Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 24,
  • Issue 2,
  • pp. 109-117
  • (2016)

LOCAL Regression Algorithm Improves near Infrared Spectroscopy Predictions When the Target Constituent Evolves in Breeding Populations

Not Accessible

Your library or personal account may give you access

Abstract

The CGIAR Harvest Plus Challenge Program began in the mid-2000s to support the genetic improvement of nutritional quality in various crops, including the carotenoids content of cassava roots. Successful conventional breeding requires a large number of segregating progenies. However, only a few samples can be quantified by high performance liquid chromatography each day for total carotenoids (TCC) and β-carotene (TBC) contents, limiting the gains from breeding. This study describes the usefulness of near infrared (NIR) spectroscopy and the efficiency of a large database coupled to a LOCAL regression algorithm to reach accurate TCC/TBC predictions on fresh cassava roots. The cassava database (6026 samples) was built over six years. TCC values ranged from 0.11 μg g−1 to 29.0 μg g−1, whereas TBC ranged from negligible values up to 20.1 μg g−1. All values were measured and expressed on a fresh weight basis. Between 2009 and 2014 increases in TCC and TBC were 86% and 122%, respectively. A comparison of calibrations using partial least squares (PLS) regression and LOCAL regression was done. The standard error of prediction were 1.82 μg g−1 for TCC and 1.28 μg g−1 for TBC using PLS model and 1.38 μg g−1 and 1.02 μg g−1, respectively, using LOCAL regression. The specificity of the data, with increasing content of the constituent of interest year after year, clearly showed the limitation of the classical partial least squares regression approach. The LOCAL regression algorithm takes advantage of large databases; this study highlighted the efficiency of this concept. NIR spectroscopy coupled to LOCAL regression led to efficient models for breeding programmes aiming at increasing carotenoids content in fresh cassava roots. NIR spectroscopy can also be used to predict other important constituents such as dry matter content and cyanogenic glucosides.

© 2016 The Author(s)

PDF Article
More Like This
Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy

Yongni Shao, Yong He, and Jingyuan Mao
Appl. Opt. 46(25) 6391-6396 (2007)

Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA

Jinming Liu, Nan Li, Feng Zhen, Yonghua Xu, Wenzhe Li, and Yong Sun
Appl. Opt. 58(18) 5090-5097 (2019)

Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model

Lili Xu, Jinming Liu, Chunqi Wang, Zhijiang Li, and Dongjie Zhang
Appl. Opt. 62(11) 2756-2765 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.