Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fractional order modeling and recognition of nitrogen content level of rubber tree foliage

Not Accessible

Your library or personal account may give you access

Abstract

The Nondestructive estimation method of nitrogen content level of rubber tree foliage was investigated utilizing near infrared (NIR) spectroscopy and Grünwald-Letnikov fractional calculus. Four models, including partial least squares discriminant analysis (PLS-DA), support vector machine (SVM), extreme learning machine (ELM) and convolutional neural networks (CNN) are applied to construct the nitrogen estimation model. The results show that models established by 0.6-order or 1.6-order spectra achieved better performance than models with integer-order spectra. Afterward, the successive projections algorithm (SPA) is applied to reduce the number of variables, which is critical for developing portable nitrogen-level detector devices for rubber trees. The PLS-DA method achieved the best performance with an optimal recognition rate (97.73%) using the 1.6-order spectra. The results suggest that nitrogen content of rubber trees could be reliably estimated by fractional calculus processed NIR spectra. The method proposed here has a wide range of applicability and can provide more useful information for NIR spectral analysis in agriculture as well as other fields.

© 2020 The Author(s)

PDF Article
More Like This
Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice

Jian Yang, Jia Sun, Lin Du, Biwu Chen, Zhenbing Zhang, Shuo Shi, and Wei Gong
Opt. Express 25(4) 3743-3755 (2017)

Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model

Lili Xu, Jinming Liu, Chunqi Wang, Zhijiang Li, and Dongjie Zhang
Appl. Opt. 62(11) 2756-2765 (2023)

Nondestructive nitrogen content estimation in tomato plant leaves by Vis-NIR hyperspectral imaging and regression data models

Razieh Pourdarbani, Sajad Sabzi, Mohammad H. Rohban, Ginés García-Mateos, and Juan I. Arribas
Appl. Opt. 60(30) 9560-9569 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.