Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 27,
  • Issue 4,
  • pp. 293-301
  • (2019)

Estimating dry matter and fat content in blocks of Swiss cheese during production using on-line near infrared spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Modern dairy factories produce thousands of cheese blocks per day. Cheese quality is partly defined by the concentration of dry matter and fat. In this study, we evaluated three different near infrared spectroscopy instruments for on-line determination of fat and dry matter in cheese blocks of approx. size 35 × 28 × 12 cm: scanning reflection (908–1676 nm), scanning interaction (760–1040 nm), and imaging interaction measurements (760–1040 nm). The near infrared measurements were performed on fresh cheese blocks in a pilot plant at three different critical control points (CCP): (CCP1) before pressing, (CCP2) after pressing, and (CCP3) after salting. A total of 160 cheeses from 10 production batches were measured. Whereas near infrared measurements were obtained from the surface of the cheese blocks, the reference analysis was done on a cross-section of the cheese blocks. In general, good results were obtained regressing the reference values onto the near infrared measurements using partial least squares regression. For example, using near infrared scanning reflection at CCP2 yielded root mean squared errors of cross-validation on 0.44% and 0.64% for fat and dry matter, respectively. Hence, surface chemistry of cheese blocks were representative for the average chemistry of the blocks. Furthermore, this study finds that it is possible to predict fat and dry matter at CCP3 based on near infrared measurements obtained at CCP1 earlier in the process. This enables improved control of the cheese making process, as it is possible to detect deviations from target quality early in the production process.

© 2019 The Author(s)

PDF Article
More Like This
Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy

Ye Yang, Olusola O. Soyemi, Peter J. Scott, Michelle R. Landry, Stuart M. C. Lee, Leah Stroud, and Babs R. Soller
Opt. Express 15(21) 13715-13730 (2007)

Optical properties of drying wood studied by time-resolved near-infrared spectroscopy

Keiji Konagaya, Tetsuya Inagaki, Ryunosuke Kitamura, and Satoru Tsuchikawa
Opt. Express 24(9) 9561-9573 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.