Abstract

A near infrared spectroscopy method combined with a random forest pruning algorithm based on margin optimization and principal component analysis (PCA-MORFP) was proposed to identify the origin of Angelica dahurica. One hundred and ninety-six samples of A. dahurica were collected from four original cultivation regions; their NIR diffuse reflectance spectra were measured by a custom-built near infrared spectrometer which works in the range of 900–1700 nm with a resolution (full width at half maximum [FWHM]) of 4 nm. Combinations of Savitzky–Golay smoothing, standard normal variates, and first derivative transformations were used to preprocess the spectral data. Then the PCA-MORFP classification model was constructed. Meanwhile, the was compared with other classifying approaches, including: principal component analysis-K-nearest neighbor, principal component analysis-support vector machine, and principal component analysis-random forest. Experimental results showed that the PCA-MORFP achieved the best prediction performance over other compared methods. The recognition rates of the PCA-MORFP model were up to 100% for the calibration set and 98.2% for the prediction set, respectively. The method provides a rapid and convenient detection technique for the origin identification of A. dahurica.

© 2019 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription