Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 24,
  • Issue 6,
  • pp. 571-585
  • (2016)

Determination of Optical Parameters and Moisture Content of Wood with Visible–Near Infrared Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

We used the Kubelka-Munk theory equations for calculating the absorption coefficient (Kλ), the scattering coefficient (Sλ), the transport absorption (σλa), the reduced scattering coefficient [σλs(1 – g)] and the penetration depth (δλ) from visible-near infrared reflectance spectra acquired over thin samples of quaking aspen and black spruce conditioned at three different moisture levels. The computed absorption and scattering coefficients varied from 0.1 mm−1 to 4.0 mm−1 and from 5.5 mm−1 to 10.0 mm−1, respectively. The absorption coefficients varied according to the absorption band, but the scattering coefficients decreased slowly towards high wavelengths. The sample moisture content was then estimated using the partial least squares (PLS) regression method from the Kλ and/or Sλ spectra, and the resulting PLS models were compared to those obtained with raw and transformed [multiplicative scatter corrected (MSC), first and second derivative] absorption spectra. The best PLS models for black spruce, quaking aspen and both species were obtained when only the 800–1800 nm range was used with the raw or MSC spectra. They led to a root mean square error of cross validation (RMSECV) of 1.40%, 1.09% and 1.23%, respectively, and to a coefficient of determination (R2CV) higher than 0.94. We also found that the Kλ spectra between 800 nm and 1800 nm can provide PLS models having an acceptable accuracy for moisture content estimation (R2CV = 0.83 and RMSECV = 2.32%), regardless of the species.

© 2016 The Author(s)

PDF Article
More Like This
Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy

Cosimo D'Andrea, Austin Nevin, Andrea Farina, Andrea Bassi, and Rinaldo Cubeddu
Appl. Opt. 48(4) B87-B93 (2009)

Optical properties of drying wood studied by time-resolved near-infrared spectroscopy

Keiji Konagaya, Tetsuya Inagaki, Ryunosuke Kitamura, and Satoru Tsuchikawa
Opt. Express 24(9) 9561-9573 (2016)

Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy

Ryunosuke Kitamura, Tetsuya Inagaki, and Satoru Tsuchikawa
Opt. Express 24(4) 3999-4009 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.