Abstract

Passive optical networks (PONs) have been widely used in access networks and are today the access technology of choice for operators, especially when they need to build new infrastructure. Significant effort has been put in place across the years to scale the speed of passive optical networks. The super-PON concept has also been proposed in order to scale reach and customer aggregation of PONs. However, it did not produce any standardization efforts nor significant commercial deployments. In November 2018, the IEEE 802.3 Working Group formed the P802.3cs “Super-PON” Task Force to standardize a flavor of super-PON able to support an increased optical reach of up to 50 km and an expanded customer coverage of up to 1024 customers per fiber over a passive optical distribution network. A project with near identical objectives was later started in ITU-T Q2/SG15. This paper presents the latest updates from these industry standardization efforts, with special attention to the activity of the IEEE P802.3cs Task Force, and the technical reasoning behind some of the key decisions that have been made.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Progress of ITU-T higher speed passive optical network (50G-PON) standardization

Dezhi Zhang, Dekun Liu, Xuming Wu, and Derek Nesset
J. Opt. Commun. Netw. 12(10) D99-D108 (2020)

Advanced optical access technologies for next-generation (5G) mobile networks [Invited]

Jim (Shihuan) Zou, Silviu Adrian Sasu, Mirko Lawin, Annika Dochhan, Jörg-Peter Elbers, and Michael Eiselt
J. Opt. Commun. Netw. 12(10) D86-D98 (2020)

Passive-Optical-Network- (PON-) Based Converged Access Network [Invited]

Rajesh Yadav
J. Opt. Commun. Netw. 4(11) B124-B130 (2012)

References

  • View by:
  • |
  • |
  • |

  1. “IEEE Std 802.3-2018—IEEE Standard for Ethernet,” Aug.2018.
  2. “10-Gigabit-capable symmetric passive optical network (XGS-PON),” ITU-T Recommendation G.9807.1, June2016.
  3. “Gigabit-capable passive optical networks (G-PON): transmission convergence layer specification,” ITU-T Recommendation G.984.3, Jan.2014.
  4. “Gigabit-capable passive optical networks (G-PON): physical media dependent (PMD) layer specification,” ITU-T Recommendation G.984.2, Aug.2019.
  5. “40-gigabit-capable passive optical networks 2 (NG-PON2): physical media dependent (PMD) layer specification,” ITU-T Recommendation G.989.2, Feb.2019.
  6. https://www.itu.int/en/ITU-T/studygroups/2017-2020/15/Pages/default.aspx .
  7. http://www.ieee802.org/3/ca/index.shtml .
  8. J. Sugawa and H. Ikeda, “Development of OLT using semiconductor optical amplifiers as booster and preamplifier for loss-budget extension in 10.3-Gb/s PON system,” in Optical Fiber Communication Conference and Exhibition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, USA, 2012, paper OTh4G.4.
  9. “Gigabit-capable passive optical networks (GPON): reach extension,” ITU-T Recommendation G.984.6, March2008.
  10. “10 gigabit-capable passive optical networks (XG(S)-PON): reach extension,” ITU-T Recommendation G.9807.2, Aug.2017.
  11. C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.
  12. I. Van de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: an exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag. 38(2), 74–82 (2000).
    [Crossref]
  13. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24, 2827–2834 (2006).
    [Crossref]
  14. D. P. Shea and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Netw. 21, 5–11 (2007).
    [Crossref]
  15. E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett. 49, 282–284 (2013).
    [Crossref]
  16. Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km passive reach TWDM-PON with 53-dB loss budget,” J. Lightwave Technol. 32, 3991–3998 (2014).
    [Crossref]
  17. D. B. Payne and R. P. Davey, “The future of fibre access systems?” BT Technol. J. 20, 104–114 (2002).
    [Crossref]
  18. F. Effenberger, D. Cleary, O. Haran, G. Kramer, R. D. Li, M. Oron, and T. Pfeiffer, “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag. 45(3), S17–S25 (2007).
    [Crossref]
  19. P. P. Iannone and K. C. Reichmann, “Optical access beyond 10  Gb/s PON,” in 36th European Conference and Exhibition on Optical Communication (2010), pp. 1–5.
  20. D. Carey, N. Brandonisio, S. Porto, A. Naughton, P. Ossieur, N. Parsons, G. Talli, and P. Townsend, “Dynamically reconfigurable TDM-DWDM PON ring architecture for efficient rural deployment,” in European Conference and Exhibition on Optical Communication (ECOC), September2016.
  21. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
    [Crossref]
  22. T. Zhang, “Tunable laser drivers for next generation WDM-based PON networks,” in Optical Fiber Communication Conference (OFC), March2019.
  23. R. Bonk, W. Poehlmann, D. van Veen, J. Galaro, R. Farah, H. Schmuck, and T. Pfeiffer, “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol. 26, 59–70 (2015).
    [Crossref]
  24. D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Optical Fiber Communication Conference (OFC), Optical Society of America, San Francisco, California, USA, 2014, paper W1D.6.
  25. X. Wu, D. Liu, H. Lin, X. Liu, and F. Effenberger, “Burst mode wavelength stabilization,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_02-Burst-Mode_Wavelength_Stabilization.pdf .
  26. L. Du and C. DeSanti, “Super-PON economic feasibility,” presented at the IEEE 802.3 meeting, Nov.2018, http://www.ieee802.org/3/SUPER_PON/public/201811/Super-PON_Economic_Feasibility_v1b.pdf .
  27. https://www.itscosts.its.dot.gov/its/benecost.nsf/SubsystemCosts?ReadForm&Subsystem=Roadside+Telecommunications+(RS-TC) .
  28. C. DeSanti, L. Du, C. Lam, and J. Jiang, “Super-PON,” presented at the IEEE 802.3 meeting, Jan.2018, http://www.ieee802.org/3/ad_hoc/ngrates/public/18_01/desanti_nea_01a_0118.pdf .
  29. http://www.ieee802.org/3/cs/index.html .
  30. https://www.itu.int/ITU-T/workprog/wp_item.aspx?isn=15208 .
  31. C. DeSanti, “Specifying Super-PON,” presented at the IEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-Specifying_Super-PON.pdf .
  32. W. Wang and W. Zhang, “Optical amplification for a Super-PON system,” presented at the IEEE 802.3 meeting, Sept.2018, http://www.ieee802.org/3/SUPER_PON/public/201809/Optical_Amplification_v1.pdf .
  33. Q. Wei, “Burst-mode capable EDFAs,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_07-Burst-Mode_capable_EDFAs.pdf .
  34. E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped traveling-wave fiber amplifier,” Opt. Lett. 12, 888–890 (1987).
    [Crossref]
  35. N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in International Conference on Transparent Optical Networks (ICTON), IEEE, Rome, Italy, 2007, paper Tu.A4.7.
  36. A. Joon Tae and K. Kyong Hon, “All-optical gain-clamped erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett. 16, 84–86 (2004).
    [Crossref]
  37. A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.
  38. H. G. Krimmel, T. Pfeiffer, B. Deppisch, and L. Jentsch, “Hybrid electro-optical feedback gain-stabilized EDFAs for long-reach wavelength-multiplexed passive optical networks,” in 35th European Conference on Optical Communication, September2009.
  39. L. Du, “Super-PON wavelengths considerations,” presented at theIEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-Super-PON_Wavelength_Considerations.pdf .
  40. A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
    [Crossref]
  41. J. An, “Cyclical AWG for Super-PON system,” presented at theIEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-CAWG_for_Super-PON.pdf .
  42. D. Ogawa, “Cyclic Athermal AWG λ Router for Super-PON,” presented at the IEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-CAWG_Router_for_Super-PON.pdf .
  43. Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
    [Crossref]
  44. L. Leick, M. Boulanger, J. G. Nielsen, H. Imam, and J. Ingenhoff, “Athermal AWGs for colourless WDM-PON with −40°C to +70°C and underwater operation,” in Optical Fiber Communication Conference (OFC) (2016).
  45. H. Bulthuis, “Low loss CAWG design for Super-PON systems,” presented at the IEEE 802.3 meeting, July2019, http://www.ieee802.org/3/cs/public/201907/20190717-Low_Loss_CAWG.pdf .
  46. S. Kamei, M. Kohtoku, T. Shibata, and T. Kitoh, “Athermal Mach-Zehnder interferometer-synchronised arrayed waveguide grating multi/demultiplexer with low loss and wide passband,” Electron. Lett. 44, 201–202 (2008).
    [Crossref]
  47. K. Hirabayashi, N. Koshobu, J. Kobayashi, M. Itoh, and S. Kamei, “Reduction of second-order temperature dependence of silica-based athermal AWG by using two resin-filled grooves,” IEEE Photon. Technol. Lett. 23, 676–678 (2011).
    [Crossref]
  48. M. Ishizaka, M. Yamaguchi, J. Shimizu, and K. Komatsu, “The transmission capability of a 10-Gb/s electroabsorption modulator integrated DFB laser using the offset bias chirp reduction technique,” IEEE Photon. Technol. Lett. 9, 1628–1630 (1997).
    [Crossref]
  49. J. C. Cartledge, “Performance of 10 Gb/s lightwave systems based on lithium niobate Mach-Zehnder modulators with asymmetric Y-branch waveguides,” IEEE Photon. Technol. Lett. 7, 1090–1092 (1995).
    [Crossref]
  50. L. Du, “Super-PON chromatic dispersion and DCM for black link,” presented in the IEEE P802.3cs concall, April2020, http://www.ieee802.org/3/cs/public/AdHoc/20200430-Du_3cs_01.pdf .
  51. P. Lebeau, “Chromatic dispersion compensation in Super-PON networks with FBG-based, multi-channel chromatic dispersion compensators,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_05-Chromatic_Dispersion%20Compensation_in_Super-PON.pdf .
  52. R. Lingle, “Chromatic dispersion compensation with negative dispersion fiber,” presented at the IEEE 802.3 meeting, May2019, http://www.ieee802.org/3/cs/public/201905/20190521-Fiber_Based_DSCMa.pdf .
  53. “Characteristics of a single-mode optical fibre and cable,” ITU-T Recommendation G.652, Nov.2016.
  54. V. Ferretti, “Considerations for Link Loss–2,” presented at theIEEE 802.3 meeting, Nov.2019, http://www.ieee802.org/3/cs/public/201911/20191112-Ferretti_3cs_01.pdf .
  55. R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 6–19.
  56. R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1963).
    [Crossref]
  57. J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol. 22, 79–93 (2004).
    [Crossref]
  58. L. Du, “Super-PON link budget analysis—effect of Raman,” presented at the IEEE 802.3 meeting, Jan.2020, http://www.ieee802.org/3/cs/public/202001/20200121-Du_3cs_02a.pdf .
  59. L. Du, “Super-PON link budget analysis,” presented at theIEEE 802.3 meeting, March2020, http://www.ieee802.org/3/cs/public/202003/20200402-Du_3cs_01.pdf .
  60. L. Du, X. Zhao, S. Yin, T. Zhang, A. E. T. Barratt, J. Jiang, D. Wang, J. Geng, C. DeSanti, and C. F. Lam, “Long-reach wavelength-routed TWDM PON: technology and deployment,” J. Lightwave Technol. 37, 688–697 (2019).
    [Crossref]

2019 (1)

2015 (1)

R. Bonk, W. Poehlmann, D. van Veen, J. Galaro, R. Farah, H. Schmuck, and T. Pfeiffer, “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol. 26, 59–70 (2015).
[Crossref]

2014 (1)

2013 (1)

E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett. 49, 282–284 (2013).
[Crossref]

2011 (1)

K. Hirabayashi, N. Koshobu, J. Kobayashi, M. Itoh, and S. Kamei, “Reduction of second-order temperature dependence of silica-based athermal AWG by using two resin-filled grooves,” IEEE Photon. Technol. Lett. 23, 676–678 (2011).
[Crossref]

2008 (1)

S. Kamei, M. Kohtoku, T. Shibata, and T. Kitoh, “Athermal Mach-Zehnder interferometer-synchronised arrayed waveguide grating multi/demultiplexer with low loss and wide passband,” Electron. Lett. 44, 201–202 (2008).
[Crossref]

2007 (2)

D. P. Shea and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Netw. 21, 5–11 (2007).
[Crossref]

F. Effenberger, D. Cleary, O. Haran, G. Kramer, R. D. Li, M. Oron, and T. Pfeiffer, “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag. 45(3), S17–S25 (2007).
[Crossref]

2006 (1)

2004 (2)

A. Joon Tae and K. Kyong Hon, “All-optical gain-clamped erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett. 16, 84–86 (2004).
[Crossref]

J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol. 22, 79–93 (2004).
[Crossref]

2002 (1)

D. B. Payne and R. P. Davey, “The future of fibre access systems?” BT Technol. J. 20, 104–114 (2002).
[Crossref]

2000 (2)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[Crossref]

I. Van de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: an exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag. 38(2), 74–82 (2000).
[Crossref]

1999 (1)

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

1997 (2)

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

M. Ishizaka, M. Yamaguchi, J. Shimizu, and K. Komatsu, “The transmission capability of a 10-Gb/s electroabsorption modulator integrated DFB laser using the offset bias chirp reduction technique,” IEEE Photon. Technol. Lett. 9, 1628–1630 (1997).
[Crossref]

1995 (1)

J. C. Cartledge, “Performance of 10 Gb/s lightwave systems based on lithium niobate Mach-Zehnder modulators with asymmetric Y-branch waveguides,” IEEE Photon. Technol. Lett. 7, 1090–1092 (1995).
[Crossref]

1987 (1)

1963 (1)

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1963).
[Crossref]

Aharoni, O.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Amann, M. C.

E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett. 49, 282–284 (2013).
[Crossref]

An, J.

J. An, “Cyclical AWG for Super-PON system,” presented at theIEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-CAWG_for_Super-PON.pdf .

Antony, C.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Barratt, A. E. T.

Becker, P. C.

Bi, M.

Bonk, R.

R. Bonk, W. Poehlmann, D. van Veen, J. Galaro, R. Farah, H. Schmuck, and T. Pfeiffer, “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol. 26, 59–70 (2015).
[Crossref]

Borghesani, A.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Boulanger, M.

L. Leick, M. Boulanger, J. G. Nielsen, H. Imam, and J. Ingenhoff, “Athermal AWGs for colourless WDM-PON with −40°C to +70°C and underwater operation,” in Optical Fiber Communication Conference (OFC) (2016).

Brandonisio, N.

D. Carey, N. Brandonisio, S. Porto, A. Naughton, P. Ossieur, N. Parsons, G. Talli, and P. Townsend, “Dynamically reconfigurable TDM-DWDM PON ring architecture for efficient rural deployment,” in European Conference and Exhibition on Optical Communication (ECOC), September2016.

Bravi, E.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Bromage, J.

Bulthuis, H.

H. Bulthuis, “Low loss CAWG design for Super-PON systems,” presented at the IEEE 802.3 meeting, July2019, http://www.ieee802.org/3/cs/public/201907/20190717-Low_Loss_CAWG.pdf .

Capriata, S.

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 6–19.

Carey, D.

D. Carey, N. Brandonisio, S. Porto, A. Naughton, P. Ossieur, N. Parsons, G. Talli, and P. Townsend, “Dynamically reconfigurable TDM-DWDM PON ring architecture for efficient rural deployment,” in European Conference and Exhibition on Optical Communication (ECOC), September2016.

Cartledge, J. C.

J. C. Cartledge, “Performance of 10 Gb/s lightwave systems based on lithium niobate Mach-Zehnder modulators with asymmetric Y-branch waveguides,” IEEE Photon. Technol. Lett. 7, 1090–1092 (1995).
[Crossref]

Chanclou, P.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in International Conference on Transparent Optical Networks (ICTON), IEEE, Rome, Italy, 2007, paper Tu.A4.7.

Chang, Y.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Clarke, A. M.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Cleary, D.

F. Effenberger, D. Cleary, O. Haran, G. Kramer, R. D. Li, M. Oron, and T. Pfeiffer, “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag. 45(3), S17–S25 (2007).
[Crossref]

Coldren, L. A.

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[Crossref]

Connolly, E.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Curri, V.

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 6–19.

Davey, R. P.

D. B. Payne and R. P. Davey, “The future of fibre access systems?” BT Technol. J. 20, 104–114 (2002).
[Crossref]

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Deppisch, B.

H. G. Krimmel, T. Pfeiffer, B. Deppisch, and L. Jentsch, “Hybrid electro-optical feedback gain-stabilized EDFAs for long-reach wavelength-multiplexed passive optical networks,” in 35th European Conference on Optical Communication, September2009.

DeSanti, C.

L. Du, X. Zhao, S. Yin, T. Zhang, A. E. T. Barratt, J. Jiang, D. Wang, J. Geng, C. DeSanti, and C. F. Lam, “Long-reach wavelength-routed TWDM PON: technology and deployment,” J. Lightwave Technol. 37, 688–697 (2019).
[Crossref]

C. DeSanti, “Specifying Super-PON,” presented at the IEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-Specifying_Super-PON.pdf .

L. Du and C. DeSanti, “Super-PON economic feasibility,” presented at the IEEE 802.3 meeting, Nov.2018, http://www.ieee802.org/3/SUPER_PON/public/201811/Super-PON_Economic_Feasibility_v1b.pdf .

C. DeSanti, L. Du, C. Lam, and J. Jiang, “Super-PON,” presented at the IEEE 802.3 meeting, Jan.2018, http://www.ieee802.org/3/ad_hoc/ngrates/public/18_01/desanti_nea_01a_0118.pdf .

Desurvire, E.

Du, L.

L. Du, X. Zhao, S. Yin, T. Zhang, A. E. T. Barratt, J. Jiang, D. Wang, J. Geng, C. DeSanti, and C. F. Lam, “Long-reach wavelength-routed TWDM PON: technology and deployment,” J. Lightwave Technol. 37, 688–697 (2019).
[Crossref]

L. Du, “Super-PON link budget analysis—effect of Raman,” presented at the IEEE 802.3 meeting, Jan.2020, http://www.ieee802.org/3/cs/public/202001/20200121-Du_3cs_02a.pdf .

L. Du, “Super-PON link budget analysis,” presented at theIEEE 802.3 meeting, March2020, http://www.ieee802.org/3/cs/public/202003/20200402-Du_3cs_01.pdf .

L. Du, “Super-PON chromatic dispersion and DCM for black link,” presented in the IEEE P802.3cs concall, April2020, http://www.ieee802.org/3/cs/public/AdHoc/20200430-Du_3cs_01.pdf .

C. DeSanti, L. Du, C. Lam, and J. Jiang, “Super-PON,” presented at the IEEE 802.3 meeting, Jan.2018, http://www.ieee802.org/3/ad_hoc/ngrates/public/18_01/desanti_nea_01a_0118.pdf .

L. Du and C. DeSanti, “Super-PON economic feasibility,” presented at the IEEE 802.3 meeting, Nov.2018, http://www.ieee802.org/3/SUPER_PON/public/201811/Super-PON_Economic_Feasibility_v1b.pdf .

L. Du, “Super-PON wavelengths considerations,” presented at theIEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-Super-PON_Wavelength_Considerations.pdf .

Effenberger, F.

F. Effenberger, D. Cleary, O. Haran, G. Kramer, R. D. Li, M. Oron, and T. Pfeiffer, “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag. 45(3), S17–S25 (2007).
[Crossref]

X. Wu, D. Liu, H. Lin, X. Liu, and F. Effenberger, “Burst mode wavelength stabilization,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_02-Burst-Mode_Wavelength_Stabilization.pdf .

Farah, B.

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Optical Fiber Communication Conference (OFC), Optical Society of America, San Francisco, California, USA, 2014, paper W1D.6.

Farah, R.

R. Bonk, W. Poehlmann, D. van Veen, J. Galaro, R. Farah, H. Schmuck, and T. Pfeiffer, “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol. 26, 59–70 (2015).
[Crossref]

Ferretti, V.

V. Ferretti, “Considerations for Link Loss–2,” presented at theIEEE 802.3 meeting, Nov.2019, http://www.ieee802.org/3/cs/public/201911/20191112-Ferretti_3cs_01.pdf .

Galaro, J.

R. Bonk, W. Poehlmann, D. van Veen, J. Galaro, R. Farah, H. Schmuck, and T. Pfeiffer, “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol. 26, 59–70 (2015).
[Crossref]

Gaudino, R.

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 6–19.

Genay, N.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in International Conference on Transparent Optical Networks (ICTON), IEEE, Rome, Italy, 2007, paper Tu.A4.7.

Geng, J.

Ghera, U.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Giller, R.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Goh, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

Guillo, L.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in International Conference on Transparent Optical Networks (ICTON), IEEE, Rome, Italy, 2007, paper Tu.A4.7.

Hanawa, F.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

Haran, O.

F. Effenberger, D. Cleary, O. Haran, G. Kramer, R. D. Li, M. Oron, and T. Pfeiffer, “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag. 45(3), S17–S25 (2007).
[Crossref]

Harmon, B.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Hattori, K.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

He, H.

Hellwarth, R. W.

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1963).
[Crossref]

Hirabayashi, K.

K. Hirabayashi, N. Koshobu, J. Kobayashi, M. Itoh, and S. Kamei, “Reduction of second-order temperature dependence of silica-based athermal AWG by using two resin-filled grooves,” IEEE Photon. Technol. Lett. 23, 676–678 (2011).
[Crossref]

Hu, W.

Iannone, P. P.

P. P. Iannone and K. C. Reichmann, “Optical access beyond 10  Gb/s PON,” in 36th European Conference and Exhibition on Optical Communication (2010), pp. 1–5.

Ikeda, H.

J. Sugawa and H. Ikeda, “Development of OLT using semiconductor optical amplifiers as booster and preamplifier for loss-budget extension in 10.3-Gb/s PON system,” in Optical Fiber Communication Conference and Exhibition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, USA, 2012, paper OTh4G.4.

Imam, H.

L. Leick, M. Boulanger, J. G. Nielsen, H. Imam, and J. Ingenhoff, “Athermal AWGs for colourless WDM-PON with −40°C to +70°C and underwater operation,” in Optical Fiber Communication Conference (OFC) (2016).

Ingenhoff, J.

L. Leick, M. Boulanger, J. G. Nielsen, H. Imam, and J. Ingenhoff, “Athermal AWGs for colourless WDM-PON with −40°C to +70°C and underwater operation,” in Optical Fiber Communication Conference (OFC) (2016).

Inoue, Y.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

Ishizaka, M.

M. Ishizaka, M. Yamaguchi, J. Shimizu, and K. Komatsu, “The transmission capability of a 10-Gb/s electroabsorption modulator integrated DFB laser using the offset bias chirp reduction technique,” IEEE Photon. Technol. Lett. 9, 1628–1630 (1997).
[Crossref]

Itoh, M.

K. Hirabayashi, N. Koshobu, J. Kobayashi, M. Itoh, and S. Kamei, “Reduction of second-order temperature dependence of silica-based athermal AWG by using two resin-filled grooves,” IEEE Photon. Technol. Lett. 23, 676–678 (2011).
[Crossref]

Jentsch, L.

H. G. Krimmel, T. Pfeiffer, B. Deppisch, and L. Jentsch, “Hybrid electro-optical feedback gain-stabilized EDFAs for long-reach wavelength-multiplexed passive optical networks,” in 35th European Conference on Optical Communication, September2009.

Jiang, J.

L. Du, X. Zhao, S. Yin, T. Zhang, A. E. T. Barratt, J. Jiang, D. Wang, J. Geng, C. DeSanti, and C. F. Lam, “Long-reach wavelength-routed TWDM PON: technology and deployment,” J. Lightwave Technol. 37, 688–697 (2019).
[Crossref]

C. DeSanti, L. Du, C. Lam, and J. Jiang, “Super-PON,” presented at the IEEE 802.3 meeting, Jan.2018, http://www.ieee802.org/3/ad_hoc/ngrates/public/18_01/desanti_nea_01a_0118.pdf .

Joon Tae, A.

A. Joon Tae and K. Kyong Hon, “All-optical gain-clamped erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett. 16, 84–86 (2004).
[Crossref]

Kamei, S.

K. Hirabayashi, N. Koshobu, J. Kobayashi, M. Itoh, and S. Kamei, “Reduction of second-order temperature dependence of silica-based athermal AWG by using two resin-filled grooves,” IEEE Photon. Technol. Lett. 23, 676–678 (2011).
[Crossref]

S. Kamei, M. Kohtoku, T. Shibata, and T. Kitoh, “Athermal Mach-Zehnder interferometer-synchronised arrayed waveguide grating multi/demultiplexer with low loss and wide passband,” Electron. Lett. 44, 201–202 (2008).
[Crossref]

Kaneko, A.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

Kaszubowska-Anandarajah, A.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Kitoh, T.

S. Kamei, M. Kohtoku, T. Shibata, and T. Kitoh, “Athermal Mach-Zehnder interferometer-synchronised arrayed waveguide grating multi/demultiplexer with low loss and wide passband,” Electron. Lett. 44, 201–202 (2008).
[Crossref]

Kobayashi, J.

K. Hirabayashi, N. Koshobu, J. Kobayashi, M. Itoh, and S. Kamei, “Reduction of second-order temperature dependence of silica-based athermal AWG by using two resin-filled grooves,” IEEE Photon. Technol. Lett. 23, 676–678 (2011).
[Crossref]

Kohtoku, M.

S. Kamei, M. Kohtoku, T. Shibata, and T. Kitoh, “Athermal Mach-Zehnder interferometer-synchronised arrayed waveguide grating multi/demultiplexer with low loss and wide passband,” Electron. Lett. 44, 201–202 (2008).
[Crossref]

Komatsu, K.

M. Ishizaka, M. Yamaguchi, J. Shimizu, and K. Komatsu, “The transmission capability of a 10-Gb/s electroabsorption modulator integrated DFB laser using the offset bias chirp reduction technique,” IEEE Photon. Technol. Lett. 9, 1628–1630 (1997).
[Crossref]

Koshobu, N.

K. Hirabayashi, N. Koshobu, J. Kobayashi, M. Itoh, and S. Kamei, “Reduction of second-order temperature dependence of silica-based athermal AWG by using two resin-filled grooves,” IEEE Photon. Technol. Lett. 23, 676–678 (2011).
[Crossref]

Kramer, G.

F. Effenberger, D. Cleary, O. Haran, G. Kramer, R. D. Li, M. Oron, and T. Pfeiffer, “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag. 45(3), S17–S25 (2007).
[Crossref]

Krimmel, H. G.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

H. G. Krimmel, T. Pfeiffer, B. Deppisch, and L. Jentsch, “Hybrid electro-optical feedback gain-stabilized EDFAs for long-reach wavelength-multiplexed passive optical networks,” in 35th European Conference on Optical Communication, September2009.

Kyong Hon, K.

A. Joon Tae and K. Kyong Hon, “All-optical gain-clamped erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett. 16, 84–86 (2004).
[Crossref]

Lam, C.

C. DeSanti, L. Du, C. Lam, and J. Jiang, “Super-PON,” presented at the IEEE 802.3 meeting, Jan.2018, http://www.ieee802.org/3/ad_hoc/ngrates/public/18_01/desanti_nea_01a_0118.pdf .

Lam, C. F.

Lealman, I.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Lebeau, P.

P. Lebeau, “Chromatic dispersion compensation in Super-PON networks with FBG-based, multi-channel chromatic dispersion compensators,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_05-Chromatic_Dispersion%20Compensation_in_Super-PON.pdf .

Leick, L.

L. Leick, M. Boulanger, J. G. Nielsen, H. Imam, and J. Ingenhoff, “Athermal AWGs for colourless WDM-PON with −40°C to +70°C and underwater operation,” in Optical Fiber Communication Conference (OFC) (2016).

Li, R. D.

F. Effenberger, D. Cleary, O. Haran, G. Kramer, R. D. Li, M. Oron, and T. Pfeiffer, “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag. 45(3), S17–S25 (2007).
[Crossref]

Li, Z.

Lin, H.

X. Wu, D. Liu, H. Lin, X. Liu, and F. Effenberger, “Burst mode wavelength stabilization,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_02-Burst-Mode_Wavelength_Stabilization.pdf .

Lingle, R.

R. Lingle, “Chromatic dispersion compensation with negative dispersion fiber,” presented at the IEEE 802.3 meeting, May2019, http://www.ieee802.org/3/cs/public/201905/20190521-Fiber_Based_DSCMa.pdf .

Liu, D.

X. Wu, D. Liu, H. Lin, X. Liu, and F. Effenberger, “Burst mode wavelength stabilization,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_02-Burst-Mode_Wavelength_Stabilization.pdf .

Liu, Q.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in International Conference on Transparent Optical Networks (ICTON), IEEE, Rome, Italy, 2007, paper Tu.A4.7.

Liu, X.

X. Wu, D. Liu, H. Lin, X. Liu, and F. Effenberger, “Burst mode wavelength stabilization,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_02-Burst-Mode_Wavelength_Stabilization.pdf .

MacHale, E. K.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Martin, C. M.

I. Van de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: an exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag. 38(2), 74–82 (2000).
[Crossref]

Maxwell, G.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

McDonald, D.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Mitchell, J. E.

D. P. Shea and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Netw. 21, 5–11 (2007).
[Crossref]

Moodie, D.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Muller, M.

E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett. 49, 282–284 (2013).
[Crossref]

Naughton, A.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

D. Carey, N. Brandonisio, S. Porto, A. Naughton, P. Ossieur, N. Parsons, G. Talli, and P. Townsend, “Dynamically reconfigurable TDM-DWDM PON ring architecture for efficient rural deployment,” in European Conference and Exhibition on Optical Communication (ECOC), September2016.

Nesset, D.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Nielsen, J. G.

L. Leick, M. Boulanger, J. G. Nielsen, H. Imam, and J. Ingenhoff, “Athermal AWGs for colourless WDM-PON with −40°C to +70°C and underwater operation,” in Optical Fiber Communication Conference (OFC) (2016).

Oberland, R.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Ogawa, D.

D. Ogawa, “Cyclic Athermal AWG λ Router for Super-PON,” presented at the IEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-CAWG_Router_for_Super-PON.pdf .

Ogawa, L.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

Oiu, X. Z.

I. Van de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: an exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag. 38(2), 74–82 (2000).
[Crossref]

Oron, M.

F. Effenberger, D. Cleary, O. Haran, G. Kramer, R. D. Li, M. Oron, and T. Pfeiffer, “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag. 45(3), S17–S25 (2007).
[Crossref]

Ossieur, P.

D. Carey, N. Brandonisio, S. Porto, A. Naughton, P. Ossieur, N. Parsons, G. Talli, and P. Townsend, “Dynamically reconfigurable TDM-DWDM PON ring architecture for efficient rural deployment,” in European Conference and Exhibition on Optical Communication (ECOC), September2016.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Parsons, N.

D. Carey, N. Brandonisio, S. Porto, A. Naughton, P. Ossieur, N. Parsons, G. Talli, and P. Townsend, “Dynamically reconfigurable TDM-DWDM PON ring architecture for efficient rural deployment,” in European Conference and Exhibition on Optical Communication (ECOC), September2016.

Payne, D. B.

D. B. Payne and R. P. Davey, “The future of fibre access systems?” BT Technol. J. 20, 104–114 (2002).
[Crossref]

Pfeiffer, T.

R. Bonk, W. Poehlmann, D. van Veen, J. Galaro, R. Farah, H. Schmuck, and T. Pfeiffer, “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol. 26, 59–70 (2015).
[Crossref]

F. Effenberger, D. Cleary, O. Haran, G. Kramer, R. D. Li, M. Oron, and T. Pfeiffer, “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag. 45(3), S17–S25 (2007).
[Crossref]

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Optical Fiber Communication Conference (OFC), Optical Society of America, San Francisco, California, USA, 2014, paper W1D.6.

H. G. Krimmel, T. Pfeiffer, B. Deppisch, and L. Jentsch, “Hybrid electro-optical feedback gain-stabilized EDFAs for long-reach wavelength-multiplexed passive optical networks,” in 35th European Conference on Optical Communication, September2009.

Poehlmann, W.

R. Bonk, W. Poehlmann, D. van Veen, J. Galaro, R. Farah, H. Schmuck, and T. Pfeiffer, “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol. 26, 59–70 (2015).
[Crossref]

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Optical Fiber Communication Conference (OFC), Optical Society of America, San Francisco, California, USA, 2014, paper W1D.6.

Porto, S.

D. Carey, N. Brandonisio, S. Porto, A. Naughton, P. Ossieur, N. Parsons, G. Talli, and P. Townsend, “Dynamically reconfigurable TDM-DWDM PON ring architecture for efficient rural deployment,” in European Conference and Exhibition on Optical Communication (ECOC), September2016.

Poustie, A.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Reichmann, K. C.

P. P. Iannone and K. C. Reichmann, “Optical access beyond 10  Gb/s PON,” in 36th European Conference and Exhibition on Optical Communication (2010), pp. 1–5.

Rogers, D.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Saliou, F.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in International Conference on Transparent Optical Networks (ICTON), IEEE, Rome, Italy, 2007, paper Tu.A4.7.

Schmuck, H.

R. Bonk, W. Poehlmann, D. van Veen, J. Galaro, R. Farah, H. Schmuck, and T. Pfeiffer, “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol. 26, 59–70 (2015).
[Crossref]

Shea, D. P.

D. P. Shea and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Netw. 21, 5–11 (2007).
[Crossref]

Shibata, T.

S. Kamei, M. Kohtoku, T. Shibata, and T. Kitoh, “Athermal Mach-Zehnder interferometer-synchronised arrayed waveguide grating multi/demultiplexer with low loss and wide passband,” Electron. Lett. 44, 201–202 (2008).
[Crossref]

Shimizu, J.

M. Ishizaka, M. Yamaguchi, J. Shimizu, and K. Komatsu, “The transmission capability of a 10-Gb/s electroabsorption modulator integrated DFB laser using the offset bias chirp reduction technique,” IEEE Photon. Technol. Lett. 9, 1628–1630 (1997).
[Crossref]

Simpson, J. R.

Smith, D. W.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Soret, T.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in International Conference on Transparent Optical Networks (ICTON), IEEE, Rome, Italy, 2007, paper Tu.A4.7.

Sugawa, J.

J. Sugawa and H. Ikeda, “Development of OLT using semiconductor optical amplifiers as booster and preamplifier for loss-budget extension in 10.3-Gb/s PON system,” in Optical Fiber Communication Conference and Exhibition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, USA, 2012, paper OTh4G.4.

Sumida, S.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

Surpin, A.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Takahashi, H.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

Talli, G.

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24, 2827–2834 (2006).
[Crossref]

D. Carey, N. Brandonisio, S. Porto, A. Naughton, P. Ossieur, N. Parsons, G. Talli, and P. Townsend, “Dynamically reconfigurable TDM-DWDM PON ring architecture for efficient rural deployment,” in European Conference and Exhibition on Optical Communication (ECOC), September2016.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Tanaka, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

Todd, M.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

Townsend, P.

D. Carey, N. Brandonisio, S. Porto, A. Naughton, P. Ossieur, N. Parsons, G. Talli, and P. Townsend, “Dynamically reconfigurable TDM-DWDM PON ring architecture for efficient rural deployment,” in European Conference and Exhibition on Optical Communication (ECOC), September2016.

Townsend, P. D.

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24, 2827–2834 (2006).
[Crossref]

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Van de Voorde, I.

I. Van de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: an exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag. 38(2), 74–82 (2000).
[Crossref]

van Veen, D.

R. Bonk, W. Poehlmann, D. van Veen, J. Galaro, R. Farah, H. Schmuck, and T. Pfeiffer, “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol. 26, 59–70 (2015).
[Crossref]

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Optical Fiber Communication Conference (OFC), Optical Society of America, San Francisco, California, USA, 2014, paper W1D.6.

Vandewege, I.

I. Van de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: an exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag. 38(2), 74–82 (2000).
[Crossref]

Vetter, P.

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Optical Fiber Communication Conference (OFC), Optical Society of America, San Francisco, California, USA, 2014, paper W1D.6.

Wang, D.

Wang, W.

W. Wang and W. Zhang, “Optical amplification for a Super-PON system,” presented at the IEEE 802.3 meeting, Sept.2018, http://www.ieee802.org/3/SUPER_PON/public/201809/Optical_Amplification_v1.pdf .

Wei, Q.

Q. Wei, “Burst-mode capable EDFAs,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_07-Burst-Mode_capable_EDFAs.pdf .

Wei, W.

Wong, E.

E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett. 49, 282–284 (2013).
[Crossref]

Wu, X.

X. Wu, D. Liu, H. Lin, X. Liu, and F. Effenberger, “Burst mode wavelength stabilization,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_02-Burst-Mode_Wavelength_Stabilization.pdf .

Wyatt, R.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Xiao, S.

Yamada, H.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

Yamaguchi, M.

M. Ishizaka, M. Yamaguchi, J. Shimizu, and K. Komatsu, “The transmission capability of a 10-Gb/s electroabsorption modulator integrated DFB laser using the offset bias chirp reduction technique,” IEEE Photon. Technol. Lett. 9, 1628–1630 (1997).
[Crossref]

Yi, L.

Yin, S.

Zhang, T.

Zhang, W.

W. Wang and W. Zhang, “Optical amplification for a Super-PON system,” presented at the IEEE 802.3 meeting, Sept.2018, http://www.ieee802.org/3/SUPER_PON/public/201809/Optical_Amplification_v1.pdf .

Zhao, X.

BT Technol. J. (1)

D. B. Payne and R. P. Davey, “The future of fibre access systems?” BT Technol. J. 20, 104–114 (2002).
[Crossref]

Electron. Lett. (3)

E. Wong, M. Muller, and M. C. Amann, “Colourless operation of short-cavity VCSELs in C-minus band for TWDM-PONs,” Electron. Lett. 49, 282–284 (2013).
[Crossref]

S. Kamei, M. Kohtoku, T. Shibata, and T. Kitoh, “Athermal Mach-Zehnder interferometer-synchronised arrayed waveguide grating multi/demultiplexer with low loss and wide passband,” Electron. Lett. 44, 201–202 (2008).
[Crossref]

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

IEEE Commun. Mag. (2)

I. Van de Voorde, C. M. Martin, I. Vandewege, and X. Z. Oiu, “The superPON demonstrator: an exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag. 38(2), 74–82 (2000).
[Crossref]

F. Effenberger, D. Cleary, O. Haran, G. Kramer, R. D. Li, M. Oron, and T. Pfeiffer, “An introduction to PON technologies [Topics in Optical Communications],” IEEE Commun. Mag. 45(3), S17–S25 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[Crossref]

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

IEEE Netw. (1)

D. P. Shea and J. E. Mitchell, “Long-reach optical access technologies,” IEEE Netw. 21, 5–11 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (4)

K. Hirabayashi, N. Koshobu, J. Kobayashi, M. Itoh, and S. Kamei, “Reduction of second-order temperature dependence of silica-based athermal AWG by using two resin-filled grooves,” IEEE Photon. Technol. Lett. 23, 676–678 (2011).
[Crossref]

M. Ishizaka, M. Yamaguchi, J. Shimizu, and K. Komatsu, “The transmission capability of a 10-Gb/s electroabsorption modulator integrated DFB laser using the offset bias chirp reduction technique,” IEEE Photon. Technol. Lett. 9, 1628–1630 (1997).
[Crossref]

J. C. Cartledge, “Performance of 10 Gb/s lightwave systems based on lithium niobate Mach-Zehnder modulators with asymmetric Y-branch waveguides,” IEEE Photon. Technol. Lett. 7, 1090–1092 (1995).
[Crossref]

A. Joon Tae and K. Kyong Hon, “All-optical gain-clamped erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett. 16, 84–86 (2004).
[Crossref]

J. Lightwave Technol. (4)

Opt. Fiber Technol. (1)

R. Bonk, W. Poehlmann, D. van Veen, J. Galaro, R. Farah, H. Schmuck, and T. Pfeiffer, “The underestimated challenges of burst-mode WDM transmission in TWDM-PON,” Opt. Fiber Technol. 26, 59–70 (2015).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (1)

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482–494 (1963).
[Crossref]

Other (40)

L. Du, “Super-PON link budget analysis—effect of Raman,” presented at the IEEE 802.3 meeting, Jan.2020, http://www.ieee802.org/3/cs/public/202001/20200121-Du_3cs_02a.pdf .

L. Du, “Super-PON link budget analysis,” presented at theIEEE 802.3 meeting, March2020, http://www.ieee802.org/3/cs/public/202003/20200402-Du_3cs_01.pdf .

J. An, “Cyclical AWG for Super-PON system,” presented at theIEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-CAWG_for_Super-PON.pdf .

D. Ogawa, “Cyclic Athermal AWG λ Router for Super-PON,” presented at the IEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-CAWG_Router_for_Super-PON.pdf .

L. Leick, M. Boulanger, J. G. Nielsen, H. Imam, and J. Ingenhoff, “Athermal AWGs for colourless WDM-PON with −40°C to +70°C and underwater operation,” in Optical Fiber Communication Conference (OFC) (2016).

H. Bulthuis, “Low loss CAWG design for Super-PON systems,” presented at the IEEE 802.3 meeting, July2019, http://www.ieee802.org/3/cs/public/201907/20190717-Low_Loss_CAWG.pdf .

L. Du, “Super-PON chromatic dispersion and DCM for black link,” presented in the IEEE P802.3cs concall, April2020, http://www.ieee802.org/3/cs/public/AdHoc/20200430-Du_3cs_01.pdf .

P. Lebeau, “Chromatic dispersion compensation in Super-PON networks with FBG-based, multi-channel chromatic dispersion compensators,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_05-Chromatic_Dispersion%20Compensation_in_Super-PON.pdf .

R. Lingle, “Chromatic dispersion compensation with negative dispersion fiber,” presented at the IEEE 802.3 meeting, May2019, http://www.ieee802.org/3/cs/public/201905/20190521-Fiber_Based_DSCMa.pdf .

“Characteristics of a single-mode optical fibre and cable,” ITU-T Recommendation G.652, Nov.2016.

V. Ferretti, “Considerations for Link Loss–2,” presented at theIEEE 802.3 meeting, Nov.2019, http://www.ieee802.org/3/cs/public/201911/20191112-Ferretti_3cs_01.pdf .

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), pp. 6–19.

N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for budget increase for the next generation optical access network,” in International Conference on Transparent Optical Networks (ICTON), IEEE, Rome, Italy, 2007, paper Tu.A4.7.

T. Zhang, “Tunable laser drivers for next generation WDM-based PON networks,” in Optical Fiber Communication Conference (OFC), March2019.

A. Kaszubowska-Anandarajah, R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, E. Connolly, E. K. MacHale, M. Todd, G. Talli, and D. McDonald, “EDFA transient suppression in optical burst switching systems,” in 14th International Conference on Transparent Optical Networks (ICTON), July2012.

H. G. Krimmel, T. Pfeiffer, B. Deppisch, and L. Jentsch, “Hybrid electro-optical feedback gain-stabilized EDFAs for long-reach wavelength-multiplexed passive optical networks,” in 35th European Conference on Optical Communication, September2009.

L. Du, “Super-PON wavelengths considerations,” presented at theIEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-Super-PON_Wavelength_Considerations.pdf .

D. van Veen, W. Poehlmann, B. Farah, T. Pfeiffer, and P. Vetter, “Measurement and mitigation of wavelength drift due to self-heating of tunable burst-mode DML for TWDM-PON,” in Optical Fiber Communication Conference (OFC), Optical Society of America, San Francisco, California, USA, 2014, paper W1D.6.

X. Wu, D. Liu, H. Lin, X. Liu, and F. Effenberger, “Burst mode wavelength stabilization,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_02-Burst-Mode_Wavelength_Stabilization.pdf .

L. Du and C. DeSanti, “Super-PON economic feasibility,” presented at the IEEE 802.3 meeting, Nov.2018, http://www.ieee802.org/3/SUPER_PON/public/201811/Super-PON_Economic_Feasibility_v1b.pdf .

https://www.itscosts.its.dot.gov/its/benecost.nsf/SubsystemCosts?ReadForm&Subsystem=Roadside+Telecommunications+(RS-TC) .

C. DeSanti, L. Du, C. Lam, and J. Jiang, “Super-PON,” presented at the IEEE 802.3 meeting, Jan.2018, http://www.ieee802.org/3/ad_hoc/ngrates/public/18_01/desanti_nea_01a_0118.pdf .

http://www.ieee802.org/3/cs/index.html .

https://www.itu.int/ITU-T/workprog/wp_item.aspx?isn=15208 .

C. DeSanti, “Specifying Super-PON,” presented at the IEEE 802.3 meeting, March2019, http://www.ieee802.org/3/cs/public/201903/20190312-Specifying_Super-PON.pdf .

W. Wang and W. Zhang, “Optical amplification for a Super-PON system,” presented at the IEEE 802.3 meeting, Sept.2018, http://www.ieee802.org/3/SUPER_PON/public/201809/Optical_Amplification_v1.pdf .

Q. Wei, “Burst-mode capable EDFAs,” presented at the IEEE 802.3 meeting, Jan.2019, http://www.ieee802.org/3/cs/public/201901/201901_07-Burst-Mode_capable_EDFAs.pdf .

P. P. Iannone and K. C. Reichmann, “Optical access beyond 10  Gb/s PON,” in 36th European Conference and Exhibition on Optical Communication (2010), pp. 1–5.

D. Carey, N. Brandonisio, S. Porto, A. Naughton, P. Ossieur, N. Parsons, G. Talli, and P. Townsend, “Dynamically reconfigurable TDM-DWDM PON ring architecture for efficient rural deployment,” in European Conference and Exhibition on Optical Communication (ECOC), September2016.

“IEEE Std 802.3-2018—IEEE Standard for Ethernet,” Aug.2018.

“10-Gigabit-capable symmetric passive optical network (XGS-PON),” ITU-T Recommendation G.9807.1, June2016.

“Gigabit-capable passive optical networks (G-PON): transmission convergence layer specification,” ITU-T Recommendation G.984.3, Jan.2014.

“Gigabit-capable passive optical networks (G-PON): physical media dependent (PMD) layer specification,” ITU-T Recommendation G.984.2, Aug.2019.

“40-gigabit-capable passive optical networks 2 (NG-PON2): physical media dependent (PMD) layer specification,” ITU-T Recommendation G.989.2, Feb.2019.

https://www.itu.int/en/ITU-T/studygroups/2017-2020/15/Pages/default.aspx .

http://www.ieee802.org/3/ca/index.shtml .

J. Sugawa and H. Ikeda, “Development of OLT using semiconductor optical amplifiers as booster and preamplifier for loss-budget extension in 10.3-Gb/s PON system,” in Optical Fiber Communication Conference and Exhibition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, USA, 2012, paper OTh4G.4.

“Gigabit-capable passive optical networks (GPON): reach extension,” ITU-T Recommendation G.984.6, March2008.

“10 gigabit-capable passive optical networks (XG(S)-PON): reach extension,” ITU-T Recommendation G.9807.2, Aug.2017.

C. Antony, P. Ossieur, A. M. Clarke, A. Naughton, H. G. Krimmel, Y. Chang, A. Borghesani, D. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124km field-installed fibers,” in Optical Fiber Communication Conference (OFC), March2010.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Typical PON deployment.
Fig. 2.
Fig. 2. Example of infrastructure needed to serve a 50 km radius.
Fig. 3.
Fig. 3. Super-PON reach and coverage.
Fig. 4.
Fig. 4. Serving a 50 km radius with Super-PON.
Fig. 5.
Fig. 5. Super-PON architecture.
Fig. 6.
Fig. 6. CO reduction with Super-PON.
Fig. 7.
Fig. 7. Reduced infrastructure building costs with Super-PON.
Fig. 8.
Fig. 8. Normative Super-PON black link.
Fig. 9.
Fig. 9. Informative Super-PON black link implementation.
Fig. 10.
Fig. 10. Super-PON support for a multi-generation system.
Fig. 11.
Fig. 11. Super-PON wavelengths versus other PON technologies.
Fig. 12.
Fig. 12. Sensitivity penalty of two ONU transmitters.
Fig. 13.
Fig. 13. Raman penalty with C-band upstream and L-band downstream.
Fig. 14.
Fig. 14. Power levels with C-band upstream and L-band downstream.
Fig. 15.
Fig. 15. Raman penalty with L-band upstream and C-band downstream.
Fig. 16.
Fig. 16. Power levels with L-band upstream and C-band downstream.

Tables (4)

Tables Icon

Table 1. IEEE P802.3cs Wavelength Plan

Tables Icon

Table 2. Typical Loss of a 50 km Super-PON Access Link

Tables Icon

Table 3. Link and Receiver Assumptions

Tables Icon

Table 4. Transmitter Launch Power Levels

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A o n o f f , d B = [ 10 log 10 e ] 2 i = 1 N c h λ p u m p λ S t o k e s , i C R , i P S t o k e s , i 1 10 α d B , S t o k e s , i 10 L α d B , S t o k e s , i ,