Abstract

Agave tequilana is a potential biofuel crop, for which the characters of juice total soluble sugar content (TSS), dry matter content (DM), cellulose, hemicellulose and lignin content are quality criteria. Spectra of leaves were obtained using a hand-held silicon photodiode array (Si PDA)-based spectrometer with a wavelength range of 300–1100 nm and an InGaAs-based Fourier transform near infrared (FT-NIR) spectrometer with a wavelength range of 1100–2500 nm. Fresh leaves were harvested at different maturity stages, in different seasons and from two locations in Queensland during 2012–2014. Partial least square regression models were developed for DM and TSS of fresh leaf, and for cellulose, hemicellulose and lignin of dried material, with models tested on populations of independent samples collected in different years, seasons and locations. Prediction statistics for DM of fresh leaf using the Si PDA spectrometer (729–975 nm) were r2 = 0.49–0.87 and root mean square error of prediction (RMSEP) = 2.36–1.44%, while with the use of the FT-NIR spectrometer, the prediction statistics were r2 = 0.53–0.66 and RMSEP = 2.63–2.18% (across different years, seasons and locations). Prediction statistics for TSS in fresh leaf using the Si PDA spectrometer (729–975 nm) were r2 = 0.53–0.69 and RMSEP = 1.70–1.91%, with poorer results obtained using the FT-NIR spectrometer (r2 = 0.33–0.56; RMSEP = 1.88–2.45%). With increased sample diversity in the calibration set, NIR technology is recommended for estimation of DM and TSS in fresh Agave leaves. FT-NIR-based prediction of cellulose, hemicellulose or lignin of independent sets (of different years or cultivars) was unsatisfactory, with r2 < 0.75 and bias >10% of mean. These results may be improved with increased sample range, and attention to laboratory (reference method) error. However, leaf cellulose and hemicellulose content may be more easily estimated through correlation to leaf DM level (R2 of 0.77 across all sampling events).

© 2016 The Author(s)

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Chambers, and J.M. Holtum. Feasibility of Agave as a Feedstock for Biofuel Production in Australia. Australian Government, Barton, ACT, p. 74 (2010).
  2. K. Norris, and J. Hart. “Direct spectrophotometric determination of moisture content of grain and seeds”, J. Near Infrared Spectrosc.  4, 23 (1996). doi: http://dx.doi.org/10.1255/jnirs.940
  3. I. Ben-Gera, and K.H. Norris. “Direct spectrophotometric determination of fat and moisture in meat products”, J. Food Sci.  33, 64 (1968). doi: http://dx.doi.org/10.1111/j.1365-2621.1968.tb00885.x
  4. S.S. Kelley, R.M. Rowell, M. Davis, and C.K. Jurich, and R. Ibach. “Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry”, Biomass Bioenergy  27, 77 (2004). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.biombioe.2003.11.005
  5. H. Cen, and Y. He. “Theory and application of near infrared reflectance spectroscopy in determination of food quality”, Trends Food Sci. Technol.  18, 72 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.tifs.2006.09.003
  6. K. Walsh and M. Golic, and C. Greensill. “Sorting of fruit using near infrared spectroscopy: Application to range of fruit and vegetables for soluble solids and dry matter content”, J. Near Infrared Spectrosc.  12, 141 (2004). doi: http://dx.doi.org/10.1255/jnirs.419
  7. P.P. Subedi and K.B. Walsh, and G. Owens. “Prediction of mango eating quality at harvest using shortwave near infrared spectrometry”, Postharvest Biol. Technol.  43, 326 (2007). doi: http://dx.doi.org/10.1016/j.postharvbio.2006.09.012
  8. S. Jin, and H. Chen. “Near-infrared analysis of the chemical composition of rice straw”, Ind. Crops Prod.  26, 207 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.indcrop.2007.03.004
  9. P. Jones, L. Schimleck, G. Peter, and R. Daniels, and A. Clark. “Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy”, Wood Sci. Technol.  40, 709 (2006). doi: http://dx.doi.org/10.1007/s00226-006-0085-6
  10. G.M. Downes, C.E. Harwood, J. Wiedemann, N. Ebdon, and H. Bond, and R. Meder. “Radial variation in kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy”, Can. J. For. Res.  42, 1577 (2012). doi: http://dx.doi.org/10.1139/x2012-083
  11. J. Workman. “An introduction to near infrared spectroscopy” , spectroscopyNOW.com (2014). http://www.spectroscopynow.com/details/education/sepspec1881education/An-Introduction-to-Near-Infrared-Spectroscopy.html?tzcheck=1,1,1,1,1,1&&tzcheck=1
  12. F.E. Barton, J.D. Bargeron, G.R. Gamble, and D.L. McAlister, and E. Hequet. “Analysis of sticky cotton by near-infrared spectroscopy”, Appl. Spectrosc.  59, 1388 (2005). doi: http://dx.doi.org/10.1366/000370205774783214
  13. C.V. Greensill, and K.B. Walsh. “Optimization of instrumentation precision and wavelength resolution for the performance of NIR calibrations of sucrose in a water–cellulose matrix”, Appl. Spectrosc.  54, 426 (2000). doi: http://dx.doi.org/10.1366/0003702001949528
  14. A. Sluiter, C. Ruiz, and C. Scarlata, and D. Templeton. “Determination of extractives in biomass”, in Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden, CO (2008).
  15. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, and D. Crocker. “Determination of structural carbohydrates and lignin in biomass”, in Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO (2008).
  16. J.A. Guthrie, K.B. Walsh, and D.J. Reid. and C.J. Liebenberg. “Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development”, Aust. J. Agric. Res.  56, 405 (2005). doi: http://dx.doi.org/10.1071/AR04257
  17. W. He, and H. Hu. “Prediction of hot-water soluble extractive, pentosan and cellulose content of various wood species using FT-NIR spectroscopy”, Bioresour. Technol.  140, 299 (2013). doi: http://dx.doi.org/10.1016//j.biortech.2013.04.115
  18. L. Liu, X.P. Ye, and A.R. Womac, and S. Sokhansanj. “Variability of biomass chemical composition and rapid analysis using FT-NIR techniques”, Carbohydr. Polym.  81, 820 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.03.058
  19. F.S. Poke, and C.A. Raymond. “Predicting extractives, lignin, and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptus globulus”, J. Wood Chem. Technol.  26, 187 (2006). doi: http://dx.doi.org/10.1080/02773810600732708

2013 (1)

W. He, and H. Hu. “Prediction of hot-water soluble extractive, pentosan and cellulose content of various wood species using FT-NIR spectroscopy”, Bioresour. Technol.  140, 299 (2013). doi: http://dx.doi.org/10.1016//j.biortech.2013.04.115

W. He, and H. Hu. “Prediction of hot-water soluble extractive, pentosan and cellulose content of various wood species using FT-NIR spectroscopy”, Bioresour. Technol.  140, 299 (2013). doi: http://dx.doi.org/10.1016//j.biortech.2013.04.115

2012 (1)

G.M. Downes, C.E. Harwood, J. Wiedemann, N. Ebdon, and H. Bond, and R. Meder. “Radial variation in kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy”, Can. J. For. Res.  42, 1577 (2012). doi: http://dx.doi.org/10.1139/x2012-083

G.M. Downes, C.E. Harwood, J. Wiedemann, N. Ebdon, and H. Bond, and R. Meder. “Radial variation in kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy”, Can. J. For. Res.  42, 1577 (2012). doi: http://dx.doi.org/10.1139/x2012-083

2010 (1)

L. Liu, X.P. Ye, and A.R. Womac, and S. Sokhansanj. “Variability of biomass chemical composition and rapid analysis using FT-NIR techniques”, Carbohydr. Polym.  81, 820 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.03.058

L. Liu, X.P. Ye, and A.R. Womac, and S. Sokhansanj. “Variability of biomass chemical composition and rapid analysis using FT-NIR techniques”, Carbohydr. Polym.  81, 820 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.03.058

2007 (3)

H. Cen, and Y. He. “Theory and application of near infrared reflectance spectroscopy in determination of food quality”, Trends Food Sci. Technol.  18, 72 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.tifs.2006.09.003

H. Cen, and Y. He. “Theory and application of near infrared reflectance spectroscopy in determination of food quality”, Trends Food Sci. Technol.  18, 72 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.tifs.2006.09.003

P.P. Subedi and K.B. Walsh, and G. Owens. “Prediction of mango eating quality at harvest using shortwave near infrared spectrometry”, Postharvest Biol. Technol.  43, 326 (2007). doi: http://dx.doi.org/10.1016/j.postharvbio.2006.09.012

P.P. Subedi and K.B. Walsh, and G. Owens. “Prediction of mango eating quality at harvest using shortwave near infrared spectrometry”, Postharvest Biol. Technol.  43, 326 (2007). doi: http://dx.doi.org/10.1016/j.postharvbio.2006.09.012

S. Jin, and H. Chen. “Near-infrared analysis of the chemical composition of rice straw”, Ind. Crops Prod.  26, 207 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.indcrop.2007.03.004

S. Jin, and H. Chen. “Near-infrared analysis of the chemical composition of rice straw”, Ind. Crops Prod.  26, 207 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.indcrop.2007.03.004

2006 (2)

P. Jones, L. Schimleck, G. Peter, and R. Daniels, and A. Clark. “Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy”, Wood Sci. Technol.  40, 709 (2006). doi: http://dx.doi.org/10.1007/s00226-006-0085-6

P. Jones, L. Schimleck, G. Peter, and R. Daniels, and A. Clark. “Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy”, Wood Sci. Technol.  40, 709 (2006). doi: http://dx.doi.org/10.1007/s00226-006-0085-6

F.S. Poke, and C.A. Raymond. “Predicting extractives, lignin, and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptus globulus”, J. Wood Chem. Technol.  26, 187 (2006). doi: http://dx.doi.org/10.1080/02773810600732708

F.S. Poke, and C.A. Raymond. “Predicting extractives, lignin, and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptus globulus”, J. Wood Chem. Technol.  26, 187 (2006). doi: http://dx.doi.org/10.1080/02773810600732708

2005 (2)

F.E. Barton, J.D. Bargeron, G.R. Gamble, and D.L. McAlister, and E. Hequet. “Analysis of sticky cotton by near-infrared spectroscopy”, Appl. Spectrosc.  59, 1388 (2005). doi: http://dx.doi.org/10.1366/000370205774783214

F.E. Barton, J.D. Bargeron, G.R. Gamble, and D.L. McAlister, and E. Hequet. “Analysis of sticky cotton by near-infrared spectroscopy”, Appl. Spectrosc.  59, 1388 (2005). doi: http://dx.doi.org/10.1366/000370205774783214

J.A. Guthrie, K.B. Walsh, and D.J. Reid. and C.J. Liebenberg. “Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development”, Aust. J. Agric. Res.  56, 405 (2005). doi: http://dx.doi.org/10.1071/AR04257

J.A. Guthrie, K.B. Walsh, and D.J. Reid. and C.J. Liebenberg. “Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development”, Aust. J. Agric. Res.  56, 405 (2005). doi: http://dx.doi.org/10.1071/AR04257

2004 (2)

S.S. Kelley, R.M. Rowell, M. Davis, and C.K. Jurich, and R. Ibach. “Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry”, Biomass Bioenergy  27, 77 (2004). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.biombioe.2003.11.005

S.S. Kelley, R.M. Rowell, M. Davis, and C.K. Jurich, and R. Ibach. “Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry”, Biomass Bioenergy  27, 77 (2004). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.biombioe.2003.11.005

K. Walsh and M. Golic, and C. Greensill. “Sorting of fruit using near infrared spectroscopy: Application to range of fruit and vegetables for soluble solids and dry matter content”, J. Near Infrared Spectrosc.  12, 141 (2004). doi: http://dx.doi.org/10.1255/jnirs.419

K. Walsh and M. Golic, and C. Greensill. “Sorting of fruit using near infrared spectroscopy: Application to range of fruit and vegetables for soluble solids and dry matter content”, J. Near Infrared Spectrosc.  12, 141 (2004). doi: http://dx.doi.org/10.1255/jnirs.419

2000 (1)

1996 (1)

1968 (1)

I. Ben-Gera, and K.H. Norris. “Direct spectrophotometric determination of fat and moisture in meat products”, J. Food Sci.  33, 64 (1968). doi: http://dx.doi.org/10.1111/j.1365-2621.1968.tb00885.x

I. Ben-Gera, and K.H. Norris. “Direct spectrophotometric determination of fat and moisture in meat products”, J. Food Sci.  33, 64 (1968). doi: http://dx.doi.org/10.1111/j.1365-2621.1968.tb00885.x

Bargeron, J.D.

Barton, F.E.

Ben-Gera, I.

I. Ben-Gera, and K.H. Norris. “Direct spectrophotometric determination of fat and moisture in meat products”, J. Food Sci.  33, 64 (1968). doi: http://dx.doi.org/10.1111/j.1365-2621.1968.tb00885.x

Bond, H.

G.M. Downes, C.E. Harwood, J. Wiedemann, N. Ebdon, and H. Bond, and R. Meder. “Radial variation in kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy”, Can. J. For. Res.  42, 1577 (2012). doi: http://dx.doi.org/10.1139/x2012-083

Cen, H.

H. Cen, and Y. He. “Theory and application of near infrared reflectance spectroscopy in determination of food quality”, Trends Food Sci. Technol.  18, 72 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.tifs.2006.09.003

Chambers, D.

D. Chambers, and J.M. Holtum. Feasibility of Agave as a Feedstock for Biofuel Production in Australia. Australian Government, Barton, ACT, p. 74 (2010).

Chen, H.

S. Jin, and H. Chen. “Near-infrared analysis of the chemical composition of rice straw”, Ind. Crops Prod.  26, 207 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.indcrop.2007.03.004

Clark, A.

P. Jones, L. Schimleck, G. Peter, and R. Daniels, and A. Clark. “Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy”, Wood Sci. Technol.  40, 709 (2006). doi: http://dx.doi.org/10.1007/s00226-006-0085-6

Crocker, D.

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, and D. Crocker. “Determination of structural carbohydrates and lignin in biomass”, in Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO (2008).

Daniels, R.

P. Jones, L. Schimleck, G. Peter, and R. Daniels, and A. Clark. “Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy”, Wood Sci. Technol.  40, 709 (2006). doi: http://dx.doi.org/10.1007/s00226-006-0085-6

Davis, M.

S.S. Kelley, R.M. Rowell, M. Davis, and C.K. Jurich, and R. Ibach. “Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry”, Biomass Bioenergy  27, 77 (2004). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.biombioe.2003.11.005

Downes, G.M.

G.M. Downes, C.E. Harwood, J. Wiedemann, N. Ebdon, and H. Bond, and R. Meder. “Radial variation in kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy”, Can. J. For. Res.  42, 1577 (2012). doi: http://dx.doi.org/10.1139/x2012-083

Ebdon, N.

G.M. Downes, C.E. Harwood, J. Wiedemann, N. Ebdon, and H. Bond, and R. Meder. “Radial variation in kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy”, Can. J. For. Res.  42, 1577 (2012). doi: http://dx.doi.org/10.1139/x2012-083

Gamble, G.R.

Golic, M.

Greensill, C.

Greensill, C.V.

Guthrie, J.A.

J.A. Guthrie, K.B. Walsh, and D.J. Reid. and C.J. Liebenberg. “Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development”, Aust. J. Agric. Res.  56, 405 (2005). doi: http://dx.doi.org/10.1071/AR04257

Hames, B.

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, and D. Crocker. “Determination of structural carbohydrates and lignin in biomass”, in Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO (2008).

Hart, J.

Harwood, C.E.

G.M. Downes, C.E. Harwood, J. Wiedemann, N. Ebdon, and H. Bond, and R. Meder. “Radial variation in kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy”, Can. J. For. Res.  42, 1577 (2012). doi: http://dx.doi.org/10.1139/x2012-083

He, W.

W. He, and H. Hu. “Prediction of hot-water soluble extractive, pentosan and cellulose content of various wood species using FT-NIR spectroscopy”, Bioresour. Technol.  140, 299 (2013). doi: http://dx.doi.org/10.1016//j.biortech.2013.04.115

He, Y.

H. Cen, and Y. He. “Theory and application of near infrared reflectance spectroscopy in determination of food quality”, Trends Food Sci. Technol.  18, 72 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.tifs.2006.09.003

Hequet, E.

Holtum, J.M.

D. Chambers, and J.M. Holtum. Feasibility of Agave as a Feedstock for Biofuel Production in Australia. Australian Government, Barton, ACT, p. 74 (2010).

Hu, H.

W. He, and H. Hu. “Prediction of hot-water soluble extractive, pentosan and cellulose content of various wood species using FT-NIR spectroscopy”, Bioresour. Technol.  140, 299 (2013). doi: http://dx.doi.org/10.1016//j.biortech.2013.04.115

Ibach, R.

S.S. Kelley, R.M. Rowell, M. Davis, and C.K. Jurich, and R. Ibach. “Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry”, Biomass Bioenergy  27, 77 (2004). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.biombioe.2003.11.005

Jin, S.

S. Jin, and H. Chen. “Near-infrared analysis of the chemical composition of rice straw”, Ind. Crops Prod.  26, 207 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.indcrop.2007.03.004

Jones, P.

P. Jones, L. Schimleck, G. Peter, and R. Daniels, and A. Clark. “Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy”, Wood Sci. Technol.  40, 709 (2006). doi: http://dx.doi.org/10.1007/s00226-006-0085-6

Jurich, C.K.

S.S. Kelley, R.M. Rowell, M. Davis, and C.K. Jurich, and R. Ibach. “Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry”, Biomass Bioenergy  27, 77 (2004). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.biombioe.2003.11.005

Kelley, S.S.

S.S. Kelley, R.M. Rowell, M. Davis, and C.K. Jurich, and R. Ibach. “Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry”, Biomass Bioenergy  27, 77 (2004). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.biombioe.2003.11.005

Liebenberg, C.J.

J.A. Guthrie, K.B. Walsh, and D.J. Reid. and C.J. Liebenberg. “Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development”, Aust. J. Agric. Res.  56, 405 (2005). doi: http://dx.doi.org/10.1071/AR04257

Liu, L.

L. Liu, X.P. Ye, and A.R. Womac, and S. Sokhansanj. “Variability of biomass chemical composition and rapid analysis using FT-NIR techniques”, Carbohydr. Polym.  81, 820 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.03.058

McAlister, D.L.

Meder, R.

G.M. Downes, C.E. Harwood, J. Wiedemann, N. Ebdon, and H. Bond, and R. Meder. “Radial variation in kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy”, Can. J. For. Res.  42, 1577 (2012). doi: http://dx.doi.org/10.1139/x2012-083

Norris, K.

Norris, K.H.

I. Ben-Gera, and K.H. Norris. “Direct spectrophotometric determination of fat and moisture in meat products”, J. Food Sci.  33, 64 (1968). doi: http://dx.doi.org/10.1111/j.1365-2621.1968.tb00885.x

Owens, G.

P.P. Subedi and K.B. Walsh, and G. Owens. “Prediction of mango eating quality at harvest using shortwave near infrared spectrometry”, Postharvest Biol. Technol.  43, 326 (2007). doi: http://dx.doi.org/10.1016/j.postharvbio.2006.09.012

Peter, G.

P. Jones, L. Schimleck, G. Peter, and R. Daniels, and A. Clark. “Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy”, Wood Sci. Technol.  40, 709 (2006). doi: http://dx.doi.org/10.1007/s00226-006-0085-6

Poke, F.S.

F.S. Poke, and C.A. Raymond. “Predicting extractives, lignin, and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptus globulus”, J. Wood Chem. Technol.  26, 187 (2006). doi: http://dx.doi.org/10.1080/02773810600732708

Raymond, C.A.

F.S. Poke, and C.A. Raymond. “Predicting extractives, lignin, and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptus globulus”, J. Wood Chem. Technol.  26, 187 (2006). doi: http://dx.doi.org/10.1080/02773810600732708

Reid, D.J.

J.A. Guthrie, K.B. Walsh, and D.J. Reid. and C.J. Liebenberg. “Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development”, Aust. J. Agric. Res.  56, 405 (2005). doi: http://dx.doi.org/10.1071/AR04257

Rowell, R.M.

S.S. Kelley, R.M. Rowell, M. Davis, and C.K. Jurich, and R. Ibach. “Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry”, Biomass Bioenergy  27, 77 (2004). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.biombioe.2003.11.005

Ruiz, C.

A. Sluiter, C. Ruiz, and C. Scarlata, and D. Templeton. “Determination of extractives in biomass”, in Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden, CO (2008).

Ruiz, R.

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, and D. Crocker. “Determination of structural carbohydrates and lignin in biomass”, in Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO (2008).

Scarlata, C.

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, and D. Crocker. “Determination of structural carbohydrates and lignin in biomass”, in Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO (2008).

A. Sluiter, C. Ruiz, and C. Scarlata, and D. Templeton. “Determination of extractives in biomass”, in Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden, CO (2008).

Schimleck, L.

P. Jones, L. Schimleck, G. Peter, and R. Daniels, and A. Clark. “Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy”, Wood Sci. Technol.  40, 709 (2006). doi: http://dx.doi.org/10.1007/s00226-006-0085-6

Sluiter, A.

A. Sluiter, C. Ruiz, and C. Scarlata, and D. Templeton. “Determination of extractives in biomass”, in Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden, CO (2008).

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, and D. Crocker. “Determination of structural carbohydrates and lignin in biomass”, in Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO (2008).

Sluiter, J.

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, and D. Crocker. “Determination of structural carbohydrates and lignin in biomass”, in Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO (2008).

Sokhansanj, S.

L. Liu, X.P. Ye, and A.R. Womac, and S. Sokhansanj. “Variability of biomass chemical composition and rapid analysis using FT-NIR techniques”, Carbohydr. Polym.  81, 820 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.03.058

Subedi, P.P.

P.P. Subedi and K.B. Walsh, and G. Owens. “Prediction of mango eating quality at harvest using shortwave near infrared spectrometry”, Postharvest Biol. Technol.  43, 326 (2007). doi: http://dx.doi.org/10.1016/j.postharvbio.2006.09.012

Templeton, D.

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, and D. Crocker. “Determination of structural carbohydrates and lignin in biomass”, in Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO (2008).

A. Sluiter, C. Ruiz, and C. Scarlata, and D. Templeton. “Determination of extractives in biomass”, in Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden, CO (2008).

Walsh, K.

Walsh, K.B.

P.P. Subedi and K.B. Walsh, and G. Owens. “Prediction of mango eating quality at harvest using shortwave near infrared spectrometry”, Postharvest Biol. Technol.  43, 326 (2007). doi: http://dx.doi.org/10.1016/j.postharvbio.2006.09.012

J.A. Guthrie, K.B. Walsh, and D.J. Reid. and C.J. Liebenberg. “Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development”, Aust. J. Agric. Res.  56, 405 (2005). doi: http://dx.doi.org/10.1071/AR04257

C.V. Greensill, and K.B. Walsh. “Optimization of instrumentation precision and wavelength resolution for the performance of NIR calibrations of sucrose in a water–cellulose matrix”, Appl. Spectrosc.  54, 426 (2000). doi: http://dx.doi.org/10.1366/0003702001949528

Wiedemann, J.

G.M. Downes, C.E. Harwood, J. Wiedemann, N. Ebdon, and H. Bond, and R. Meder. “Radial variation in kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy”, Can. J. For. Res.  42, 1577 (2012). doi: http://dx.doi.org/10.1139/x2012-083

Womac, A.R.

L. Liu, X.P. Ye, and A.R. Womac, and S. Sokhansanj. “Variability of biomass chemical composition and rapid analysis using FT-NIR techniques”, Carbohydr. Polym.  81, 820 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.03.058

Workman, J.

J. Workman. “An introduction to near infrared spectroscopy” , spectroscopyNOW.com (2014). http://www.spectroscopynow.com/details/education/sepspec1881education/An-Introduction-to-Near-Infrared-Spectroscopy.html?tzcheck=1,1,1,1,1,1&&tzcheck=1

Ye, X.P.

L. Liu, X.P. Ye, and A.R. Womac, and S. Sokhansanj. “Variability of biomass chemical composition and rapid analysis using FT-NIR techniques”, Carbohydr. Polym.  81, 820 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.03.058

Appl. Spectrosc. (2)

Aust. J. Agric. Res. (1)

J.A. Guthrie, K.B. Walsh, and D.J. Reid. and C.J. Liebenberg. “Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development”, Aust. J. Agric. Res.  56, 405 (2005). doi: http://dx.doi.org/10.1071/AR04257

Biomass Bioenergy (1)

S.S. Kelley, R.M. Rowell, M. Davis, and C.K. Jurich, and R. Ibach. “Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry”, Biomass Bioenergy  27, 77 (2004). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.biombioe.2003.11.005

Bioresour. Technol. (1)

W. He, and H. Hu. “Prediction of hot-water soluble extractive, pentosan and cellulose content of various wood species using FT-NIR spectroscopy”, Bioresour. Technol.  140, 299 (2013). doi: http://dx.doi.org/10.1016//j.biortech.2013.04.115

Can. J. For. Res. (1)

G.M. Downes, C.E. Harwood, J. Wiedemann, N. Ebdon, and H. Bond, and R. Meder. “Radial variation in kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy”, Can. J. For. Res.  42, 1577 (2012). doi: http://dx.doi.org/10.1139/x2012-083

Carbohydr. Polym. (1)

L. Liu, X.P. Ye, and A.R. Womac, and S. Sokhansanj. “Variability of biomass chemical composition and rapid analysis using FT-NIR techniques”, Carbohydr. Polym.  81, 820 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.03.058

Ind. Crops Prod. (1)

S. Jin, and H. Chen. “Near-infrared analysis of the chemical composition of rice straw”, Ind. Crops Prod.  26, 207 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.indcrop.2007.03.004

J. Food Sci. (1)

I. Ben-Gera, and K.H. Norris. “Direct spectrophotometric determination of fat and moisture in meat products”, J. Food Sci.  33, 64 (1968). doi: http://dx.doi.org/10.1111/j.1365-2621.1968.tb00885.x

J. Near Infrared Spectrosc. (2)

J. Wood Chem. Technol. (1)

F.S. Poke, and C.A. Raymond. “Predicting extractives, lignin, and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptus globulus”, J. Wood Chem. Technol.  26, 187 (2006). doi: http://dx.doi.org/10.1080/02773810600732708

Postharvest Biol. Technol. (1)

P.P. Subedi and K.B. Walsh, and G. Owens. “Prediction of mango eating quality at harvest using shortwave near infrared spectrometry”, Postharvest Biol. Technol.  43, 326 (2007). doi: http://dx.doi.org/10.1016/j.postharvbio.2006.09.012

Trends Food Sci. Technol. (1)

H. Cen, and Y. He. “Theory and application of near infrared reflectance spectroscopy in determination of food quality”, Trends Food Sci. Technol.  18, 72 (2007). doi: http://dx.doi.org/http://dx.doi.org/10.1016/j.tifs.2006.09.003

Wood Sci. Technol. (1)

P. Jones, L. Schimleck, G. Peter, and R. Daniels, and A. Clark. “Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy”, Wood Sci. Technol.  40, 709 (2006). doi: http://dx.doi.org/10.1007/s00226-006-0085-6

Other (4)

D. Chambers, and J.M. Holtum. Feasibility of Agave as a Feedstock for Biofuel Production in Australia. Australian Government, Barton, ACT, p. 74 (2010).

A. Sluiter, C. Ruiz, and C. Scarlata, and D. Templeton. “Determination of extractives in biomass”, in Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden, CO (2008).

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, and D. Crocker. “Determination of structural carbohydrates and lignin in biomass”, in Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO (2008).

J. Workman. “An introduction to near infrared spectroscopy” , spectroscopyNOW.com (2014). http://www.spectroscopynow.com/details/education/sepspec1881education/An-Introduction-to-Near-Infrared-Spectroscopy.html?tzcheck=1,1,1,1,1,1&&tzcheck=1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.