Abstract

Because of the complexity of near infrared spectral data, effective strategies are necessary proposed for accurate quantitative analysis purpose. This work explores a new self-construction strategy for the arrangement of conventional near infrared two-dimensional spectra into new self-constructed three-dimensional spectra, and investigate the feasibility of N-way partial least squares combined with the new self-constructed three-dimensional near infrared spectra for obtaining accurate quantitative determination results. A proof-of-concept model system, the quantitative analysis of four components (moisture, oil, protein, and starch) in corn samples, was applied to evaluate the performance of the proposed strategy. The ability of the newly proposed approach to predict the target compounds was checked with test samples. The established models have good predictive power for the target compounds with acceptable values of Rp (range from 0.82 to 0.997) and RMSEP (range from 0.03 to 0.47). Compared with partial least squares method on pretreated near infrared spectra and N-way partial least squares method on the basis of near infrared self-constructed three-dimensional spectra, the proposed method is competitive.

© 2019 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Supplement 1       JNS896037 Supplemental Material - Supplemental material for N-way partial least squares combined with new self-construction strategy—A promising approach of using near infrared spectral data for quantitative determination of multiple compounds

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription