Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 27,
  • Issue 4,
  • pp. 302-313
  • (2019)

Rapid identification of Lactobacillus species using near infrared spectral features of bacterial colonies

Not Accessible

Your library or personal account may give you access

Abstract

The feasibility of rapid identification of Lactobacillus species using near-infrared spectral features coupled with chemometrics was investigated. First, bacterial colonies of 11 Lactobacillus strains covering four species (Lactobacillus casei, Lactobacillus reuteri, Lactobacillus brevis, and Lactobacillus fermentum) were cultured using the spread-plate technique. Near-infrared spectra data of the Lactobacillus species were collected directly from the bacterial colonies. Second, 10 wavenumbers were selected from the near-infrared spectra data using uninformative variables elimination and genetic algorithm, and calibration models based on the 10 selected wavenumbers were built using least squares support vector machine. The identification rates for the prediction set and validation set were 89.04 and 85%, respectively. Third, chemical groups of the Lactobacillus cells contributing to the identification of the Lactobacillus strains were identified using mid infrared. The results of mid infrared data analysis indicated that 9 chemical groups could be considered characteristics for categorizing the 11 Lactobacillus strains. The relationship between the 10 selected wavenumbers and identified chemical groups was identified, which supported the satisfactory performance of the least squares support vector machine calibration model. This study demonstrated that near-infrared spectral features of bacterial colonies could be used for Lactobacillus typing at the strain level.

© 2019 The Author(s)

PDF Article
More Like This
Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns

Agnieszka Suchwalko, Igor Buzalewicz, Alina Wieliczko, and Halina Podbielska
Opt. Express 21(9) 11322-11337 (2013)

Label-free identification of individual bacteria using Fourier transform light scattering

YoungJu Jo, JaeHwang Jung, Min-hyeok Kim, HyunJoo Park, Suk-Jo Kang, and YongKeun Park
Opt. Express 23(12) 15792-15805 (2015)

Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory

Euiwon Bae, Padmapriya P. Banada, Karleigh Huff, Arun K. Bhunia, J. Paul Robinson, and E. Daniel Hirleman
Appl. Opt. 46(17) 3639-3648 (2007)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental file.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.