R (2015).
[Crossref]

Malekizandi, M.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Marx, P.

Mayne, S.

Messenger, J. L.

J. L. Messenger, “Time-sensitive networking: an introduction,” IEEE Commun. Stand. Mag. 2(2), 29–33 (2018).
[Crossref]

Moehrle, M.

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26, 1391–1394 (2014).
[Crossref]

Möhrle, M.

M. Happach, D. de Felipe, V. N. Friedhoff, M. Kleinert, C. Zawadzki, W. Rehbein, W. Brinker, M. Möhrle, N. Keil, W. Hofmann, and M. Schell, “Temperature-tolerant wavelength-setting and -stabilization in a polymer-based tunable DBR laser,” J. Lightwave Technol. 35, 1797–1802 (2017).
[Crossref]

M. Kleinert, Z. Zhang, D. de Felipe, C. Zawadzki, A. Maese Novo, W. Brinker, M. Möhrle, and N. Keil, “Recent progress in InP/polymer-based devices for telecom and data center applications,” Proc. SPIE 9365, 93650R (2015).
[Crossref]

Monroy, I. T.

Muench, D.

Munch, D.

N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
[Crossref]

Neilson, D. T.

Neuber, P.

Neumeyr, C.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Novo, A. M.

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26, 1391–1394 (2014).
[Crossref]

Olmos, J. J. V.

Ortsiefer, M.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Pachnicke, S.

Paul, S.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

Penty, R. V.

Pointurier, Y.

Quemeneur, B.

Rao, Y.

C. Chase, Y. Rao, M. Huang, and C. Chang-Hasnain, “Tunable 1550nm VCSELs using high-contrast grating for next-generation networks,” Proc. SPIE 9008, 900807 (2014).
[Crossref]

Rehbein, W.

Roppelt, M.

M. Roppelt, M. Lawin, and M. Eiselt, “Single-fibre operation of a metro access system with network based wavelength control,” in European Conference and Exhibition on Optical Communication (2013), paper Tu.3.F.1.

Sayles, D.

Schell, M.

Scholten, M.

M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” in Optical Fiber Communication Conference (2010), paper NTuB3.

Schwuchow, H.

Sehier, P.

P. Sehier, P. Chanclou, N. Benzaoui, D. Chen, K. Kettunen, M. Lemke, Y. Pointurier, and P. Dom, “Transport evolution for the RAN of the future [Invited],” J. Opt. Commun. Netw. 11, B97–B108 (2019).
[Crossref]

N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
[Crossref]

Teres, C.

J. Zou, M. Eiselt, M. Alfageme, J. Agusti, C. Teres, P. Ciria, R. Veisllari, M. Fontaine, and J.-P. Elbers, “Recent trials of G.metro-based passive WDM fronthaul in 5G testbeds,” in IEEE International Conference on Communications Workshops (2019).

Thomas, H.

N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
[Crossref]

Veisllari, R.

J. Zou, M. Eiselt, M. Alfageme, J. Agusti, C. Teres, P. Ciria, R. Veisllari, M. Fontaine, and J.-P. Elbers, “Recent trials of G.metro-based passive WDM fronthaul in 5G testbeds,” in IEEE International Conference on Communications Workshops (2019).

Wagner, C.

Wale, M. J.

White, I. H.

Winzer, P. J.

Wonfor, A.

Zawadzki, C.

M. Happach, D. de Felipe, V. N. Friedhoff, M. Kleinert, C. Zawadzki, W. Rehbein, W. Brinker, M. Möhrle, N. Keil, W. Hofmann, and M. Schell, “Temperature-tolerant wavelength-setting and -stabilization in a polymer-based tunable DBR laser,” J. Lightwave Technol. 35, 1797–1802 (2017).
[Crossref]

M. Kleinert, Z. Zhang, D. de Felipe, C. Zawadzki, A. Maese Novo, W. Brinker, M. Möhrle, and N. Keil, “Recent progress in InP/polymer-based devices for telecom and data center applications,” Proc. SPIE 9365, 93650R (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26, 1391–1394 (2014).
[Crossref]

N. Grote, N. Keil, C. Zawadzki, W. Brinker, D. de Felipe, and Z. Zhang, “Polymer photonic integration platform: technology and components,” in Opto-Electronics and Communications Conference (2012), pp. 285–286.

Zhang, Z.

M. Kleinert, Z. Zhang, D. de Felipe, C. Zawadzki, A. Maese Novo, W. Brinker, M. Möhrle, and N. Keil, “Recent progress in InP/polymer-based devices for telecom and data center applications,” Proc. SPIE 9365, 93650R (2015).
[Crossref]

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26, 1391–1394 (2014).
[Crossref]

N. Grote, N. Keil, C. Zawadzki, W. Brinker, D. de Felipe, and Z. Zhang, “Polymer photonic integration platform: technology and components,” in Opto-Electronics and Communications Conference (2012), pp. 285–286.

Zhu, J.

Zou, J.

J. Zou, M. Eiselt, M. Alfageme, J. Agusti, C. Teres, P. Ciria, R. Veisllari, M. Fontaine, and J.-P. Elbers, “Recent trials of G.metro-based passive WDM fronthaul in 5G testbeds,” in IEEE International Conference on Communications Workshops (2019).

Zou, S. J.

IEEE Commun. Stand. Mag. (2)

J. L. Messenger, “Time-sensitive networking: an introduction,” IEEE Commun. Stand. Mag. 2(2), 29–33 (2018).
[Crossref]

H. Li, L. Han, R. Duan, and G. M. Garner, “Analysis of the synchronization requirements of 5G and corresponding solutions,” IEEE Commun. Stand. Mag. 1(1), 52–58 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Kögel, C. Neumeyr, M. Ortsiefer, and F. Küppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21, 436–443 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. de Felipe, Z. Zhang, W. Brinker, M. Kleinert, A. M. Novo, C. Zawadzki, M. Moehrle, and N. Keil, “Polymer-based external cavity lasers: tuning efficiency, reliability, and polarization diversity,” IEEE Photon. Technol. Lett. 26, 1391–1394 (2014).
[Crossref]

IEEE Veh. Technol. Mag. (1)

N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch, P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5G through Ethernet: how evolved fronthaul can take next-generation mobile to the next level,” IEEE Veh. Technol. Mag. 13(1), 74–84 (2018).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (1)

Proc. SPIE (2)

M. Kleinert, Z. Zhang, D. de Felipe, C. Zawadzki, A. Maese Novo, W. Brinker, M. Möhrle, and N. Keil, “Recent progress in InP/polymer-based devices for telecom and data center applications,” Proc. SPIE 9365, 93650R (2015).
[Crossref]

C. Chase, Y. Rao, M. Huang, and C. Chang-Hasnain, “Tunable 1550nm VCSELs using high-contrast grating for next-generation networks,” Proc. SPIE 9008, 900807 (2014).
[Crossref]

Other (27)

NGMN, “NGMN overview on 5G RAN functional decomposition,” 2018, https://www.ngmn.org/wp-content/uploads/Publications/2018/180226_NGMN_RANFSX_D1_V20_Final.pdf .

N. Grote, N. Keil, C. Zawadzki, W. Brinker, D. de Felipe, and Z. Zhang, “Polymer photonic integration platform: technology and components,” in Opto-Electronics and Communications Conference (2012), pp. 285–286.

PolyPhotonics Berlin, http://www.polyphotonics-berlin.de .

J. Zou, M. Eiselt, M. Alfageme, J. Agusti, C. Teres, P. Ciria, R. Veisllari, M. Fontaine, and J.-P. Elbers, “Recent trials of G.metro-based passive WDM fronthaul in 5G testbeds,” in IEEE International Conference on Communications Workshops (2019).

M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” in Optical Fiber Communication Conference (2010), paper NTuB3.

A. Dochhan, T. Drenski, H. Griesser, M. Eiselt, and J.-P. Elbers, “Real-time discrete multi-tone transmission for passive optical networks in C- and O-band,” in European Conference and Exhibition on Optical Communication (2019), paper P76.

IEEE Time-Sensitive Networking (TSN) Task Group, https://1.ieee802.org/tsn/ .

“IEEE Standard for Local and Metropolitan Area Networks—Time-sensitive Networking for Fronthaul,” IEEE Std. 802.1CM, 2018.

“Evolution to centralized RAN with mobile fronthaul,” Nokia White Paper, 2016, https://onestore.nokia.com/asset/192728 .

“Study on new radio access technology: radio access architecture and interfaces,” 3GPP Technical Report TR38.801, v14.0.0, 2017.

“CPRI: Common Public Radio Interface: specification overview,” 2018, http://www.cpri.info/spec.html .

O-RAN Alliance, “O-RAN Fronthaul Control, User and Synchronization Plane Specification, Version 3.0,” O-RAN.WG4.CUS.0-v03.00, April2020, https://www.o-ran.org/specifications .

“IP packet delay variation metric for IP performance metrics (IPPM),” IETF RFC 3393, 2002.

“Common Public Radio Interface: eCPRI interface specification,” 2019, https://www.gigalight.com/downloads/standards/ecpri-specification.pdf .

“Precision clock synchronization protocol for networked measurement and control systems,” IEEE Std. 1588-2008, 2008.

“Multichannel bi-directional DWDM applications with port agnostic single-channel optical interfaces,” ITU-T Recommendation G.698.4, 2018.

M. Roppelt, M. Lawin, and M. Eiselt, “Single-fibre operation of a metro access system with network based wavelength control,” in European Conference and Exhibition on Optical Communication (2013), paper Tu.3.F.1.

“IEEE Standard for Ethernet,” IEEE Std. 802.3-2015, 2015.

“IEEE standards for local and metropolitan area networks: virtual bridged local area networks,” IEEE Std. 802.1Q, 1998.

“Timing characteristics of synchronous Ethernet equipment slave clock,” ITU-T Recommendation G.8262/Y.1362, 2018.

“IEEE standard for local and metropolitan area networks—bridges and bridged networks—Amendment 26: frame preemption,” IEEE Std. 802.1Qbu, 2016.

“IEEE standard for Ethernet Amendment 5: specification and management parameters for interspersing express traffic,” IEEE Std. 802.3br, 2016.

“Final report on data plane programmability and infrastructure components,” 5G-PICTURE Project Deliverable D3.3, 2020, https://www.5g-picture-project.eu/download/5g-picture_D3.3.pdf .

NGMN, “5G RAN CU—DU network architecture, transport options and dimensioning,” 2019, https://www.ngmn.org/wp-content/uploads/Publications/2019/190412_NGMN_RANFSX_D2a_v1.0.pdf .

“5G wireless fronthaul requirements in a passive optical network context,” ITU-T Recommendation G.Sup66, 2019, https://www.itu.int/rec/T-REC-G.Sup66-201907-I/en .

“Application of OTN to 5G Transport,” ITU-T Recommendation G.Sup.5gotn, 2018.

L. Wilkinson, “OIF launches FlexE 2.1 Project and elects new board positions and working group representatives,” Press Release, 2018, https://www.oiforum.com/oif-launches-flexe-2-1-project-and-elects-new-board-positions-and-working-group-representatives/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. Evolution from 4G to new 5G RAN architecture.
Fig. 2.
Fig. 2. (a) Tree-structured fronthaul network with an AWG as a branching point, (b) drop-line fronthaul network with OADMs.
Fig. 3.
Fig. 3. Waveguide chip with assembled components.
Fig. 4.
Fig. 4. Receiver part with out-of-band communication (OOBC) electronics.
Fig. 5.
Fig. 5. BER of a 10.3 Gbit/s payload signal over received power. A Manchester-encoded message channel at 50 kbit/s is envelope-modulated with different modulation depths onto the payload: solid line, no message modulation; dotted line, 5.3% modulation depth; dashed line, 8.1% modulation depth.
Fig. 6.
Fig. 6. BER of a 50 kbit/s message channel in the presence of a 2.5 Gbit/s payload signal for different modulation depths between 3.6% and 5.8%.
Fig. 7.
Fig. 7. Experimental setup for 100G transmission with advanced modulation schemes.
Fig. 8.
Fig. 8. BER versus ROP for back-to-back transmission.
Fig. 9.
Fig. 9. Measured results at different data rates in back-to-back and after maximum fiber transmission. (a)–(b) Estimated SNR versus electrical frequency, (c)–(d) bit loading, (e)–(f) power loading through amplitude scaling.
Fig. 10.
Fig. 10. BER versus transmission distance at different data rates.
Fig. 11.
Fig. 11. (a) DSP blocks of the PAM-4 system, (b) digital PSD of the transmit signal, (c) eye diagram after the EML.
Fig. 12.
Fig. 12. Optical back-to-back transmission results of 112 Gbit/s PAM-4 employing different numbers of pre- and post-FFE coefficients. (a) Optical eye diagrams obtained directly after the EML using a pre-equalizer with 5 and 61 coefficients; (b), (c) BER versus ROP results using different numbers of post-FFE coefficients; (d) BER performance for different Tx-/Rx-FFE combinations at an input power of 0 dBm.
Fig. 13.
Fig. 13. Transmission results of 112 Gbit/s Nyquist PAM-4 over different transmission distances using 11 Tx-FFE and 41 Rx-FFE coefficients.
Fig. 14.
Fig. 14. Distribution of pre-emption delay for express traffic.
Fig. 15.
Fig. 15. System overview of the TSN fronthaul architecture.
Fig. 16.
Fig. 16. Detailed one-way data path architecture.
Fig. 17.
Fig. 17. Layer stack for 5G fixed transport.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m = P ( 1 ) P ( 0 ) P ( 1 ) + P ( 0 ) .