Abstract

Near infrared (NIR) spectra of wood and wood products contain information regarding their chemical composition and molecular structure. Both influence physical properties and performance, however, at present, this information is under-utilised in research and industry. Presently NIR spectroscopy is mainly used following the explorative approach, by which the contents of chemical components and physico–chemical as well as mechanical properties of the samples of interest are determined by applying multivariate statistical methods on the spectral data. Concrete hypotheses or prior knowledge on the chemistry and structure of the sample—exceeding that of reference data—are not necessary to build such multivariate models. However, to understand the underlying chemistry, knowledge on the chemical/functional groups that absorb at distinct wavelengths is indispensable and the assignment of NIR bands is necessary. Band assignment is an interesting and important part of spectroscopy that allows conclusions to be drawn on the chemistry and physico–chemical properties of samples. To summarise current knowledge on this topic, 70 years of NIR band assignment literature for wood and wood components were reviewed. In addition, preliminary results of ongoing investigations that also led to new assignments were included for discussion. Furthermore, some basic considerations on the interactions of NIR radiation with the inhomogeneous, anisotropic and porous structure of wood, and what impact this structure has on information contained in the spectra, are presented. In addition, the influence of common data (pre)-processing methods on the position of NIR bands is discussed. For more conclusive band assignments, it is recommended that wood is separated into its components. However, this approach may lead to misinterpretations when evaluation methods other than direct comparison of spectra are used, because isolation and purification of wood components is difficult and may lead to chemical and structural alterations when compared to the native state. Furthermore, “pure” components have more distinct and symmetric bands that influence the shape of the spectra. This extended review provides the reader with a comprehensive summary of NIR bands, as well as some practical considerations important for the application of NIR to wood.

© 2011 IM Publications LLP

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Herschel, , “Experiments on the refrangibility of the invisible rays of the sun”, Philos. Trans. R. Soc.  90, 284 (1800). doi: 10.1098/rstl.1800.0015
  2. W. Herschel, , “Experiments on the solar and on the terrestrial rays that occasion heat; with a comparative view of the laws to which light and heat, or rather the rays which occasion them, are subject, in order to determine whether they are the same, or different. Part I”, Philos. Trans. R. Soc.  90, 293 (1800). doi: 10.1098/rstl.1800.0016
  3. W. Herschel, , “Experiments on the solar and on the terrestrial rays that occasion heat; with a comparative view of the laws to which light and heat, or rather the rays which occasion them, are subject, in order to determine whether they are the same, or different. Part II”, Philos. Trans. R. Soc.  90, 437 (1800). doi: 10.1098/rstl.1800.0020
  4. W. Herschel, , “Herschel's paper”, J. Near Infrared Spectrosc.  8(2), 75 (2000).
  5. W. Herschel, , “Investigation of the powers of the prismatic colours to heat and illuminate objects; with remarks, that prove the different refrangibility of radiant heat. To which is added, an inquiry into the method of viewing the sun advantageously, with telescopes of large apertures and high magnifying powers”, Philos. Trans. R. Soc.  90, 255 (1800). doi: 10.1098/rstl.1800.0014
  6. O.H. Wheeler, , “Near infrared spectra of organic compounds”, Chem. Rev.  59(4), 629 (1959). doi: 10.1021/cr50028a004
  7. C. Abney, and L.-C. Festing, , “On the influence of the atomic grouping in the molecules of organic bodies on their absorption in the infra-red region of the spectrum”, Philos. Trans. R. Soc.  172, 887 (1881). doi: 10.1098/rstl.1881.0020
  8. W.W. Coblentz, , “Preliminary communication on the infra-red absorption spectra of organic compounds”, Astrophys. J.  20(3), 207 (1904). doi: 10.1086/141152
  9. W.W. Coblentz, , “Infra-red absorption and reflection spectra”, Phys. Rev.  23(2), 125 (1906). doi: 10.1103/PhysRevSeriesl.23.125
  10. W.W. Coblentz, , “Infra-red absorption spectra, II”, Phys. Rev.  20(6), 337 (1905). doi: 10.1103/PhysRevSeriesl.20.337x
  11. B. Donath, , “Bolometrische Untersuchungen über Absorptionsspectra fluorescirender Substanzen und ätherischer Oele”, Annalen der Physik und Chemie  58(8), 609 (1896). doi: 10.1002/andp.18962940802
  12. L. Puccianti, , “Spettri di assorbimento di liquini nell'ultrarosso Memoria del Dott. L. Puccianti”, Il Nuovo Cimento  11(1), 241 (1900). doi: 10.1007/BF02720459
  13. F.S. Brackett, , “Characteristic differentiation in the spectra of saturated hydrocarbons”, Proc. Natl. Acad. Sci. USA  14, 857 (1928). doi: 10.1073/pnas.14.11.857
  14. J.W. Ellis, , “The near infra-red absorption spectra of some organic liquids”, Phys. Rev.  23(1), 48 (1924). doi: 10.1103/PhysRev.23.48
  15. J.W. Ellis, , “The near infra-red absorption spectra of some aldehydes, ketones, esters and ethers”, J. Am. Chem. Soc.  51(5), 1384 (1929). doi: 10.1021/ja01380a012
  16. J.W. Ellis, , “Molecular absorption spectra of liquids below 3 mu”, Trans. Faraday Soc.  25, 0888 (1929). doi: 10.1039/tf9292500888
  17. M.S.C. Flett, , “Studies of the band near 3 μ in some hydroxy compounds”, Spectrochim. Acta  10(1), 21 (1957). doi: 10.1016/0371-1951(57)80160-X
  18. W. Kaye, , “Near-infrared spectroscopy: I. Spectral identification and analytical applications”, Spectrochim. Acta  6(4), 257 (1954). doi: 10.1016/0371-1951(54)80011-7
  19. W. Kaye, , “Near-infrared spectroscopy: II. Instrumentation and technique a review”, Spectrochim. Acta  7, 181 (1955). doi: 10.1016/0371-1951(55)80025-2
  20. R.B. Barnes, and R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  21(1), 7 (1949). doi: 10.1021/ac60025a003
  21. R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  22(1), 7 (1950). doi: 10.1021/ac60037a003
  22. R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  23(1), 7 (1951). doi: 10.1021/ac60049a003
  23. R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  24(1), 8 (1952). doi: 10.1021/ac60061a002
  24. R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  26(1), 11 (1954). doi: 10.1021/ac60085a003
  25. R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  28(4), 577 (1956). doi: 10.1021/ac60112a002
  26. R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  30(4), 570 (1958). doi: 10.1021/ac50163a004
  27. R. McDonald, , “Review: Infrared Spectrometry”, Anal. Chem.  54(8), 1250 (1982). doi: 10.1021/ac00245a601
  28. R.S. McDonald, , “Review: Infrared spectrometry”, Anal. Chem.  58(9), 1906 (1986). doi: 10.1021/ac00122a003
  29. S. Wold, and M. Sjöström, , “Chemometrics, present and future success”, Chemometr. Intell. Lab. Syst.  44, 3 (1998). doi: 10.1016/S0169-7439(98)00075-6
  30. P. Williams, and K. Norris, Near-Infrared Technology in the Agricultural and Food Industries , 2nd Edn.American Association of Cereal Chemists, Inc., St Paul, Minnesota, USA (2004).
  31. N. Heigl, C.H. Petter, M. Rainer, M. Najam-ul-Haq, R.M. Valiant, R. Bakry, and G.K. Bonn, and C.W. Huck, , “Review: Near infrared spectroscopy for polymer research, quality control and reaction monitoring”, J. Near Infrared Spectrosc.  15(5), 269 (2007). doi: 10.1255/jnirs.747
  32. K.P. Huber, and G. Herzberg, , Molecular Spectra and Structure: Vol. 1-Spectra of Diatomic Molecules. Van Nostrand Reinhold, New York, USA (1979).
  33. L. Bokobza, , “Near infrared spectroscopy”, J. Near Infrared Spectrosc.  6(1/4), 3 (1998). doi: 10.1255/jnirs.116
  34. D.A. Burns, and E.W. Ciurczak, , Eds, Handbook of Near-Infrared Analysis , 2nd Edn.Marcel Dekker, Inc., New York, USA (2001).
  35. J. Workman, and L. Weyer, , Practical Guide to Interpretive Near-Infrared Spectroscopy , 1st Edn.CRC Press, Boca Raton, Florida, USA (2007).
  36. E.W. Ciurczak, , in Handbook of Near-Infrared Analysis , 2nd Edn, Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker, Inc., New York, USA, p. 7 (2001).
  37. L. Bokobza, , in Near-Infrared Spectroscopy: Principles, Instruments and Applications , Ed by H.W. Siesler, Y. Ozaki, and S. Kawata, and H.M. Heise, Wiley-VCH, Weinheim, Germany, p. 11 (2002).
  38. S. Tsuchikawa, , “A review of recent near infrared research for wood and paper”, Appl. Spectrosc. Rev.  42, 43 (2007). doi: 10.1080/05704920601036707
  39. C.L. So, B.K. Via, L.H. Groom, L.R. Schimleck, T.F. Shupe, and S.S. Kelley, and T.G. Rials, , “Near infrared spectroscopy in the forest products industry”, Forest Prod. J.  54(3), 6 (2004).
  40. J.J. Workman, , “Infrared and Raman spectroscopy in paper and pulp analysis”, Appl. Spectrosc. Rev.  36(2/3), 139 (2001). doi: 10.1081/ASR-100106154
  41. S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: Softwood”, Appl. Spectrosc.  57(6), 667 (2003). doi: 10.1366/000370203322005364
  42. S. Tsuchikawa and M. Torii, and S. Tsutsumi, , “Directional characteristics of near infrared light in the process of radiation and transmission from wood”, J. Near Infrared Spectrosc.  6, 47 (1998). doi: 10.1255/jnirs.120
  43. T.F. Yeh, T. Yamada, E. Capanema, H.M. Chang, and V. Chiang, and J.F. Kadla, , “Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  53(9), 3328 (2005). doi: 10.1021/jf0480647
  44. T.-F. Yeh and H.-M. Chang, and J.F. Kadla, , “Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  52(6), 1435 (2004). doi: 10.1021/jf034874r
  45. K. Fackler, and M. Schwanninger, , “Polysaccharide degradation and lignin modification during brown rot of spruce wood: A polarised Fourier transform near infra-red study”, J. Near Infrared Spectrosc.  18(6), 403 (2010). doi: 10.1255/jnirs.901
  46. S. Tsuchikawa and H. Yonenobu, and H.W. Siesler, , “Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method”, Analyst  130(3), 379 (2005). doi: 10.1039/b412759e
  47. J.M. Olinger and P.R. Griffiths, and T. Burger, , in Handbook of Near-Infrared Analysis , 2nd Edn, Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker, Inc., New York, USA, p. 19 (2001).
  48. P.R. Griffiths, and J.M. Olinger, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 15 (2002).
  49. D.J. Dahm, and K.D. Dahm, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 14 (2002).
  50. D.J. Dahm, and K.D. Dahm, , Interpreting Diffuse Reflectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials. IM Publications LLP, Chichester, UK (2007).
  51. J.M. Chalmers, and P.R. Griffiths, (Eds), Handbook of Vibrational Spectroscopy. John Wiley & Sons Ltd: Chichester, UK (2002).
  52. K.C. Dahm, and D.J. Dahm, , “Relation of representative layer theory to other theories of diffuse reflection”, J. Near Infrared Spectrosc.  12(3), 189 (2004). doi: 10.1255/jnirs.426
  53. D.J. Dahm, and K.D. Dahm, , “Illustration of failure of continuum models of diffuse reflectance”, J. Near Infrared Spectrosc.  11(6), 479 (2003). doi: 10.1255/jnirs.398
  54. L. May, , “Spectroscopic nomenclature”, Appl. Spectrosc.  27(6), 419 (1973). doi: 10.1366/000370273774333100
  55. C. Cairós and J. Coello, and S. Maspoch, , “Application of representative layer theory to near-infrared reflectance spectra of powdered samples”, Appl. Spectrosc.  62(12), 1363 (2008). doi: 10.1366/000370208786822313
  56. E.W. Ciurczak, , in Handbook of Vibrational Spectroscopy , Vol. 3, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 8 (2002).
  57. M.C. Pasikatan, J.L. Steele, and C.K. Spillmand, and E. Haque, , “Review: Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials”, J. Near Infrared Spectrosc.  9(3), 153 (2001). doi: 10.1255/jnirs.303
  58. Z. Shi, and C.A. Anderson, , “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)”, J. Pharm. Sci.  99(12), 4766 (2010). doi: 10.1002/jps.22228
  59. D.L. Wetzel, , “Near-infrared reflectance analysis–sleeper among spectroscopic techniques”, Anal. Chem.  55(12), 1165A (1983). doi: 10.1021/ac00262a001
  60. E.W. Ciurczak and R.P. Torlini, and M.P. Demkowicz, , “Determination of particle size of pharmaceutical raw materials using near infrared spectroscopy”, Spectroscopy  1, 36 (1986).
  61. J.S. Shenk and J.J. Workman, and M.O. Westerhaus, , in Handbook of Near-Infrared Analysis , Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker Inc., New York, USA, p. 419 (2001).
  62. M. Otsuka, , “Comparative particle size determination of phenacetin bulk powder by using Kubelka–Munk theory and principal component regression analysis based on near-infrared spectroscopy”, Powder Technol.  141(3), 244 (2004). doi: 10.1016/j.powtec.2004.01.025
  63. O. Berntsson, T. Burger, S. Folestad, L.G. Danielsson, and J. Kuhn, and J. Fricke, , “Effective sample size in diffuse reflectance near-IR spectrometry”, Anal. Chem.  71(3), 617 (1999). doi: 10.1021/ac980652u
  64. O. Berntsson and L.G. Danielsson, and S. Folestad, , “Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry”, Anal. Chim. Acta.  364(1–3), 243 (1998). doi: 10.1016/S0003-2670(98)00196-2
  65. A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy”, Analyst  124(1), 33 (1999). doi: 10.1039/a807134i
  66. A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “The application of multiple linear regression to the measurement of the median particle size of drugs and pharmaceutical excipients by near-infrared spectroscopy”, Analyst  123(11), 2297 (1998). doi: 10.1039/A806001K
  67. A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the percentage volume particle size distribution of powdered microcrystalline cellulose using reflectance near-infrared spectroscopy”, Analyst  128(11), 1326 (2003). doi: 10.1039/A807134I
  68. S. Tsuchikawa and K. Hayashi, and S. Tsutsumi, , “Nondestructive measurement of subsurface structure of biological material having cellular structure by using near-infrared spectroscopy”, Appl. Spectrosc.  50(9), 1117 (1996). doi: 10.1366/0003702963905114
  69. W. Gindl, A. Teischinger, and M. Schwanninger, and B. Hinterstoisser, , “The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties”, J. Near Infrared Spectrosc.  9(4), 255 (2001). doi: 10.1255/jnirs.311
  70. A.J. Eilert, and D.L. Wetzel, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 12 (2002).
  71. R.F. Goddu, and D.A. Delker, , “Spectra-structure correlations for the near-infrared region”, Anal. Chem.  32(1), 140 (1960). doi: 10.1021/ac60157a048
  72. S. Tsuchikawa, and S. Tsutsumi, , “Application of time-of-flight near-infrared spectroscopy to wood with anisotropic cellular structure”, Appl. Spectrosc.  56(7), 869 (2002). doi: 10.1366/000370202760171545
  73. Y. Kurata and S. Tsuchikawa, and T. Fujimoto, , “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy”, Holzforschung  65(3), 389 (2011). doi: 10.1515/HF.2011.034
  74. M. Milosevic, and S.L. Berets, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 9 (2002).
  75. L. Weyer, and S.-C. Lo, , in Handbook of Vibrational Spectroscopy , Vol. 3, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 1817 (2002).
  76. L.K. DeNoyer, and J.G. Dodd, , in Handbook of Vibrational Spectroscopy , Vol. 3, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 12 (2002).
  77. A. Savitzky, and M.J.E. Golay, , “Smoothing and differentiation of data by simplified least squares procedures”, Anal. Chem.  36(8), 1627 (1964). doi: 10.1021/ac60214a047
  78. Y. Ozaki and S. Šašic, and J.H. Jiang, , “Review: How can we unravel complicated near infrared spectra?—Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region”, J. Near Infrared Spectrosc.  9(2), 63 (2001). doi: 10.1255/jnirs.295
  79. K. Fackler, and M. Schwanninger, , “Accessibility of hydroxyl groups of brown-rot degraded spruce wood to heavy water”, J. Near Infrared Spectrosc.  19(5), 359 (2011). doi: 10.1255/jnirs.943
  80. B. Stefke, E. Windeisen, and M. Schwanninger, and B. Hinterstoisser, , “Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods”, Anal. Chem.  80(4), 1272 (2008). doi: 10.1021/ac7020823
  81. M. Schwanninger and B. Stefke, and B. Hinterstoisser, , “Qualitative assessment of acetylated wood with infra-red spectroscopic methods”, J. Near Infrared Spectrosc.  19(5), 349 (2011). doi: 10.1255/jnirs.942
  82. W.O. George, and R. Lewis, , in Handbook of Vibrational Spectroscopy , Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 16 (2002).
  83. R.T. Holman, and P.R. Edmondson, , “Near-infrared spectra of fatty acids and some related substances”, Anal. Chem.  28(10), 1533 (1956). doi: 10.1021/ac60118a010
  84. L.J. Bellamy, , Infrared Spectra of Complex Molecules. John Wiley and Sons, Inc., New York, USA (1958).
  85. H.W. Siesler, Y. Ozaki, and S. Kawata, and H.M. Heise, Near-Infrared Spectroscopy. Principles, Instruments, Applications , 1st Edn.Wiley-VCH Verlag GmbH, Weinheim, Germany (2002).
  86. A. Watanabe and S. Morita, and Y. Ozaki, , “Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis”, Appl. Spectrosc.  60(6), 611 (2006). doi: 10.1366/000370206777670549
  87. M. Schwanninger, B. Hinterstoisser, N. Gierlinger, and R. Wimmer, and J. Hanger, , “Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood”, Holz Rob Werkst.  62(6), 483 (2004). doi: 10.1007/s00107-004-0520-z
  88. B. Esteves, and H. Pereira, , “Quality assessment of heat-treated wood by NIR spectroscopy. Qualitätsbewertung von wärmebehandeltem Holz mittels NIR-Spektroskopie”, Holz Rob Werkst.  66(5), 323 (2008). doi: 10.1007/s00107-008-0262-4
  89. H. Bächle, B. Zimmer, and E. Windeisen, and G. Wegener, , “Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy”, Wood Sci. Technol.  44(3), 421 (2010). doi: 10.1007/s00226-010-0361-3
  90. K. Mitsui and T. Inagaki, and S. Tsuchikawa, , “Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy”, Biomacromolecules  9(1), 286 (2008). doi: 10.1021/bm7008069
  91. D. Fengel, and G. Wegener, Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter & Co., Berlin, Germany (1989).
  92. W.H. Rodebush, and A.M. Buswell, , “Association through hydrogen”, J. Phys. Chem.  43(2), 219 (1939). doi: 10.1021/j150389a004
  93. A.M. Buswell and V. Deitz, and W.H. Rodebush, , “A study of the effect of hydrogen bonding upon the infrared absorption of the hydroxyl group”, J. Chem. Phys.  5(7), 501 (1937). doi: 10.1063/1.1750065
  94. R. Steele, and E. Pacsu, , “Cellulose studies.15. Infrared spectra of trimethyl cellulose, cellulose and starch”, Text. Res. J.  19(12), 790 (1949). doi: 10.1177/004051754901901203
  95. J.W. Rowen, and E.K. Plyler, , “Effect of deuteration oxidation and hydrogen-bonding on the infrared spectrum of cellulose”, J. Res. Nat. Bur. Standards  44(3), 313 (1950).
  96. R.T. O'Connor and E.F. DuPre, and D. Mitcham, , “Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons, Part I: Physical and crystalline modifications and oxidation”, Text. Res. J.  28, 382 (1958). doi: 10.1177/004051755802800503
  97. J.W. Ellis, and J. Bath, , “Hydrogen bridging in cellulose as shown by infrared absorption spectra”, J. Am. Chem. Soc.  62(10), 2859 (1940). doi: 10.1021/ja01867a064
  98. Y. Ozaki, , in Near-Infrared Spectroscopy: Principles, Instruments and Applications , Ed by H.W. Siesler, Y. Ozaki, and S. Kawata, and H.M. Heise, Wiley-VCH, Weinheim Germany, p. 163 (2002).
  99. S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: Hardwood”, Appl. Spectrosc.  57(6), 675 (2003). doi: 10.1366/000370203322005373
  100. V.I. Nikitin, , Vestnik Leningradskogo Universiteta  5(3), 33 (1950).
  101. V.P. Korelova, , Tr. Leningr. Lesotekhn. Akad.  2, 167 (1957).
  102. S. Tasker, J.P.S. Badyal, and S.C.E. Backson, and R.W. Richards, , “Hydroxyl accessibility in celluloses”, Polymer  35(22), 4717 (1994). doi: 10.1016/0032-3861(94)90723-4
  103. J.A. Mitchell and C.D. Bockman, and A.V. Lee, , “Determination of acetyl content of cellulose acetate by near infrared spectroscopy”, Anal. Chem.  29(4), 499 (1957). doi: 10.1021/ac50162a023
  104. R.L. Jackson, , “Determination of total hydroxyl content of cellulose esters by near-infrared spectroscopy”, Tappi J.  51(12), 560 (1968).
  105. K.H. Bassett and R.H. Marchessault, and C.Y. Liang, , “Infrared spectrum of crystalline polysaccharides. 9. near infrared spectrum of cellulose”, J. Polym. Sci. Part A  1(5), 1687 (1963). doi: 10.1002/poL.1963.100010520
  106. T. Inagaki, H.W. Siesler, and K. Mitsui, and S. Tsuchikawa, , “Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: A NIR spectroscopy and XRD study”, Biomacromolecules  11(9), 2300 (2010). doi: 10.1021/bm100403y
  107. K. Fackler, J.S. Stevanic, T. Ters, B. Hinterstoisser, and M. Schwanninger, and L. Salmén, , “Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy”, Enzyme Microb. Technol.  47(6), 257 (2010). doi: 10.1016/j.enzmictec.2010.07.009
  108. A. Basch and T. Wasserman, and M. Lewin, , “Near-infrared spectrum of cellulose—new method for obtaining crystallinity ratios”, J. Polym. Sci. Pol. Chem.  12(6), 1143 (1974). doi: 10.1002/pol.1974.170120601
  109. A. Watanabe and S. Morita, and Y. Ozaki, , “A study on water adsorption onto microcrystalline cellulose by near-infrared spectroscopy with two-dimensional correlation spectroscopy and principal component analysis”, Appl. Spectrosc.  60(9), 1054 (2006). doi: 10.1366/000370206778397452
  110. Y. Maréchal, and H. Chanzy, , “The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry”, J. Mot. Struct.  523, 183 (2000). doi: 10.1016/S0022-2860(99)00389-0
  111. H. Yonenobu, and S. Tsuchikawa, , “Near-infrared spectroscopic comparison of antique and modern wood”, Appl. Spectrosc.  57(11), 1451 (2003). doi: 10.1366/000370203322554635
  112. T. Inagaki and H. Yonenobu, and S. Tsuchikawa, , “Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood”, Appl. Spectrosc.  62(8), 860 (2008). doi: 10.1366/000370208785284312
  113. A.J. Michell, and L.R. Schimleck, , “NIR spectroscopy of woods from Eucalyptus globulus”, Appita J.  49(1), 23 (1996).
  114. F.E. Barton, D.S. Himmelsbach, and J.H. Duckworth, and M.J. Smith, , “Two-dimensional vibration spectroscopy—Correlation of mid- and near-infrared regions”, Appl. Spectrosc.  46(3), 420 (1992). doi: 10.1366/0003702924125375
  115. I. Çelen and D. Harper, and N. Labbé, , “A multivariate approach to the acetylated poplar wood samples by near infrared spectroscopy”, Holzforschung  62(2), 189 (2008). doi: 10.1515/HF.2008.048
  116. S. Tsuchikawa, and S. Tsutsumi, , “Adsorptive and capillary condensed water in biological material”, J. Mater. Sci. Lett.  17(8), 661 (1998). doi: 10.1023/A:1006672324163
  117. V. Fornes, and J. Chaussidon, , “Interpretation of evolution with temperature of ν2 + ν3 combination band in water”, J. Chem. Phys.  68(10), 4667 (1978). doi: 10.1063/1.435576
  118. L.G. Thygesen, and S.-O. Lundqvist, , “NIR measurement of moisture content in wood under stable temperature conditions. Part 1. Thermal effects in near infrared spectra of wood”, J. Near Infrared Spectrosc.  8(3), 183 (2000). doi: 10.1255/jnirs.277
  119. L.G. Thygesen, and S.-O. Lundqvist, , “NIR measurement of moisture content in wood under stable temperature conditions. Part 2. Handling temperature fluctuations”, J. Near Infrared Spectrosc.  8(3), 191 (2000). doi: 10.1255/jnirs.278
  120. L.G. Thygesen, , “Determination of dry matter content and basic density of Norway spruce by near infrared reflectance and transmittance spectroscopy”, J. Near Infrared Spectrosc.  2, 127 (1994). doi: 10.1255/jnirs.39
  121. E. Wüst, and L. Rudzik, , in Infrarotspektroskopie. Highlight aus dem Analytiker-Taschenbuch , Ed by A.M.B.H. Günzler, R. Borsdorf, K. Danzer, W. Fresenius, R. Galensa, W. Huber, I. Lüderwald, G. Schwedt, and G. Tölg, and H. Wisser, Springer, Berlin, Germany, p. 221 (1996).
  122. A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, and M. Schwanninger, and J. Rodrigues, , “A common near infrared-based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix x eurolepis”, Wood Sci. Technol.  online first, 1 (2010). doi: 10.1007/s00226-010-0383-x
  123. M. All, A.M. Emsley, and H. Herman, and R.J. Heywood, , “Spectroscopic studies of the ageing of cellulosic paper”, Polymer  42, 2893 (2001). doi: 10.1016/S0032-3861(00)00691-1
  124. P.R.G. Hein, L. Brancheriau, P.F. Trugilho, and J.T. Lima, and G. Chaix, , “Resonance and near infrared spectroscopy for evaluating dynamic wood properties”, J. Near Infrared Spectrosc.  18(6), 443 (2010). doi: 10.1255/jnirs.907
  125. L.R. Schimleck, and R. Evans, , “Estimation of Pinus radiata D. Don tracheid morphological characteristics by near infrared spectroscopy”, Holzforschung  58(1), 66 (2004). doi: 10.1515/HF.2004.009
  126. F.E. Barton, and D.S. Himmelsbach, , “Two-dimensional vibrational spectroscopy. II. Correlation of the absorptions of lignins in the mid-infrared and near-infrared”, Appl. Spectrosc.  47(11), 1920 (1993). doi: 10.1366/0003702934066091
  127. H. Baillères and F. Davrieus, and F.H. Pichavant, , “Near infrared analysis as a tool for rapid screening of some major wood characteristics in a Eucalyptus breeding program”, Ann. For. Sci.  59(5/6), 479 (2002). doi: 10.1051/forest:20032
  128. T. Fujimoto and H. Yamamoto, and S. Tsuchikawa, , “Estimation of wood stiffness and strength properties of hybrid larch by near-infrared spectroscopy”, Appl. Spectrosc.  61(8), 882 (2007). doi: 10.1366/000370207781540150
  129. T. Fujimoto, Y. Kurata, and K. Matsumoto, and S. Tsuchikawa, , “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens”, J. Near Infrared Spectrosc.  16(6), 529 (2008). doi: 10.1255/jnirs.818
  130. T. Fujimoto, and S. Tsuchikawa, , “Identification of dead and sound knots by near infrared spectroscopy”, J. Near Infrared Spectrosc.  18(6), 473 (2010). doi: 10.1255/jnirs.887
  131. A. Sandak and J. Sandak, and M. Negri, , “Relationship between near-infrared (NIR) spectra and the geographical provenance of timber”, Wood Sci. Technol.  45(1), 35 (2011). doi: 10.1007/s00226-010-0313-y
  132. B.G. Osborne, and T. Fearn, Near Infrared Spectroscopy in food analysis. Longman Scientific & Technical, Harlow, Essex, UK (1998).
  133. K. Buijs, and G.R. Choppin, , “Near-infrared studies of structure of water. 1. Pure water”, J. Chem. Phys.  39(8), 2035 (1963). doi: 10.1063/1.1734579
  134. L.R. Schimleck, P.J. Wright, and A.J. Michell, and A.F.A. Wallis, , “Near-infrared spectra and chemical compositions of E-globulus and E-nitens plantation woods”, Appita J.  50(1), 40 (1997).
  135. P.R.G. Hein, A.C.M. Campos, R.F. Mendes, and L.M. Mendes, and G. Chaix, , “Estimation of physical and mechanical properties of agro-based particleboards by near infrared spectroscopy”, Eur. J. Wood Wood Prod.  69(3), 431 (2011). doi: 10.1007/s00107-010-0471-5
  136. M. Schwanninger, B. Hinterstoisser, C. Gradinger, and K. Messner, and K. Fackler, , “Examination of spruce wood biodegraded by Ceriporiopsis subvermispora using near and mid infrared spectroscopy”, J. Near Infrared Spectrosc.  12(6), 397 (2004a). doi: 10.1255/jnirs.449

2011 (5)

Y. Kurata and S. Tsuchikawa, and T. Fujimoto, , “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy”, Holzforschung  65(3), 389 (2011). doi: 10.1515/HF.2011.034

Y. Kurata and S. Tsuchikawa, and T. Fujimoto, , “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy”, Holzforschung  65(3), 389 (2011). doi: 10.1515/HF.2011.034

A. Sandak and J. Sandak, and M. Negri, , “Relationship between near-infrared (NIR) spectra and the geographical provenance of timber”, Wood Sci. Technol.  45(1), 35 (2011). doi: 10.1007/s00226-010-0313-y

A. Sandak and J. Sandak, and M. Negri, , “Relationship between near-infrared (NIR) spectra and the geographical provenance of timber”, Wood Sci. Technol.  45(1), 35 (2011). doi: 10.1007/s00226-010-0313-y

P.R.G. Hein, A.C.M. Campos, R.F. Mendes, and L.M. Mendes, and G. Chaix, , “Estimation of physical and mechanical properties of agro-based particleboards by near infrared spectroscopy”, Eur. J. Wood Wood Prod.  69(3), 431 (2011). doi: 10.1007/s00107-010-0471-5

P.R.G. Hein, A.C.M. Campos, R.F. Mendes, and L.M. Mendes, and G. Chaix, , “Estimation of physical and mechanical properties of agro-based particleboards by near infrared spectroscopy”, Eur. J. Wood Wood Prod.  69(3), 431 (2011). doi: 10.1007/s00107-010-0471-5

M. Schwanninger and B. Stefke, and B. Hinterstoisser, , “Qualitative assessment of acetylated wood with infra-red spectroscopic methods”, J. Near Infrared Spectrosc.  19(5), 349 (2011). doi: 10.1255/jnirs.942

M. Schwanninger and B. Stefke, and B. Hinterstoisser, , “Qualitative assessment of acetylated wood with infra-red spectroscopic methods”, J. Near Infrared Spectrosc.  19(5), 349 (2011). doi: 10.1255/jnirs.942

K. Fackler, and M. Schwanninger, , “Accessibility of hydroxyl groups of brown-rot degraded spruce wood to heavy water”, J. Near Infrared Spectrosc.  19(5), 359 (2011). doi: 10.1255/jnirs.943

K. Fackler, and M. Schwanninger, , “Accessibility of hydroxyl groups of brown-rot degraded spruce wood to heavy water”, J. Near Infrared Spectrosc.  19(5), 359 (2011). doi: 10.1255/jnirs.943

2010 (8)

K. Fackler, and M. Schwanninger, , “Polysaccharide degradation and lignin modification during brown rot of spruce wood: A polarised Fourier transform near infra-red study”, J. Near Infrared Spectrosc.  18(6), 403 (2010). doi: 10.1255/jnirs.901

K. Fackler, and M. Schwanninger, , “Polysaccharide degradation and lignin modification during brown rot of spruce wood: A polarised Fourier transform near infra-red study”, J. Near Infrared Spectrosc.  18(6), 403 (2010). doi: 10.1255/jnirs.901

P.R.G. Hein, L. Brancheriau, P.F. Trugilho, and J.T. Lima, and G. Chaix, , “Resonance and near infrared spectroscopy for evaluating dynamic wood properties”, J. Near Infrared Spectrosc.  18(6), 443 (2010). doi: 10.1255/jnirs.907

P.R.G. Hein, L. Brancheriau, P.F. Trugilho, and J.T. Lima, and G. Chaix, , “Resonance and near infrared spectroscopy for evaluating dynamic wood properties”, J. Near Infrared Spectrosc.  18(6), 443 (2010). doi: 10.1255/jnirs.907

T. Fujimoto, and S. Tsuchikawa, , “Identification of dead and sound knots by near infrared spectroscopy”, J. Near Infrared Spectrosc.  18(6), 473 (2010). doi: 10.1255/jnirs.887

T. Fujimoto, and S. Tsuchikawa, , “Identification of dead and sound knots by near infrared spectroscopy”, J. Near Infrared Spectrosc.  18(6), 473 (2010). doi: 10.1255/jnirs.887

A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, and M. Schwanninger, and J. Rodrigues, , “A common near infrared-based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix x eurolepis”, Wood Sci. Technol.  online first, 1 (2010). doi: 10.1007/s00226-010-0383-x

A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, and M. Schwanninger, and J. Rodrigues, , “A common near infrared-based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix x eurolepis”, Wood Sci. Technol.  online first, 1 (2010). doi: 10.1007/s00226-010-0383-x

H. Bächle, B. Zimmer, and E. Windeisen, and G. Wegener, , “Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy”, Wood Sci. Technol.  44(3), 421 (2010). doi: 10.1007/s00226-010-0361-3

H. Bächle, B. Zimmer, and E. Windeisen, and G. Wegener, , “Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy”, Wood Sci. Technol.  44(3), 421 (2010). doi: 10.1007/s00226-010-0361-3

Z. Shi, and C.A. Anderson, , “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)”, J. Pharm. Sci.  99(12), 4766 (2010). doi: 10.1002/jps.22228

Z. Shi, and C.A. Anderson, , “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)”, J. Pharm. Sci.  99(12), 4766 (2010). doi: 10.1002/jps.22228

T. Inagaki, H.W. Siesler, and K. Mitsui, and S. Tsuchikawa, , “Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: A NIR spectroscopy and XRD study”, Biomacromolecules  11(9), 2300 (2010). doi: 10.1021/bm100403y

T. Inagaki, H.W. Siesler, and K. Mitsui, and S. Tsuchikawa, , “Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: A NIR spectroscopy and XRD study”, Biomacromolecules  11(9), 2300 (2010). doi: 10.1021/bm100403y

K. Fackler, J.S. Stevanic, T. Ters, B. Hinterstoisser, and M. Schwanninger, and L. Salmén, , “Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy”, Enzyme Microb. Technol.  47(6), 257 (2010). doi: 10.1016/j.enzmictec.2010.07.009

K. Fackler, J.S. Stevanic, T. Ters, B. Hinterstoisser, and M. Schwanninger, and L. Salmén, , “Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy”, Enzyme Microb. Technol.  47(6), 257 (2010). doi: 10.1016/j.enzmictec.2010.07.009

2008 (7)

B. Stefke, E. Windeisen, and M. Schwanninger, and B. Hinterstoisser, , “Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods”, Anal. Chem.  80(4), 1272 (2008). doi: 10.1021/ac7020823

B. Stefke, E. Windeisen, and M. Schwanninger, and B. Hinterstoisser, , “Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods”, Anal. Chem.  80(4), 1272 (2008). doi: 10.1021/ac7020823

K. Mitsui and T. Inagaki, and S. Tsuchikawa, , “Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy”, Biomacromolecules  9(1), 286 (2008). doi: 10.1021/bm7008069

K. Mitsui and T. Inagaki, and S. Tsuchikawa, , “Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy”, Biomacromolecules  9(1), 286 (2008). doi: 10.1021/bm7008069

B. Esteves, and H. Pereira, , “Quality assessment of heat-treated wood by NIR spectroscopy. Qualitätsbewertung von wärmebehandeltem Holz mittels NIR-Spektroskopie”, Holz Rob Werkst.  66(5), 323 (2008). doi: 10.1007/s00107-008-0262-4

B. Esteves, and H. Pereira, , “Quality assessment of heat-treated wood by NIR spectroscopy. Qualitätsbewertung von wärmebehandeltem Holz mittels NIR-Spektroskopie”, Holz Rob Werkst.  66(5), 323 (2008). doi: 10.1007/s00107-008-0262-4

I. Çelen and D. Harper, and N. Labbé, , “A multivariate approach to the acetylated poplar wood samples by near infrared spectroscopy”, Holzforschung  62(2), 189 (2008). doi: 10.1515/HF.2008.048

I. Çelen and D. Harper, and N. Labbé, , “A multivariate approach to the acetylated poplar wood samples by near infrared spectroscopy”, Holzforschung  62(2), 189 (2008). doi: 10.1515/HF.2008.048

T. Inagaki and H. Yonenobu, and S. Tsuchikawa, , “Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood”, Appl. Spectrosc.  62(8), 860 (2008). doi: 10.1366/000370208785284312

T. Inagaki and H. Yonenobu, and S. Tsuchikawa, , “Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood”, Appl. Spectrosc.  62(8), 860 (2008). doi: 10.1366/000370208785284312

C. Cairós and J. Coello, and S. Maspoch, , “Application of representative layer theory to near-infrared reflectance spectra of powdered samples”, Appl. Spectrosc.  62(12), 1363 (2008). doi: 10.1366/000370208786822313

C. Cairós and J. Coello, and S. Maspoch, , “Application of representative layer theory to near-infrared reflectance spectra of powdered samples”, Appl. Spectrosc.  62(12), 1363 (2008). doi: 10.1366/000370208786822313

T. Fujimoto, Y. Kurata, and K. Matsumoto, and S. Tsuchikawa, , “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens”, J. Near Infrared Spectrosc.  16(6), 529 (2008). doi: 10.1255/jnirs.818

T. Fujimoto, Y. Kurata, and K. Matsumoto, and S. Tsuchikawa, , “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens”, J. Near Infrared Spectrosc.  16(6), 529 (2008). doi: 10.1255/jnirs.818

2007 (3)

2006 (2)

2005 (2)

T.F. Yeh, T. Yamada, E. Capanema, H.M. Chang, and V. Chiang, and J.F. Kadla, , “Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  53(9), 3328 (2005). doi: 10.1021/jf0480647

T.F. Yeh, T. Yamada, E. Capanema, H.M. Chang, and V. Chiang, and J.F. Kadla, , “Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  53(9), 3328 (2005). doi: 10.1021/jf0480647

S. Tsuchikawa and H. Yonenobu, and H.W. Siesler, , “Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method”, Analyst  130(3), 379 (2005). doi: 10.1039/b412759e

S. Tsuchikawa and H. Yonenobu, and H.W. Siesler, , “Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method”, Analyst  130(3), 379 (2005). doi: 10.1039/b412759e

2004 (6)

T.-F. Yeh and H.-M. Chang, and J.F. Kadla, , “Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  52(6), 1435 (2004). doi: 10.1021/jf034874r

T.-F. Yeh and H.-M. Chang, and J.F. Kadla, , “Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  52(6), 1435 (2004). doi: 10.1021/jf034874r

C.L. So, B.K. Via, L.H. Groom, L.R. Schimleck, T.F. Shupe, and S.S. Kelley, and T.G. Rials, , “Near infrared spectroscopy in the forest products industry”, Forest Prod. J.  54(3), 6 (2004).

C.L. So, B.K. Via, L.H. Groom, L.R. Schimleck, T.F. Shupe, and S.S. Kelley, and T.G. Rials, , “Near infrared spectroscopy in the forest products industry”, Forest Prod. J.  54(3), 6 (2004).

M. Schwanninger, B. Hinterstoisser, N. Gierlinger, and R. Wimmer, and J. Hanger, , “Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood”, Holz Rob Werkst.  62(6), 483 (2004). doi: 10.1007/s00107-004-0520-z

M. Schwanninger, B. Hinterstoisser, N. Gierlinger, and R. Wimmer, and J. Hanger, , “Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood”, Holz Rob Werkst.  62(6), 483 (2004). doi: 10.1007/s00107-004-0520-z

M. Otsuka, , “Comparative particle size determination of phenacetin bulk powder by using Kubelka–Munk theory and principal component regression analysis based on near-infrared spectroscopy”, Powder Technol.  141(3), 244 (2004). doi: 10.1016/j.powtec.2004.01.025

L.R. Schimleck, and R. Evans, , “Estimation of Pinus radiata D. Don tracheid morphological characteristics by near infrared spectroscopy”, Holzforschung  58(1), 66 (2004). doi: 10.1515/HF.2004.009

L.R. Schimleck, and R. Evans, , “Estimation of Pinus radiata D. Don tracheid morphological characteristics by near infrared spectroscopy”, Holzforschung  58(1), 66 (2004). doi: 10.1515/HF.2004.009

K.C. Dahm, and D.J. Dahm, , “Relation of representative layer theory to other theories of diffuse reflection”, J. Near Infrared Spectrosc.  12(3), 189 (2004). doi: 10.1255/jnirs.426

K.C. Dahm, and D.J. Dahm, , “Relation of representative layer theory to other theories of diffuse reflection”, J. Near Infrared Spectrosc.  12(3), 189 (2004). doi: 10.1255/jnirs.426

2003 (5)

D.J. Dahm, and K.D. Dahm, , “Illustration of failure of continuum models of diffuse reflectance”, J. Near Infrared Spectrosc.  11(6), 479 (2003). doi: 10.1255/jnirs.398

D.J. Dahm, and K.D. Dahm, , “Illustration of failure of continuum models of diffuse reflectance”, J. Near Infrared Spectrosc.  11(6), 479 (2003). doi: 10.1255/jnirs.398

H. Yonenobu, and S. Tsuchikawa, , “Near-infrared spectroscopic comparison of antique and modern wood”, Appl. Spectrosc.  57(11), 1451 (2003). doi: 10.1366/000370203322554635

H. Yonenobu, and S. Tsuchikawa, , “Near-infrared spectroscopic comparison of antique and modern wood”, Appl. Spectrosc.  57(11), 1451 (2003). doi: 10.1366/000370203322554635

S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: Softwood”, Appl. Spectrosc.  57(6), 667 (2003). doi: 10.1366/000370203322005364

S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: Softwood”, Appl. Spectrosc.  57(6), 667 (2003). doi: 10.1366/000370203322005364

S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: Hardwood”, Appl. Spectrosc.  57(6), 675 (2003). doi: 10.1366/000370203322005373

S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: Hardwood”, Appl. Spectrosc.  57(6), 675 (2003). doi: 10.1366/000370203322005373

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the percentage volume particle size distribution of powdered microcrystalline cellulose using reflectance near-infrared spectroscopy”, Analyst  128(11), 1326 (2003). doi: 10.1039/A807134I

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the percentage volume particle size distribution of powdered microcrystalline cellulose using reflectance near-infrared spectroscopy”, Analyst  128(11), 1326 (2003). doi: 10.1039/A807134I

2002 (2)

S. Tsuchikawa, and S. Tsutsumi, , “Application of time-of-flight near-infrared spectroscopy to wood with anisotropic cellular structure”, Appl. Spectrosc.  56(7), 869 (2002). doi: 10.1366/000370202760171545

S. Tsuchikawa, and S. Tsutsumi, , “Application of time-of-flight near-infrared spectroscopy to wood with anisotropic cellular structure”, Appl. Spectrosc.  56(7), 869 (2002). doi: 10.1366/000370202760171545

H. Baillères and F. Davrieus, and F.H. Pichavant, , “Near infrared analysis as a tool for rapid screening of some major wood characteristics in a Eucalyptus breeding program”, Ann. For. Sci.  59(5/6), 479 (2002). doi: 10.1051/forest:20032

H. Baillères and F. Davrieus, and F.H. Pichavant, , “Near infrared analysis as a tool for rapid screening of some major wood characteristics in a Eucalyptus breeding program”, Ann. For. Sci.  59(5/6), 479 (2002). doi: 10.1051/forest:20032

2001 (5)

W. Gindl, A. Teischinger, and M. Schwanninger, and B. Hinterstoisser, , “The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties”, J. Near Infrared Spectrosc.  9(4), 255 (2001). doi: 10.1255/jnirs.311

W. Gindl, A. Teischinger, and M. Schwanninger, and B. Hinterstoisser, , “The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties”, J. Near Infrared Spectrosc.  9(4), 255 (2001). doi: 10.1255/jnirs.311

M.C. Pasikatan, J.L. Steele, and C.K. Spillmand, and E. Haque, , “Review: Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials”, J. Near Infrared Spectrosc.  9(3), 153 (2001). doi: 10.1255/jnirs.303

M.C. Pasikatan, J.L. Steele, and C.K. Spillmand, and E. Haque, , “Review: Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials”, J. Near Infrared Spectrosc.  9(3), 153 (2001). doi: 10.1255/jnirs.303

Y. Ozaki and S. Šašic, and J.H. Jiang, , “Review: How can we unravel complicated near infrared spectra?—Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region”, J. Near Infrared Spectrosc.  9(2), 63 (2001). doi: 10.1255/jnirs.295

Y. Ozaki and S. Šašic, and J.H. Jiang, , “Review: How can we unravel complicated near infrared spectra?—Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region”, J. Near Infrared Spectrosc.  9(2), 63 (2001). doi: 10.1255/jnirs.295

M. All, A.M. Emsley, and H. Herman, and R.J. Heywood, , “Spectroscopic studies of the ageing of cellulosic paper”, Polymer  42, 2893 (2001). doi: 10.1016/S0032-3861(00)00691-1

M. All, A.M. Emsley, and H. Herman, and R.J. Heywood, , “Spectroscopic studies of the ageing of cellulosic paper”, Polymer  42, 2893 (2001). doi: 10.1016/S0032-3861(00)00691-1

J.J. Workman, , “Infrared and Raman spectroscopy in paper and pulp analysis”, Appl. Spectrosc. Rev.  36(2/3), 139 (2001). doi: 10.1081/ASR-100106154

2000 (4)

1999 (2)

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy”, Analyst  124(1), 33 (1999). doi: 10.1039/a807134i

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy”, Analyst  124(1), 33 (1999). doi: 10.1039/a807134i

O. Berntsson, T. Burger, S. Folestad, L.G. Danielsson, and J. Kuhn, and J. Fricke, , “Effective sample size in diffuse reflectance near-IR spectrometry”, Anal. Chem.  71(3), 617 (1999). doi: 10.1021/ac980652u

O. Berntsson, T. Burger, S. Folestad, L.G. Danielsson, and J. Kuhn, and J. Fricke, , “Effective sample size in diffuse reflectance near-IR spectrometry”, Anal. Chem.  71(3), 617 (1999). doi: 10.1021/ac980652u

1998 (6)

O. Berntsson and L.G. Danielsson, and S. Folestad, , “Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry”, Anal. Chim. Acta.  364(1–3), 243 (1998). doi: 10.1016/S0003-2670(98)00196-2

O. Berntsson and L.G. Danielsson, and S. Folestad, , “Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry”, Anal. Chim. Acta.  364(1–3), 243 (1998). doi: 10.1016/S0003-2670(98)00196-2

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “The application of multiple linear regression to the measurement of the median particle size of drugs and pharmaceutical excipients by near-infrared spectroscopy”, Analyst  123(11), 2297 (1998). doi: 10.1039/A806001K

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “The application of multiple linear regression to the measurement of the median particle size of drugs and pharmaceutical excipients by near-infrared spectroscopy”, Analyst  123(11), 2297 (1998). doi: 10.1039/A806001K

S. Wold, and M. Sjöström, , “Chemometrics, present and future success”, Chemometr. Intell. Lab. Syst.  44, 3 (1998). doi: 10.1016/S0169-7439(98)00075-6

S. Wold, and M. Sjöström, , “Chemometrics, present and future success”, Chemometr. Intell. Lab. Syst.  44, 3 (1998). doi: 10.1016/S0169-7439(98)00075-6

L. Bokobza, , “Near infrared spectroscopy”, J. Near Infrared Spectrosc.  6(1/4), 3 (1998). doi: 10.1255/jnirs.116

S. Tsuchikawa and M. Torii, and S. Tsutsumi, , “Directional characteristics of near infrared light in the process of radiation and transmission from wood”, J. Near Infrared Spectrosc.  6, 47 (1998). doi: 10.1255/jnirs.120

S. Tsuchikawa and M. Torii, and S. Tsutsumi, , “Directional characteristics of near infrared light in the process of radiation and transmission from wood”, J. Near Infrared Spectrosc.  6, 47 (1998). doi: 10.1255/jnirs.120

S. Tsuchikawa, and S. Tsutsumi, , “Adsorptive and capillary condensed water in biological material”, J. Mater. Sci. Lett.  17(8), 661 (1998). doi: 10.1023/A:1006672324163

S. Tsuchikawa, and S. Tsutsumi, , “Adsorptive and capillary condensed water in biological material”, J. Mater. Sci. Lett.  17(8), 661 (1998). doi: 10.1023/A:1006672324163

1997 (1)

L.R. Schimleck, P.J. Wright, and A.J. Michell, and A.F.A. Wallis, , “Near-infrared spectra and chemical compositions of E-globulus and E-nitens plantation woods”, Appita J.  50(1), 40 (1997).

L.R. Schimleck, P.J. Wright, and A.J. Michell, and A.F.A. Wallis, , “Near-infrared spectra and chemical compositions of E-globulus and E-nitens plantation woods”, Appita J.  50(1), 40 (1997).

1996 (2)

1994 (2)

L.G. Thygesen, , “Determination of dry matter content and basic density of Norway spruce by near infrared reflectance and transmittance spectroscopy”, J. Near Infrared Spectrosc.  2, 127 (1994). doi: 10.1255/jnirs.39

S. Tasker, J.P.S. Badyal, and S.C.E. Backson, and R.W. Richards, , “Hydroxyl accessibility in celluloses”, Polymer  35(22), 4717 (1994). doi: 10.1016/0032-3861(94)90723-4

S. Tasker, J.P.S. Badyal, and S.C.E. Backson, and R.W. Richards, , “Hydroxyl accessibility in celluloses”, Polymer  35(22), 4717 (1994). doi: 10.1016/0032-3861(94)90723-4

1993 (1)

1992 (1)

1986 (2)

E.W. Ciurczak and R.P. Torlini, and M.P. Demkowicz, , “Determination of particle size of pharmaceutical raw materials using near infrared spectroscopy”, Spectroscopy  1, 36 (1986).

E.W. Ciurczak and R.P. Torlini, and M.P. Demkowicz, , “Determination of particle size of pharmaceutical raw materials using near infrared spectroscopy”, Spectroscopy  1, 36 (1986).

R.S. McDonald, , “Review: Infrared spectrometry”, Anal. Chem.  58(9), 1906 (1986). doi: 10.1021/ac00122a003

1983 (1)

D.L. Wetzel, , “Near-infrared reflectance analysis–sleeper among spectroscopic techniques”, Anal. Chem.  55(12), 1165A (1983). doi: 10.1021/ac00262a001

1982 (1)

R. McDonald, , “Review: Infrared Spectrometry”, Anal. Chem.  54(8), 1250 (1982). doi: 10.1021/ac00245a601

1978 (1)

V. Fornes, and J. Chaussidon, , “Interpretation of evolution with temperature of ν2 + ν3 combination band in water”, J. Chem. Phys.  68(10), 4667 (1978). doi: 10.1063/1.435576

V. Fornes, and J. Chaussidon, , “Interpretation of evolution with temperature of ν2 + ν3 combination band in water”, J. Chem. Phys.  68(10), 4667 (1978). doi: 10.1063/1.435576

1974 (1)

A. Basch and T. Wasserman, and M. Lewin, , “Near-infrared spectrum of cellulose—new method for obtaining crystallinity ratios”, J. Polym. Sci. Pol. Chem.  12(6), 1143 (1974). doi: 10.1002/pol.1974.170120601

A. Basch and T. Wasserman, and M. Lewin, , “Near-infrared spectrum of cellulose—new method for obtaining crystallinity ratios”, J. Polym. Sci. Pol. Chem.  12(6), 1143 (1974). doi: 10.1002/pol.1974.170120601

1973 (1)

1968 (1)

R.L. Jackson, , “Determination of total hydroxyl content of cellulose esters by near-infrared spectroscopy”, Tappi J.  51(12), 560 (1968).

1964 (1)

A. Savitzky, and M.J.E. Golay, , “Smoothing and differentiation of data by simplified least squares procedures”, Anal. Chem.  36(8), 1627 (1964). doi: 10.1021/ac60214a047

A. Savitzky, and M.J.E. Golay, , “Smoothing and differentiation of data by simplified least squares procedures”, Anal. Chem.  36(8), 1627 (1964). doi: 10.1021/ac60214a047

1963 (2)

K.H. Bassett and R.H. Marchessault, and C.Y. Liang, , “Infrared spectrum of crystalline polysaccharides. 9. near infrared spectrum of cellulose”, J. Polym. Sci. Part A  1(5), 1687 (1963). doi: 10.1002/poL.1963.100010520

K.H. Bassett and R.H. Marchessault, and C.Y. Liang, , “Infrared spectrum of crystalline polysaccharides. 9. near infrared spectrum of cellulose”, J. Polym. Sci. Part A  1(5), 1687 (1963). doi: 10.1002/poL.1963.100010520

K. Buijs, and G.R. Choppin, , “Near-infrared studies of structure of water. 1. Pure water”, J. Chem. Phys.  39(8), 2035 (1963). doi: 10.1063/1.1734579

K. Buijs, and G.R. Choppin, , “Near-infrared studies of structure of water. 1. Pure water”, J. Chem. Phys.  39(8), 2035 (1963). doi: 10.1063/1.1734579

1960 (1)

R.F. Goddu, and D.A. Delker, , “Spectra-structure correlations for the near-infrared region”, Anal. Chem.  32(1), 140 (1960). doi: 10.1021/ac60157a048

R.F. Goddu, and D.A. Delker, , “Spectra-structure correlations for the near-infrared region”, Anal. Chem.  32(1), 140 (1960). doi: 10.1021/ac60157a048

1959 (1)

O.H. Wheeler, , “Near infrared spectra of organic compounds”, Chem. Rev.  59(4), 629 (1959). doi: 10.1021/cr50028a004

1958 (2)

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  30(4), 570 (1958). doi: 10.1021/ac50163a004

R.T. O'Connor and E.F. DuPre, and D. Mitcham, , “Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons, Part I: Physical and crystalline modifications and oxidation”, Text. Res. J.  28, 382 (1958). doi: 10.1177/004051755802800503

R.T. O'Connor and E.F. DuPre, and D. Mitcham, , “Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons, Part I: Physical and crystalline modifications and oxidation”, Text. Res. J.  28, 382 (1958). doi: 10.1177/004051755802800503

1957 (3)

J.A. Mitchell and C.D. Bockman, and A.V. Lee, , “Determination of acetyl content of cellulose acetate by near infrared spectroscopy”, Anal. Chem.  29(4), 499 (1957). doi: 10.1021/ac50162a023

J.A. Mitchell and C.D. Bockman, and A.V. Lee, , “Determination of acetyl content of cellulose acetate by near infrared spectroscopy”, Anal. Chem.  29(4), 499 (1957). doi: 10.1021/ac50162a023

V.P. Korelova, , Tr. Leningr. Lesotekhn. Akad.  2, 167 (1957).

M.S.C. Flett, , “Studies of the band near 3 μ in some hydroxy compounds”, Spectrochim. Acta  10(1), 21 (1957). doi: 10.1016/0371-1951(57)80160-X

1956 (2)

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  28(4), 577 (1956). doi: 10.1021/ac60112a002

R.T. Holman, and P.R. Edmondson, , “Near-infrared spectra of fatty acids and some related substances”, Anal. Chem.  28(10), 1533 (1956). doi: 10.1021/ac60118a010

R.T. Holman, and P.R. Edmondson, , “Near-infrared spectra of fatty acids and some related substances”, Anal. Chem.  28(10), 1533 (1956). doi: 10.1021/ac60118a010

1955 (1)

W. Kaye, , “Near-infrared spectroscopy: II. Instrumentation and technique a review”, Spectrochim. Acta  7, 181 (1955). doi: 10.1016/0371-1951(55)80025-2

1954 (2)

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  26(1), 11 (1954). doi: 10.1021/ac60085a003

W. Kaye, , “Near-infrared spectroscopy: I. Spectral identification and analytical applications”, Spectrochim. Acta  6(4), 257 (1954). doi: 10.1016/0371-1951(54)80011-7

1952 (1)

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  24(1), 8 (1952). doi: 10.1021/ac60061a002

1951 (1)

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  23(1), 7 (1951). doi: 10.1021/ac60049a003

1950 (3)

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  22(1), 7 (1950). doi: 10.1021/ac60037a003

V.I. Nikitin, , Vestnik Leningradskogo Universiteta  5(3), 33 (1950).

J.W. Rowen, and E.K. Plyler, , “Effect of deuteration oxidation and hydrogen-bonding on the infrared spectrum of cellulose”, J. Res. Nat. Bur. Standards  44(3), 313 (1950).

J.W. Rowen, and E.K. Plyler, , “Effect of deuteration oxidation and hydrogen-bonding on the infrared spectrum of cellulose”, J. Res. Nat. Bur. Standards  44(3), 313 (1950).

1949 (2)

R. Steele, and E. Pacsu, , “Cellulose studies.15. Infrared spectra of trimethyl cellulose, cellulose and starch”, Text. Res. J.  19(12), 790 (1949). doi: 10.1177/004051754901901203

R. Steele, and E. Pacsu, , “Cellulose studies.15. Infrared spectra of trimethyl cellulose, cellulose and starch”, Text. Res. J.  19(12), 790 (1949). doi: 10.1177/004051754901901203

R.B. Barnes, and R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  21(1), 7 (1949). doi: 10.1021/ac60025a003

R.B. Barnes, and R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  21(1), 7 (1949). doi: 10.1021/ac60025a003

1940 (1)

J.W. Ellis, and J. Bath, , “Hydrogen bridging in cellulose as shown by infrared absorption spectra”, J. Am. Chem. Soc.  62(10), 2859 (1940). doi: 10.1021/ja01867a064

J.W. Ellis, and J. Bath, , “Hydrogen bridging in cellulose as shown by infrared absorption spectra”, J. Am. Chem. Soc.  62(10), 2859 (1940). doi: 10.1021/ja01867a064

1939 (1)

W.H. Rodebush, and A.M. Buswell, , “Association through hydrogen”, J. Phys. Chem.  43(2), 219 (1939). doi: 10.1021/j150389a004

W.H. Rodebush, and A.M. Buswell, , “Association through hydrogen”, J. Phys. Chem.  43(2), 219 (1939). doi: 10.1021/j150389a004

1937 (1)

A.M. Buswell and V. Deitz, and W.H. Rodebush, , “A study of the effect of hydrogen bonding upon the infrared absorption of the hydroxyl group”, J. Chem. Phys.  5(7), 501 (1937). doi: 10.1063/1.1750065

A.M. Buswell and V. Deitz, and W.H. Rodebush, , “A study of the effect of hydrogen bonding upon the infrared absorption of the hydroxyl group”, J. Chem. Phys.  5(7), 501 (1937). doi: 10.1063/1.1750065

1929 (2)

J.W. Ellis, , “The near infra-red absorption spectra of some aldehydes, ketones, esters and ethers”, J. Am. Chem. Soc.  51(5), 1384 (1929). doi: 10.1021/ja01380a012

J.W. Ellis, , “Molecular absorption spectra of liquids below 3 mu”, Trans. Faraday Soc.  25, 0888 (1929). doi: 10.1039/tf9292500888

1928 (1)

F.S. Brackett, , “Characteristic differentiation in the spectra of saturated hydrocarbons”, Proc. Natl. Acad. Sci. USA  14, 857 (1928). doi: 10.1073/pnas.14.11.857

1924 (1)

J.W. Ellis, , “The near infra-red absorption spectra of some organic liquids”, Phys. Rev.  23(1), 48 (1924). doi: 10.1103/PhysRev.23.48

1906 (1)

W.W. Coblentz, , “Infra-red absorption and reflection spectra”, Phys. Rev.  23(2), 125 (1906). doi: 10.1103/PhysRevSeriesl.23.125

1905 (1)

W.W. Coblentz, , “Infra-red absorption spectra, II”, Phys. Rev.  20(6), 337 (1905). doi: 10.1103/PhysRevSeriesl.20.337x

1904 (1)

W.W. Coblentz, , “Preliminary communication on the infra-red absorption spectra of organic compounds”, Astrophys. J.  20(3), 207 (1904). doi: 10.1086/141152

1900 (1)

L. Puccianti, , “Spettri di assorbimento di liquini nell'ultrarosso Memoria del Dott. L. Puccianti”, Il Nuovo Cimento  11(1), 241 (1900). doi: 10.1007/BF02720459

1896 (1)

B. Donath, , “Bolometrische Untersuchungen über Absorptionsspectra fluorescirender Substanzen und ätherischer Oele”, Annalen der Physik und Chemie  58(8), 609 (1896). doi: 10.1002/andp.18962940802

1881 (1)

C. Abney, and L.-C. Festing, , “On the influence of the atomic grouping in the molecules of organic bodies on their absorption in the infra-red region of the spectrum”, Philos. Trans. R. Soc.  172, 887 (1881). doi: 10.1098/rstl.1881.0020

C. Abney, and L.-C. Festing, , “On the influence of the atomic grouping in the molecules of organic bodies on their absorption in the infra-red region of the spectrum”, Philos. Trans. R. Soc.  172, 887 (1881). doi: 10.1098/rstl.1881.0020

1800 (4)

W. Herschel, , “Investigation of the powers of the prismatic colours to heat and illuminate objects; with remarks, that prove the different refrangibility of radiant heat. To which is added, an inquiry into the method of viewing the sun advantageously, with telescopes of large apertures and high magnifying powers”, Philos. Trans. R. Soc.  90, 255 (1800). doi: 10.1098/rstl.1800.0014

W. Herschel, , “Experiments on the refrangibility of the invisible rays of the sun”, Philos. Trans. R. Soc.  90, 284 (1800). doi: 10.1098/rstl.1800.0015

W. Herschel, , “Experiments on the solar and on the terrestrial rays that occasion heat; with a comparative view of the laws to which light and heat, or rather the rays which occasion them, are subject, in order to determine whether they are the same, or different. Part I”, Philos. Trans. R. Soc.  90, 293 (1800). doi: 10.1098/rstl.1800.0016

W. Herschel, , “Experiments on the solar and on the terrestrial rays that occasion heat; with a comparative view of the laws to which light and heat, or rather the rays which occasion them, are subject, in order to determine whether they are the same, or different. Part II”, Philos. Trans. R. Soc.  90, 437 (1800). doi: 10.1098/rstl.1800.0020

Abney, C.

C. Abney, and L.-C. Festing, , “On the influence of the atomic grouping in the molecules of organic bodies on their absorption in the infra-red region of the spectrum”, Philos. Trans. R. Soc.  172, 887 (1881). doi: 10.1098/rstl.1881.0020

All, M.

M. All, A.M. Emsley, and H. Herman, and R.J. Heywood, , “Spectroscopic studies of the ageing of cellulosic paper”, Polymer  42, 2893 (2001). doi: 10.1016/S0032-3861(00)00691-1

Alves, A.

A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, and M. Schwanninger, and J. Rodrigues, , “A common near infrared-based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix x eurolepis”, Wood Sci. Technol.  online first, 1 (2010). doi: 10.1007/s00226-010-0383-x

Anderson, C.A.

Z. Shi, and C.A. Anderson, , “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)”, J. Pharm. Sci.  99(12), 4766 (2010). doi: 10.1002/jps.22228

Bächle, H.

H. Bächle, B. Zimmer, and E. Windeisen, and G. Wegener, , “Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy”, Wood Sci. Technol.  44(3), 421 (2010). doi: 10.1007/s00226-010-0361-3

Backson, S.C.E.

S. Tasker, J.P.S. Badyal, and S.C.E. Backson, and R.W. Richards, , “Hydroxyl accessibility in celluloses”, Polymer  35(22), 4717 (1994). doi: 10.1016/0032-3861(94)90723-4

Badyal, J.P.S.

S. Tasker, J.P.S. Badyal, and S.C.E. Backson, and R.W. Richards, , “Hydroxyl accessibility in celluloses”, Polymer  35(22), 4717 (1994). doi: 10.1016/0032-3861(94)90723-4

Baillères, H.

H. Baillères and F. Davrieus, and F.H. Pichavant, , “Near infrared analysis as a tool for rapid screening of some major wood characteristics in a Eucalyptus breeding program”, Ann. For. Sci.  59(5/6), 479 (2002). doi: 10.1051/forest:20032

Bakry, R.

Barnes, R.B.

R.B. Barnes, and R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  21(1), 7 (1949). doi: 10.1021/ac60025a003

Barton, F.E.

Basch, A.

A. Basch and T. Wasserman, and M. Lewin, , “Near-infrared spectrum of cellulose—new method for obtaining crystallinity ratios”, J. Polym. Sci. Pol. Chem.  12(6), 1143 (1974). doi: 10.1002/pol.1974.170120601

Bassett, K.H.

K.H. Bassett and R.H. Marchessault, and C.Y. Liang, , “Infrared spectrum of crystalline polysaccharides. 9. near infrared spectrum of cellulose”, J. Polym. Sci. Part A  1(5), 1687 (1963). doi: 10.1002/poL.1963.100010520

Bath, J.

J.W. Ellis, and J. Bath, , “Hydrogen bridging in cellulose as shown by infrared absorption spectra”, J. Am. Chem. Soc.  62(10), 2859 (1940). doi: 10.1021/ja01867a064

Bellamy, L.J.

L.J. Bellamy, , Infrared Spectra of Complex Molecules. John Wiley and Sons, Inc., New York, USA (1958).

Berets, S.L.

M. Milosevic, and S.L. Berets, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 9 (2002).

Berntsson, O.

O. Berntsson, T. Burger, S. Folestad, L.G. Danielsson, and J. Kuhn, and J. Fricke, , “Effective sample size in diffuse reflectance near-IR spectrometry”, Anal. Chem.  71(3), 617 (1999). doi: 10.1021/ac980652u

O. Berntsson and L.G. Danielsson, and S. Folestad, , “Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry”, Anal. Chim. Acta.  364(1–3), 243 (1998). doi: 10.1016/S0003-2670(98)00196-2

Bockman, C.D.

J.A. Mitchell and C.D. Bockman, and A.V. Lee, , “Determination of acetyl content of cellulose acetate by near infrared spectroscopy”, Anal. Chem.  29(4), 499 (1957). doi: 10.1021/ac50162a023

Bokobza, L.

L. Bokobza, , “Near infrared spectroscopy”, J. Near Infrared Spectrosc.  6(1/4), 3 (1998). doi: 10.1255/jnirs.116

L. Bokobza, , in Near-Infrared Spectroscopy: Principles, Instruments and Applications , Ed by H.W. Siesler, Y. Ozaki, and S. Kawata, and H.M. Heise, Wiley-VCH, Weinheim, Germany, p. 11 (2002).

Bonn, G.K.

Brackett, F.S.

F.S. Brackett, , “Characteristic differentiation in the spectra of saturated hydrocarbons”, Proc. Natl. Acad. Sci. USA  14, 857 (1928). doi: 10.1073/pnas.14.11.857

Brancheriau, L.

Buijs, K.

K. Buijs, and G.R. Choppin, , “Near-infrared studies of structure of water. 1. Pure water”, J. Chem. Phys.  39(8), 2035 (1963). doi: 10.1063/1.1734579

Burger, T.

O. Berntsson, T. Burger, S. Folestad, L.G. Danielsson, and J. Kuhn, and J. Fricke, , “Effective sample size in diffuse reflectance near-IR spectrometry”, Anal. Chem.  71(3), 617 (1999). doi: 10.1021/ac980652u

J.M. Olinger and P.R. Griffiths, and T. Burger, , in Handbook of Near-Infrared Analysis , 2nd Edn, Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker, Inc., New York, USA, p. 19 (2001).

Buswell, A.M.

W.H. Rodebush, and A.M. Buswell, , “Association through hydrogen”, J. Phys. Chem.  43(2), 219 (1939). doi: 10.1021/j150389a004

A.M. Buswell and V. Deitz, and W.H. Rodebush, , “A study of the effect of hydrogen bonding upon the infrared absorption of the hydroxyl group”, J. Chem. Phys.  5(7), 501 (1937). doi: 10.1063/1.1750065

Cairós, C.

Campos, A.C.M.

P.R.G. Hein, A.C.M. Campos, R.F. Mendes, and L.M. Mendes, and G. Chaix, , “Estimation of physical and mechanical properties of agro-based particleboards by near infrared spectroscopy”, Eur. J. Wood Wood Prod.  69(3), 431 (2011). doi: 10.1007/s00107-010-0471-5

Capanema, E.

T.F. Yeh, T. Yamada, E. Capanema, H.M. Chang, and V. Chiang, and J.F. Kadla, , “Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  53(9), 3328 (2005). doi: 10.1021/jf0480647

Çelen, I.

I. Çelen and D. Harper, and N. Labbé, , “A multivariate approach to the acetylated poplar wood samples by near infrared spectroscopy”, Holzforschung  62(2), 189 (2008). doi: 10.1515/HF.2008.048

Chaix, G.

P.R.G. Hein, A.C.M. Campos, R.F. Mendes, and L.M. Mendes, and G. Chaix, , “Estimation of physical and mechanical properties of agro-based particleboards by near infrared spectroscopy”, Eur. J. Wood Wood Prod.  69(3), 431 (2011). doi: 10.1007/s00107-010-0471-5

P.R.G. Hein, L. Brancheriau, P.F. Trugilho, and J.T. Lima, and G. Chaix, , “Resonance and near infrared spectroscopy for evaluating dynamic wood properties”, J. Near Infrared Spectrosc.  18(6), 443 (2010). doi: 10.1255/jnirs.907

Chang, H.M.

T.F. Yeh, T. Yamada, E. Capanema, H.M. Chang, and V. Chiang, and J.F. Kadla, , “Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  53(9), 3328 (2005). doi: 10.1021/jf0480647

Chang, H.-M.

T.-F. Yeh and H.-M. Chang, and J.F. Kadla, , “Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  52(6), 1435 (2004). doi: 10.1021/jf034874r

Chanzy, H.

Y. Maréchal, and H. Chanzy, , “The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry”, J. Mot. Struct.  523, 183 (2000). doi: 10.1016/S0022-2860(99)00389-0

Charpentier, J.P.

A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, and M. Schwanninger, and J. Rodrigues, , “A common near infrared-based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix x eurolepis”, Wood Sci. Technol.  online first, 1 (2010). doi: 10.1007/s00226-010-0383-x

Chaussidon, J.

V. Fornes, and J. Chaussidon, , “Interpretation of evolution with temperature of ν2 + ν3 combination band in water”, J. Chem. Phys.  68(10), 4667 (1978). doi: 10.1063/1.435576

Chiang, V.

T.F. Yeh, T. Yamada, E. Capanema, H.M. Chang, and V. Chiang, and J.F. Kadla, , “Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  53(9), 3328 (2005). doi: 10.1021/jf0480647

Choppin, G.R.

K. Buijs, and G.R. Choppin, , “Near-infrared studies of structure of water. 1. Pure water”, J. Chem. Phys.  39(8), 2035 (1963). doi: 10.1063/1.1734579

Ciurczak, E.W.

E.W. Ciurczak and R.P. Torlini, and M.P. Demkowicz, , “Determination of particle size of pharmaceutical raw materials using near infrared spectroscopy”, Spectroscopy  1, 36 (1986).

E.W. Ciurczak, , in Handbook of Vibrational Spectroscopy , Vol. 3, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 8 (2002).

E.W. Ciurczak, , in Handbook of Near-Infrared Analysis , 2nd Edn, Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker, Inc., New York, USA, p. 7 (2001).

Coblentz, W.W.

W.W. Coblentz, , “Infra-red absorption and reflection spectra”, Phys. Rev.  23(2), 125 (1906). doi: 10.1103/PhysRevSeriesl.23.125

W.W. Coblentz, , “Infra-red absorption spectra, II”, Phys. Rev.  20(6), 337 (1905). doi: 10.1103/PhysRevSeriesl.20.337x

W.W. Coblentz, , “Preliminary communication on the infra-red absorption spectra of organic compounds”, Astrophys. J.  20(3), 207 (1904). doi: 10.1086/141152

Coello, J.

Dahm, D.J.

K.C. Dahm, and D.J. Dahm, , “Relation of representative layer theory to other theories of diffuse reflection”, J. Near Infrared Spectrosc.  12(3), 189 (2004). doi: 10.1255/jnirs.426

D.J. Dahm, and K.D. Dahm, , “Illustration of failure of continuum models of diffuse reflectance”, J. Near Infrared Spectrosc.  11(6), 479 (2003). doi: 10.1255/jnirs.398

D.J. Dahm, and K.D. Dahm, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 14 (2002).

D.J. Dahm, and K.D. Dahm, , Interpreting Diffuse Reflectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials. IM Publications LLP, Chichester, UK (2007).

Dahm, K.C.

Dahm, K.D.

D.J. Dahm, and K.D. Dahm, , “Illustration of failure of continuum models of diffuse reflectance”, J. Near Infrared Spectrosc.  11(6), 479 (2003). doi: 10.1255/jnirs.398

D.J. Dahm, and K.D. Dahm, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 14 (2002).

D.J. Dahm, and K.D. Dahm, , Interpreting Diffuse Reflectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials. IM Publications LLP, Chichester, UK (2007).

Danielsson, L.G.

O. Berntsson, T. Burger, S. Folestad, L.G. Danielsson, and J. Kuhn, and J. Fricke, , “Effective sample size in diffuse reflectance near-IR spectrometry”, Anal. Chem.  71(3), 617 (1999). doi: 10.1021/ac980652u

O. Berntsson and L.G. Danielsson, and S. Folestad, , “Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry”, Anal. Chim. Acta.  364(1–3), 243 (1998). doi: 10.1016/S0003-2670(98)00196-2

Davrieus, F.

H. Baillères and F. Davrieus, and F.H. Pichavant, , “Near infrared analysis as a tool for rapid screening of some major wood characteristics in a Eucalyptus breeding program”, Ann. For. Sci.  59(5/6), 479 (2002). doi: 10.1051/forest:20032

Deitz, V.

A.M. Buswell and V. Deitz, and W.H. Rodebush, , “A study of the effect of hydrogen bonding upon the infrared absorption of the hydroxyl group”, J. Chem. Phys.  5(7), 501 (1937). doi: 10.1063/1.1750065

Delker, D.A.

R.F. Goddu, and D.A. Delker, , “Spectra-structure correlations for the near-infrared region”, Anal. Chem.  32(1), 140 (1960). doi: 10.1021/ac60157a048

Demkowicz, M.P.

E.W. Ciurczak and R.P. Torlini, and M.P. Demkowicz, , “Determination of particle size of pharmaceutical raw materials using near infrared spectroscopy”, Spectroscopy  1, 36 (1986).

DeNoyer, L.K.

L.K. DeNoyer, and J.G. Dodd, , in Handbook of Vibrational Spectroscopy , Vol. 3, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 12 (2002).

Dodd, J.G.

L.K. DeNoyer, and J.G. Dodd, , in Handbook of Vibrational Spectroscopy , Vol. 3, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 12 (2002).

Donath, B.

B. Donath, , “Bolometrische Untersuchungen über Absorptionsspectra fluorescirender Substanzen und ätherischer Oele”, Annalen der Physik und Chemie  58(8), 609 (1896). doi: 10.1002/andp.18962940802

Duckworth, J.H.

DuPre, E.F.

R.T. O'Connor and E.F. DuPre, and D. Mitcham, , “Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons, Part I: Physical and crystalline modifications and oxidation”, Text. Res. J.  28, 382 (1958). doi: 10.1177/004051755802800503

Edmondson, P.R.

R.T. Holman, and P.R. Edmondson, , “Near-infrared spectra of fatty acids and some related substances”, Anal. Chem.  28(10), 1533 (1956). doi: 10.1021/ac60118a010

Eilert, A.J.

A.J. Eilert, and D.L. Wetzel, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 12 (2002).

Ellis, J.W.

J.W. Ellis, and J. Bath, , “Hydrogen bridging in cellulose as shown by infrared absorption spectra”, J. Am. Chem. Soc.  62(10), 2859 (1940). doi: 10.1021/ja01867a064

J.W. Ellis, , “The near infra-red absorption spectra of some aldehydes, ketones, esters and ethers”, J. Am. Chem. Soc.  51(5), 1384 (1929). doi: 10.1021/ja01380a012

J.W. Ellis, , “Molecular absorption spectra of liquids below 3 mu”, Trans. Faraday Soc.  25, 0888 (1929). doi: 10.1039/tf9292500888

J.W. Ellis, , “The near infra-red absorption spectra of some organic liquids”, Phys. Rev.  23(1), 48 (1924). doi: 10.1103/PhysRev.23.48

Emsley, A.M.

M. All, A.M. Emsley, and H. Herman, and R.J. Heywood, , “Spectroscopic studies of the ageing of cellulosic paper”, Polymer  42, 2893 (2001). doi: 10.1016/S0032-3861(00)00691-1

Esteves, B.

B. Esteves, and H. Pereira, , “Quality assessment of heat-treated wood by NIR spectroscopy. Qualitätsbewertung von wärmebehandeltem Holz mittels NIR-Spektroskopie”, Holz Rob Werkst.  66(5), 323 (2008). doi: 10.1007/s00107-008-0262-4

Evans, R.

L.R. Schimleck, and R. Evans, , “Estimation of Pinus radiata D. Don tracheid morphological characteristics by near infrared spectroscopy”, Holzforschung  58(1), 66 (2004). doi: 10.1515/HF.2004.009

Fackler, K.

Fearn, T.

B.G. Osborne, and T. Fearn, Near Infrared Spectroscopy in food analysis. Longman Scientific & Technical, Harlow, Essex, UK (1998).

Fengel, D.

D. Fengel, and G. Wegener, Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter & Co., Berlin, Germany (1989).

Festing, L.-C.

C. Abney, and L.-C. Festing, , “On the influence of the atomic grouping in the molecules of organic bodies on their absorption in the infra-red region of the spectrum”, Philos. Trans. R. Soc.  172, 887 (1881). doi: 10.1098/rstl.1881.0020

Flett, M.S.C.

M.S.C. Flett, , “Studies of the band near 3 μ in some hydroxy compounds”, Spectrochim. Acta  10(1), 21 (1957). doi: 10.1016/0371-1951(57)80160-X

Folestad, S.

O. Berntsson, T. Burger, S. Folestad, L.G. Danielsson, and J. Kuhn, and J. Fricke, , “Effective sample size in diffuse reflectance near-IR spectrometry”, Anal. Chem.  71(3), 617 (1999). doi: 10.1021/ac980652u

O. Berntsson and L.G. Danielsson, and S. Folestad, , “Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry”, Anal. Chim. Acta.  364(1–3), 243 (1998). doi: 10.1016/S0003-2670(98)00196-2

Fornes, V.

V. Fornes, and J. Chaussidon, , “Interpretation of evolution with temperature of ν2 + ν3 combination band in water”, J. Chem. Phys.  68(10), 4667 (1978). doi: 10.1063/1.435576

Fricke, J.

O. Berntsson, T. Burger, S. Folestad, L.G. Danielsson, and J. Kuhn, and J. Fricke, , “Effective sample size in diffuse reflectance near-IR spectrometry”, Anal. Chem.  71(3), 617 (1999). doi: 10.1021/ac980652u

Fujimoto, T.

George, W.O.

W.O. George, and R. Lewis, , in Handbook of Vibrational Spectroscopy , Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 16 (2002).

Gierlinger, N.

M. Schwanninger, B. Hinterstoisser, N. Gierlinger, and R. Wimmer, and J. Hanger, , “Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood”, Holz Rob Werkst.  62(6), 483 (2004). doi: 10.1007/s00107-004-0520-z

Gindl, W.

Goddu, R.F.

R.F. Goddu, and D.A. Delker, , “Spectra-structure correlations for the near-infrared region”, Anal. Chem.  32(1), 140 (1960). doi: 10.1021/ac60157a048

Golay, M.J.E.

A. Savitzky, and M.J.E. Golay, , “Smoothing and differentiation of data by simplified least squares procedures”, Anal. Chem.  36(8), 1627 (1964). doi: 10.1021/ac60214a047

Gore, R.C.

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  30(4), 570 (1958). doi: 10.1021/ac50163a004

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  28(4), 577 (1956). doi: 10.1021/ac60112a002

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  26(1), 11 (1954). doi: 10.1021/ac60085a003

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  24(1), 8 (1952). doi: 10.1021/ac60061a002

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  23(1), 7 (1951). doi: 10.1021/ac60049a003

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  22(1), 7 (1950). doi: 10.1021/ac60037a003

R.B. Barnes, and R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  21(1), 7 (1949). doi: 10.1021/ac60025a003

Gradinger, C.

Griffiths, P.R.

P.R. Griffiths, and J.M. Olinger, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 15 (2002).

J.M. Olinger and P.R. Griffiths, and T. Burger, , in Handbook of Near-Infrared Analysis , 2nd Edn, Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker, Inc., New York, USA, p. 19 (2001).

Groom, L.H.

C.L. So, B.K. Via, L.H. Groom, L.R. Schimleck, T.F. Shupe, and S.S. Kelley, and T.G. Rials, , “Near infrared spectroscopy in the forest products industry”, Forest Prod. J.  54(3), 6 (2004).

Hanger, J.

M. Schwanninger, B. Hinterstoisser, N. Gierlinger, and R. Wimmer, and J. Hanger, , “Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood”, Holz Rob Werkst.  62(6), 483 (2004). doi: 10.1007/s00107-004-0520-z

Haque, E.

Harper, D.

I. Çelen and D. Harper, and N. Labbé, , “A multivariate approach to the acetylated poplar wood samples by near infrared spectroscopy”, Holzforschung  62(2), 189 (2008). doi: 10.1515/HF.2008.048

Hayashi, K.

Heigl, N.

Hein, P.R.G.

P.R.G. Hein, A.C.M. Campos, R.F. Mendes, and L.M. Mendes, and G. Chaix, , “Estimation of physical and mechanical properties of agro-based particleboards by near infrared spectroscopy”, Eur. J. Wood Wood Prod.  69(3), 431 (2011). doi: 10.1007/s00107-010-0471-5

P.R.G. Hein, L. Brancheriau, P.F. Trugilho, and J.T. Lima, and G. Chaix, , “Resonance and near infrared spectroscopy for evaluating dynamic wood properties”, J. Near Infrared Spectrosc.  18(6), 443 (2010). doi: 10.1255/jnirs.907

Heise, H.M.

H.W. Siesler, Y. Ozaki, and S. Kawata, and H.M. Heise, Near-Infrared Spectroscopy. Principles, Instruments, Applications , 1st Edn.Wiley-VCH Verlag GmbH, Weinheim, Germany (2002).

Herman, H.

M. All, A.M. Emsley, and H. Herman, and R.J. Heywood, , “Spectroscopic studies of the ageing of cellulosic paper”, Polymer  42, 2893 (2001). doi: 10.1016/S0032-3861(00)00691-1

Herschel, W.

W. Herschel, , “Herschel's paper”, J. Near Infrared Spectrosc.  8(2), 75 (2000).

W. Herschel, , “Experiments on the solar and on the terrestrial rays that occasion heat; with a comparative view of the laws to which light and heat, or rather the rays which occasion them, are subject, in order to determine whether they are the same, or different. Part I”, Philos. Trans. R. Soc.  90, 293 (1800). doi: 10.1098/rstl.1800.0016

W. Herschel, , “Experiments on the solar and on the terrestrial rays that occasion heat; with a comparative view of the laws to which light and heat, or rather the rays which occasion them, are subject, in order to determine whether they are the same, or different. Part II”, Philos. Trans. R. Soc.  90, 437 (1800). doi: 10.1098/rstl.1800.0020

W. Herschel, , “Investigation of the powers of the prismatic colours to heat and illuminate objects; with remarks, that prove the different refrangibility of radiant heat. To which is added, an inquiry into the method of viewing the sun advantageously, with telescopes of large apertures and high magnifying powers”, Philos. Trans. R. Soc.  90, 255 (1800). doi: 10.1098/rstl.1800.0014

W. Herschel, , “Experiments on the refrangibility of the invisible rays of the sun”, Philos. Trans. R. Soc.  90, 284 (1800). doi: 10.1098/rstl.1800.0015

Herzberg, G.

K.P. Huber, and G. Herzberg, , Molecular Spectra and Structure: Vol. 1-Spectra of Diatomic Molecules. Van Nostrand Reinhold, New York, USA (1979).

Heywood, R.J.

M. All, A.M. Emsley, and H. Herman, and R.J. Heywood, , “Spectroscopic studies of the ageing of cellulosic paper”, Polymer  42, 2893 (2001). doi: 10.1016/S0032-3861(00)00691-1

Himmelsbach, D.S.

Hinterstoisser, B.

M. Schwanninger and B. Stefke, and B. Hinterstoisser, , “Qualitative assessment of acetylated wood with infra-red spectroscopic methods”, J. Near Infrared Spectrosc.  19(5), 349 (2011). doi: 10.1255/jnirs.942

K. Fackler, J.S. Stevanic, T. Ters, B. Hinterstoisser, and M. Schwanninger, and L. Salmén, , “Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy”, Enzyme Microb. Technol.  47(6), 257 (2010). doi: 10.1016/j.enzmictec.2010.07.009

B. Stefke, E. Windeisen, and M. Schwanninger, and B. Hinterstoisser, , “Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods”, Anal. Chem.  80(4), 1272 (2008). doi: 10.1021/ac7020823

M. Schwanninger, B. Hinterstoisser, C. Gradinger, and K. Messner, and K. Fackler, , “Examination of spruce wood biodegraded by Ceriporiopsis subvermispora using near and mid infrared spectroscopy”, J. Near Infrared Spectrosc.  12(6), 397 (2004a). doi: 10.1255/jnirs.449

M. Schwanninger, B. Hinterstoisser, N. Gierlinger, and R. Wimmer, and J. Hanger, , “Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood”, Holz Rob Werkst.  62(6), 483 (2004). doi: 10.1007/s00107-004-0520-z

W. Gindl, A. Teischinger, and M. Schwanninger, and B. Hinterstoisser, , “The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties”, J. Near Infrared Spectrosc.  9(4), 255 (2001). doi: 10.1255/jnirs.311

Holman, R.T.

R.T. Holman, and P.R. Edmondson, , “Near-infrared spectra of fatty acids and some related substances”, Anal. Chem.  28(10), 1533 (1956). doi: 10.1021/ac60118a010

Huber, K.P.

K.P. Huber, and G. Herzberg, , Molecular Spectra and Structure: Vol. 1-Spectra of Diatomic Molecules. Van Nostrand Reinhold, New York, USA (1979).

Huck, C.W.

Inagaki, T.

T. Inagaki, H.W. Siesler, and K. Mitsui, and S. Tsuchikawa, , “Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: A NIR spectroscopy and XRD study”, Biomacromolecules  11(9), 2300 (2010). doi: 10.1021/bm100403y

K. Mitsui and T. Inagaki, and S. Tsuchikawa, , “Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy”, Biomacromolecules  9(1), 286 (2008). doi: 10.1021/bm7008069

T. Inagaki and H. Yonenobu, and S. Tsuchikawa, , “Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood”, Appl. Spectrosc.  62(8), 860 (2008). doi: 10.1366/000370208785284312

Jackson, R.L.

R.L. Jackson, , “Determination of total hydroxyl content of cellulose esters by near-infrared spectroscopy”, Tappi J.  51(12), 560 (1968).

Jee, R.D.

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the percentage volume particle size distribution of powdered microcrystalline cellulose using reflectance near-infrared spectroscopy”, Analyst  128(11), 1326 (2003). doi: 10.1039/A807134I

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy”, Analyst  124(1), 33 (1999). doi: 10.1039/a807134i

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “The application of multiple linear regression to the measurement of the median particle size of drugs and pharmaceutical excipients by near-infrared spectroscopy”, Analyst  123(11), 2297 (1998). doi: 10.1039/A806001K

Jiang, J.H.

Kadla, J.F.

T.F. Yeh, T. Yamada, E. Capanema, H.M. Chang, and V. Chiang, and J.F. Kadla, , “Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  53(9), 3328 (2005). doi: 10.1021/jf0480647

T.-F. Yeh and H.-M. Chang, and J.F. Kadla, , “Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  52(6), 1435 (2004). doi: 10.1021/jf034874r

Kawata, S.

H.W. Siesler, Y. Ozaki, and S. Kawata, and H.M. Heise, Near-Infrared Spectroscopy. Principles, Instruments, Applications , 1st Edn.Wiley-VCH Verlag GmbH, Weinheim, Germany (2002).

Kaye, W.

W. Kaye, , “Near-infrared spectroscopy: II. Instrumentation and technique a review”, Spectrochim. Acta  7, 181 (1955). doi: 10.1016/0371-1951(55)80025-2

W. Kaye, , “Near-infrared spectroscopy: I. Spectral identification and analytical applications”, Spectrochim. Acta  6(4), 257 (1954). doi: 10.1016/0371-1951(54)80011-7

Kelley, S.S.

C.L. So, B.K. Via, L.H. Groom, L.R. Schimleck, T.F. Shupe, and S.S. Kelley, and T.G. Rials, , “Near infrared spectroscopy in the forest products industry”, Forest Prod. J.  54(3), 6 (2004).

Korelova, V.P.

V.P. Korelova, , Tr. Leningr. Lesotekhn. Akad.  2, 167 (1957).

Kuhn, J.

O. Berntsson, T. Burger, S. Folestad, L.G. Danielsson, and J. Kuhn, and J. Fricke, , “Effective sample size in diffuse reflectance near-IR spectrometry”, Anal. Chem.  71(3), 617 (1999). doi: 10.1021/ac980652u

Kurata, Y.

Y. Kurata and S. Tsuchikawa, and T. Fujimoto, , “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy”, Holzforschung  65(3), 389 (2011). doi: 10.1515/HF.2011.034

T. Fujimoto, Y. Kurata, and K. Matsumoto, and S. Tsuchikawa, , “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens”, J. Near Infrared Spectrosc.  16(6), 529 (2008). doi: 10.1255/jnirs.818

Labbé, N.

I. Çelen and D. Harper, and N. Labbé, , “A multivariate approach to the acetylated poplar wood samples by near infrared spectroscopy”, Holzforschung  62(2), 189 (2008). doi: 10.1515/HF.2008.048

Lee, A.V.

J.A. Mitchell and C.D. Bockman, and A.V. Lee, , “Determination of acetyl content of cellulose acetate by near infrared spectroscopy”, Anal. Chem.  29(4), 499 (1957). doi: 10.1021/ac50162a023

Lewin, M.

A. Basch and T. Wasserman, and M. Lewin, , “Near-infrared spectrum of cellulose—new method for obtaining crystallinity ratios”, J. Polym. Sci. Pol. Chem.  12(6), 1143 (1974). doi: 10.1002/pol.1974.170120601

Lewis, R.

W.O. George, and R. Lewis, , in Handbook of Vibrational Spectroscopy , Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 16 (2002).

Liang, C.Y.

K.H. Bassett and R.H. Marchessault, and C.Y. Liang, , “Infrared spectrum of crystalline polysaccharides. 9. near infrared spectrum of cellulose”, J. Polym. Sci. Part A  1(5), 1687 (1963). doi: 10.1002/poL.1963.100010520

Lima, J.T.

Lo, S.-C.

L. Weyer, and S.-C. Lo, , in Handbook of Vibrational Spectroscopy , Vol. 3, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 1817 (2002).

Lundqvist, S.-O.

Marchessault, R.H.

K.H. Bassett and R.H. Marchessault, and C.Y. Liang, , “Infrared spectrum of crystalline polysaccharides. 9. near infrared spectrum of cellulose”, J. Polym. Sci. Part A  1(5), 1687 (1963). doi: 10.1002/poL.1963.100010520

Maréchal, Y.

Y. Maréchal, and H. Chanzy, , “The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry”, J. Mot. Struct.  523, 183 (2000). doi: 10.1016/S0022-2860(99)00389-0

Maspoch, S.

Matsumoto, K.

May, L.

McDonald, R.

R. McDonald, , “Review: Infrared Spectrometry”, Anal. Chem.  54(8), 1250 (1982). doi: 10.1021/ac00245a601

McDonald, R.S.

R.S. McDonald, , “Review: Infrared spectrometry”, Anal. Chem.  58(9), 1906 (1986). doi: 10.1021/ac00122a003

Mendes, L.M.

P.R.G. Hein, A.C.M. Campos, R.F. Mendes, and L.M. Mendes, and G. Chaix, , “Estimation of physical and mechanical properties of agro-based particleboards by near infrared spectroscopy”, Eur. J. Wood Wood Prod.  69(3), 431 (2011). doi: 10.1007/s00107-010-0471-5

Mendes, R.F.

P.R.G. Hein, A.C.M. Campos, R.F. Mendes, and L.M. Mendes, and G. Chaix, , “Estimation of physical and mechanical properties of agro-based particleboards by near infrared spectroscopy”, Eur. J. Wood Wood Prod.  69(3), 431 (2011). doi: 10.1007/s00107-010-0471-5

Messner, K.

Michell, A.J.

L.R. Schimleck, P.J. Wright, and A.J. Michell, and A.F.A. Wallis, , “Near-infrared spectra and chemical compositions of E-globulus and E-nitens plantation woods”, Appita J.  50(1), 40 (1997).

A.J. Michell, and L.R. Schimleck, , “NIR spectroscopy of woods from Eucalyptus globulus”, Appita J.  49(1), 23 (1996).

Milosevic, M.

M. Milosevic, and S.L. Berets, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 9 (2002).

Mitcham, D.

R.T. O'Connor and E.F. DuPre, and D. Mitcham, , “Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons, Part I: Physical and crystalline modifications and oxidation”, Text. Res. J.  28, 382 (1958). doi: 10.1177/004051755802800503

Mitchell, J.A.

J.A. Mitchell and C.D. Bockman, and A.V. Lee, , “Determination of acetyl content of cellulose acetate by near infrared spectroscopy”, Anal. Chem.  29(4), 499 (1957). doi: 10.1021/ac50162a023

Mitsui, K.

T. Inagaki, H.W. Siesler, and K. Mitsui, and S. Tsuchikawa, , “Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: A NIR spectroscopy and XRD study”, Biomacromolecules  11(9), 2300 (2010). doi: 10.1021/bm100403y

K. Mitsui and T. Inagaki, and S. Tsuchikawa, , “Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy”, Biomacromolecules  9(1), 286 (2008). doi: 10.1021/bm7008069

Moffat, A.C.

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the percentage volume particle size distribution of powdered microcrystalline cellulose using reflectance near-infrared spectroscopy”, Analyst  128(11), 1326 (2003). doi: 10.1039/A807134I

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy”, Analyst  124(1), 33 (1999). doi: 10.1039/a807134i

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “The application of multiple linear regression to the measurement of the median particle size of drugs and pharmaceutical excipients by near-infrared spectroscopy”, Analyst  123(11), 2297 (1998). doi: 10.1039/A806001K

Morita, S.

Najam-ul-Haq, M.

Negri, M.

A. Sandak and J. Sandak, and M. Negri, , “Relationship between near-infrared (NIR) spectra and the geographical provenance of timber”, Wood Sci. Technol.  45(1), 35 (2011). doi: 10.1007/s00226-010-0313-y

Nikitin, V.I.

V.I. Nikitin, , Vestnik Leningradskogo Universiteta  5(3), 33 (1950).

Norris, K.

P. Williams, and K. Norris, Near-Infrared Technology in the Agricultural and Food Industries , 2nd Edn.American Association of Cereal Chemists, Inc., St Paul, Minnesota, USA (2004).

O'Connor, R.T.

R.T. O'Connor and E.F. DuPre, and D. Mitcham, , “Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons, Part I: Physical and crystalline modifications and oxidation”, Text. Res. J.  28, 382 (1958). doi: 10.1177/004051755802800503

Olinger, J.M.

J.M. Olinger and P.R. Griffiths, and T. Burger, , in Handbook of Near-Infrared Analysis , 2nd Edn, Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker, Inc., New York, USA, p. 19 (2001).

P.R. Griffiths, and J.M. Olinger, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 15 (2002).

O'Neil, A.J.

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the percentage volume particle size distribution of powdered microcrystalline cellulose using reflectance near-infrared spectroscopy”, Analyst  128(11), 1326 (2003). doi: 10.1039/A807134I

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy”, Analyst  124(1), 33 (1999). doi: 10.1039/a807134i

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “The application of multiple linear regression to the measurement of the median particle size of drugs and pharmaceutical excipients by near-infrared spectroscopy”, Analyst  123(11), 2297 (1998). doi: 10.1039/A806001K

Osborne, B.G.

B.G. Osborne, and T. Fearn, Near Infrared Spectroscopy in food analysis. Longman Scientific & Technical, Harlow, Essex, UK (1998).

Otsuka, M.

M. Otsuka, , “Comparative particle size determination of phenacetin bulk powder by using Kubelka–Munk theory and principal component regression analysis based on near-infrared spectroscopy”, Powder Technol.  141(3), 244 (2004). doi: 10.1016/j.powtec.2004.01.025

Ozaki, Y.

Pacsu, E.

R. Steele, and E. Pacsu, , “Cellulose studies.15. Infrared spectra of trimethyl cellulose, cellulose and starch”, Text. Res. J.  19(12), 790 (1949). doi: 10.1177/004051754901901203

Pâques, L.E.

A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, and M. Schwanninger, and J. Rodrigues, , “A common near infrared-based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix x eurolepis”, Wood Sci. Technol.  online first, 1 (2010). doi: 10.1007/s00226-010-0383-x

Pasikatan, M.C.

Pereira, H.

B. Esteves, and H. Pereira, , “Quality assessment of heat-treated wood by NIR spectroscopy. Qualitätsbewertung von wärmebehandeltem Holz mittels NIR-Spektroskopie”, Holz Rob Werkst.  66(5), 323 (2008). doi: 10.1007/s00107-008-0262-4

Petter, C.H.

Pichavant, F.H.

H. Baillères and F. Davrieus, and F.H. Pichavant, , “Near infrared analysis as a tool for rapid screening of some major wood characteristics in a Eucalyptus breeding program”, Ann. For. Sci.  59(5/6), 479 (2002). doi: 10.1051/forest:20032

Plyler, E.K.

J.W. Rowen, and E.K. Plyler, , “Effect of deuteration oxidation and hydrogen-bonding on the infrared spectrum of cellulose”, J. Res. Nat. Bur. Standards  44(3), 313 (1950).

Puccianti, L.

L. Puccianti, , “Spettri di assorbimento di liquini nell'ultrarosso Memoria del Dott. L. Puccianti”, Il Nuovo Cimento  11(1), 241 (1900). doi: 10.1007/BF02720459

Rainer, M.

Rials, T.G.

C.L. So, B.K. Via, L.H. Groom, L.R. Schimleck, T.F. Shupe, and S.S. Kelley, and T.G. Rials, , “Near infrared spectroscopy in the forest products industry”, Forest Prod. J.  54(3), 6 (2004).

Richards, R.W.

S. Tasker, J.P.S. Badyal, and S.C.E. Backson, and R.W. Richards, , “Hydroxyl accessibility in celluloses”, Polymer  35(22), 4717 (1994). doi: 10.1016/0032-3861(94)90723-4

Rodebush, W.H.

W.H. Rodebush, and A.M. Buswell, , “Association through hydrogen”, J. Phys. Chem.  43(2), 219 (1939). doi: 10.1021/j150389a004

A.M. Buswell and V. Deitz, and W.H. Rodebush, , “A study of the effect of hydrogen bonding upon the infrared absorption of the hydroxyl group”, J. Chem. Phys.  5(7), 501 (1937). doi: 10.1063/1.1750065

Rodrigues, J.

A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, and M. Schwanninger, and J. Rodrigues, , “A common near infrared-based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix x eurolepis”, Wood Sci. Technol.  online first, 1 (2010). doi: 10.1007/s00226-010-0383-x

Rowen, J.W.

J.W. Rowen, and E.K. Plyler, , “Effect of deuteration oxidation and hydrogen-bonding on the infrared spectrum of cellulose”, J. Res. Nat. Bur. Standards  44(3), 313 (1950).

Rozenberg, P.

A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, and M. Schwanninger, and J. Rodrigues, , “A common near infrared-based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix x eurolepis”, Wood Sci. Technol.  online first, 1 (2010). doi: 10.1007/s00226-010-0383-x

Rudzik, L.

E. Wüst, and L. Rudzik, , in Infrarotspektroskopie. Highlight aus dem Analytiker-Taschenbuch , Ed by A.M.B.H. Günzler, R. Borsdorf, K. Danzer, W. Fresenius, R. Galensa, W. Huber, I. Lüderwald, G. Schwedt, and G. Tölg, and H. Wisser, Springer, Berlin, Germany, p. 221 (1996).

Salmén, L.

K. Fackler, J.S. Stevanic, T. Ters, B. Hinterstoisser, and M. Schwanninger, and L. Salmén, , “Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy”, Enzyme Microb. Technol.  47(6), 257 (2010). doi: 10.1016/j.enzmictec.2010.07.009

Sandak, A.

A. Sandak and J. Sandak, and M. Negri, , “Relationship between near-infrared (NIR) spectra and the geographical provenance of timber”, Wood Sci. Technol.  45(1), 35 (2011). doi: 10.1007/s00226-010-0313-y

Sandak, J.

A. Sandak and J. Sandak, and M. Negri, , “Relationship between near-infrared (NIR) spectra and the geographical provenance of timber”, Wood Sci. Technol.  45(1), 35 (2011). doi: 10.1007/s00226-010-0313-y

Santos, A.

A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, and M. Schwanninger, and J. Rodrigues, , “A common near infrared-based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix x eurolepis”, Wood Sci. Technol.  online first, 1 (2010). doi: 10.1007/s00226-010-0383-x

Šašic, S.

Savitzky, A.

A. Savitzky, and M.J.E. Golay, , “Smoothing and differentiation of data by simplified least squares procedures”, Anal. Chem.  36(8), 1627 (1964). doi: 10.1021/ac60214a047

Schimleck, L.R.

L.R. Schimleck, and R. Evans, , “Estimation of Pinus radiata D. Don tracheid morphological characteristics by near infrared spectroscopy”, Holzforschung  58(1), 66 (2004). doi: 10.1515/HF.2004.009

C.L. So, B.K. Via, L.H. Groom, L.R. Schimleck, T.F. Shupe, and S.S. Kelley, and T.G. Rials, , “Near infrared spectroscopy in the forest products industry”, Forest Prod. J.  54(3), 6 (2004).

L.R. Schimleck, P.J. Wright, and A.J. Michell, and A.F.A. Wallis, , “Near-infrared spectra and chemical compositions of E-globulus and E-nitens plantation woods”, Appita J.  50(1), 40 (1997).

A.J. Michell, and L.R. Schimleck, , “NIR spectroscopy of woods from Eucalyptus globulus”, Appita J.  49(1), 23 (1996).

Schwanninger, M.

M. Schwanninger and B. Stefke, and B. Hinterstoisser, , “Qualitative assessment of acetylated wood with infra-red spectroscopic methods”, J. Near Infrared Spectrosc.  19(5), 349 (2011). doi: 10.1255/jnirs.942

K. Fackler, and M. Schwanninger, , “Accessibility of hydroxyl groups of brown-rot degraded spruce wood to heavy water”, J. Near Infrared Spectrosc.  19(5), 359 (2011). doi: 10.1255/jnirs.943

K. Fackler, J.S. Stevanic, T. Ters, B. Hinterstoisser, and M. Schwanninger, and L. Salmén, , “Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy”, Enzyme Microb. Technol.  47(6), 257 (2010). doi: 10.1016/j.enzmictec.2010.07.009

A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, and M. Schwanninger, and J. Rodrigues, , “A common near infrared-based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix x eurolepis”, Wood Sci. Technol.  online first, 1 (2010). doi: 10.1007/s00226-010-0383-x

K. Fackler, and M. Schwanninger, , “Polysaccharide degradation and lignin modification during brown rot of spruce wood: A polarised Fourier transform near infra-red study”, J. Near Infrared Spectrosc.  18(6), 403 (2010). doi: 10.1255/jnirs.901

B. Stefke, E. Windeisen, and M. Schwanninger, and B. Hinterstoisser, , “Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods”, Anal. Chem.  80(4), 1272 (2008). doi: 10.1021/ac7020823

M. Schwanninger, B. Hinterstoisser, C. Gradinger, and K. Messner, and K. Fackler, , “Examination of spruce wood biodegraded by Ceriporiopsis subvermispora using near and mid infrared spectroscopy”, J. Near Infrared Spectrosc.  12(6), 397 (2004a). doi: 10.1255/jnirs.449

M. Schwanninger, B. Hinterstoisser, N. Gierlinger, and R. Wimmer, and J. Hanger, , “Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood”, Holz Rob Werkst.  62(6), 483 (2004). doi: 10.1007/s00107-004-0520-z

W. Gindl, A. Teischinger, and M. Schwanninger, and B. Hinterstoisser, , “The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties”, J. Near Infrared Spectrosc.  9(4), 255 (2001). doi: 10.1255/jnirs.311

Shenk, J.S.

J.S. Shenk and J.J. Workman, and M.O. Westerhaus, , in Handbook of Near-Infrared Analysis , Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker Inc., New York, USA, p. 419 (2001).

Shi, Z.

Z. Shi, and C.A. Anderson, , “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)”, J. Pharm. Sci.  99(12), 4766 (2010). doi: 10.1002/jps.22228

Shupe, T.F.

C.L. So, B.K. Via, L.H. Groom, L.R. Schimleck, T.F. Shupe, and S.S. Kelley, and T.G. Rials, , “Near infrared spectroscopy in the forest products industry”, Forest Prod. J.  54(3), 6 (2004).

Siesler, H.W.

T. Inagaki, H.W. Siesler, and K. Mitsui, and S. Tsuchikawa, , “Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: A NIR spectroscopy and XRD study”, Biomacromolecules  11(9), 2300 (2010). doi: 10.1021/bm100403y

S. Tsuchikawa and H. Yonenobu, and H.W. Siesler, , “Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method”, Analyst  130(3), 379 (2005). doi: 10.1039/b412759e

S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: Hardwood”, Appl. Spectrosc.  57(6), 675 (2003). doi: 10.1366/000370203322005373

S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: Softwood”, Appl. Spectrosc.  57(6), 667 (2003). doi: 10.1366/000370203322005364

H.W. Siesler, Y. Ozaki, and S. Kawata, and H.M. Heise, Near-Infrared Spectroscopy. Principles, Instruments, Applications , 1st Edn.Wiley-VCH Verlag GmbH, Weinheim, Germany (2002).

Sjöström, M.

S. Wold, and M. Sjöström, , “Chemometrics, present and future success”, Chemometr. Intell. Lab. Syst.  44, 3 (1998). doi: 10.1016/S0169-7439(98)00075-6

Smith, M.J.

So, C.L.

C.L. So, B.K. Via, L.H. Groom, L.R. Schimleck, T.F. Shupe, and S.S. Kelley, and T.G. Rials, , “Near infrared spectroscopy in the forest products industry”, Forest Prod. J.  54(3), 6 (2004).

Spillmand, C.K.

Steele, J.L.

Steele, R.

R. Steele, and E. Pacsu, , “Cellulose studies.15. Infrared spectra of trimethyl cellulose, cellulose and starch”, Text. Res. J.  19(12), 790 (1949). doi: 10.1177/004051754901901203

Stefke, B.

M. Schwanninger and B. Stefke, and B. Hinterstoisser, , “Qualitative assessment of acetylated wood with infra-red spectroscopic methods”, J. Near Infrared Spectrosc.  19(5), 349 (2011). doi: 10.1255/jnirs.942

B. Stefke, E. Windeisen, and M. Schwanninger, and B. Hinterstoisser, , “Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods”, Anal. Chem.  80(4), 1272 (2008). doi: 10.1021/ac7020823

Stevanic, J.S.

K. Fackler, J.S. Stevanic, T. Ters, B. Hinterstoisser, and M. Schwanninger, and L. Salmén, , “Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy”, Enzyme Microb. Technol.  47(6), 257 (2010). doi: 10.1016/j.enzmictec.2010.07.009

Tasker, S.

S. Tasker, J.P.S. Badyal, and S.C.E. Backson, and R.W. Richards, , “Hydroxyl accessibility in celluloses”, Polymer  35(22), 4717 (1994). doi: 10.1016/0032-3861(94)90723-4

Teischinger, A.

Ters, T.

K. Fackler, J.S. Stevanic, T. Ters, B. Hinterstoisser, and M. Schwanninger, and L. Salmén, , “Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy”, Enzyme Microb. Technol.  47(6), 257 (2010). doi: 10.1016/j.enzmictec.2010.07.009

Thygesen, L.G.

Torii, M.

Torlini, R.P.

E.W. Ciurczak and R.P. Torlini, and M.P. Demkowicz, , “Determination of particle size of pharmaceutical raw materials using near infrared spectroscopy”, Spectroscopy  1, 36 (1986).

Trugilho, P.F.

Tsuchikawa, S.

Y. Kurata and S. Tsuchikawa, and T. Fujimoto, , “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy”, Holzforschung  65(3), 389 (2011). doi: 10.1515/HF.2011.034

T. Fujimoto, and S. Tsuchikawa, , “Identification of dead and sound knots by near infrared spectroscopy”, J. Near Infrared Spectrosc.  18(6), 473 (2010). doi: 10.1255/jnirs.887

T. Inagaki, H.W. Siesler, and K. Mitsui, and S. Tsuchikawa, , “Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: A NIR spectroscopy and XRD study”, Biomacromolecules  11(9), 2300 (2010). doi: 10.1021/bm100403y

T. Fujimoto, Y. Kurata, and K. Matsumoto, and S. Tsuchikawa, , “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens”, J. Near Infrared Spectrosc.  16(6), 529 (2008). doi: 10.1255/jnirs.818

T. Inagaki and H. Yonenobu, and S. Tsuchikawa, , “Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood”, Appl. Spectrosc.  62(8), 860 (2008). doi: 10.1366/000370208785284312

K. Mitsui and T. Inagaki, and S. Tsuchikawa, , “Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy”, Biomacromolecules  9(1), 286 (2008). doi: 10.1021/bm7008069

T. Fujimoto and H. Yamamoto, and S. Tsuchikawa, , “Estimation of wood stiffness and strength properties of hybrid larch by near-infrared spectroscopy”, Appl. Spectrosc.  61(8), 882 (2007). doi: 10.1366/000370207781540150

S. Tsuchikawa, , “A review of recent near infrared research for wood and paper”, Appl. Spectrosc. Rev.  42, 43 (2007). doi: 10.1080/05704920601036707

S. Tsuchikawa and H. Yonenobu, and H.W. Siesler, , “Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method”, Analyst  130(3), 379 (2005). doi: 10.1039/b412759e

S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: Hardwood”, Appl. Spectrosc.  57(6), 675 (2003). doi: 10.1366/000370203322005373

H. Yonenobu, and S. Tsuchikawa, , “Near-infrared spectroscopic comparison of antique and modern wood”, Appl. Spectrosc.  57(11), 1451 (2003). doi: 10.1366/000370203322554635

S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: Softwood”, Appl. Spectrosc.  57(6), 667 (2003). doi: 10.1366/000370203322005364

S. Tsuchikawa, and S. Tsutsumi, , “Application of time-of-flight near-infrared spectroscopy to wood with anisotropic cellular structure”, Appl. Spectrosc.  56(7), 869 (2002). doi: 10.1366/000370202760171545

S. Tsuchikawa and M. Torii, and S. Tsutsumi, , “Directional characteristics of near infrared light in the process of radiation and transmission from wood”, J. Near Infrared Spectrosc.  6, 47 (1998). doi: 10.1255/jnirs.120

S. Tsuchikawa, and S. Tsutsumi, , “Adsorptive and capillary condensed water in biological material”, J. Mater. Sci. Lett.  17(8), 661 (1998). doi: 10.1023/A:1006672324163

S. Tsuchikawa and K. Hayashi, and S. Tsutsumi, , “Nondestructive measurement of subsurface structure of biological material having cellular structure by using near-infrared spectroscopy”, Appl. Spectrosc.  50(9), 1117 (1996). doi: 10.1366/0003702963905114

Tsutsumi, S.

Valiant, R.M.

Via, B.K.

C.L. So, B.K. Via, L.H. Groom, L.R. Schimleck, T.F. Shupe, and S.S. Kelley, and T.G. Rials, , “Near infrared spectroscopy in the forest products industry”, Forest Prod. J.  54(3), 6 (2004).

Wallis, A.F.A.

L.R. Schimleck, P.J. Wright, and A.J. Michell, and A.F.A. Wallis, , “Near-infrared spectra and chemical compositions of E-globulus and E-nitens plantation woods”, Appita J.  50(1), 40 (1997).

Wasserman, T.

A. Basch and T. Wasserman, and M. Lewin, , “Near-infrared spectrum of cellulose—new method for obtaining crystallinity ratios”, J. Polym. Sci. Pol. Chem.  12(6), 1143 (1974). doi: 10.1002/pol.1974.170120601

Watanabe, A.

Wegener, G.

H. Bächle, B. Zimmer, and E. Windeisen, and G. Wegener, , “Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy”, Wood Sci. Technol.  44(3), 421 (2010). doi: 10.1007/s00226-010-0361-3

D. Fengel, and G. Wegener, Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter & Co., Berlin, Germany (1989).

Westerhaus, M.O.

J.S. Shenk and J.J. Workman, and M.O. Westerhaus, , in Handbook of Near-Infrared Analysis , Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker Inc., New York, USA, p. 419 (2001).

Wetzel, D.L.

D.L. Wetzel, , “Near-infrared reflectance analysis–sleeper among spectroscopic techniques”, Anal. Chem.  55(12), 1165A (1983). doi: 10.1021/ac00262a001

A.J. Eilert, and D.L. Wetzel, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 12 (2002).

Weyer, L.

J. Workman, and L. Weyer, , Practical Guide to Interpretive Near-Infrared Spectroscopy , 1st Edn.CRC Press, Boca Raton, Florida, USA (2007).

L. Weyer, and S.-C. Lo, , in Handbook of Vibrational Spectroscopy , Vol. 3, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 1817 (2002).

Wheeler, O.H.

O.H. Wheeler, , “Near infrared spectra of organic compounds”, Chem. Rev.  59(4), 629 (1959). doi: 10.1021/cr50028a004

Williams, P.

P. Williams, and K. Norris, Near-Infrared Technology in the Agricultural and Food Industries , 2nd Edn.American Association of Cereal Chemists, Inc., St Paul, Minnesota, USA (2004).

Wimmer, R.

M. Schwanninger, B. Hinterstoisser, N. Gierlinger, and R. Wimmer, and J. Hanger, , “Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood”, Holz Rob Werkst.  62(6), 483 (2004). doi: 10.1007/s00107-004-0520-z

Windeisen, E.

H. Bächle, B. Zimmer, and E. Windeisen, and G. Wegener, , “Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy”, Wood Sci. Technol.  44(3), 421 (2010). doi: 10.1007/s00226-010-0361-3

B. Stefke, E. Windeisen, and M. Schwanninger, and B. Hinterstoisser, , “Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods”, Anal. Chem.  80(4), 1272 (2008). doi: 10.1021/ac7020823

Wold, S.

S. Wold, and M. Sjöström, , “Chemometrics, present and future success”, Chemometr. Intell. Lab. Syst.  44, 3 (1998). doi: 10.1016/S0169-7439(98)00075-6

Workman, J.

J. Workman, and L. Weyer, , Practical Guide to Interpretive Near-Infrared Spectroscopy , 1st Edn.CRC Press, Boca Raton, Florida, USA (2007).

Workman, J.J.

J.J. Workman, , “Infrared and Raman spectroscopy in paper and pulp analysis”, Appl. Spectrosc. Rev.  36(2/3), 139 (2001). doi: 10.1081/ASR-100106154

J.S. Shenk and J.J. Workman, and M.O. Westerhaus, , in Handbook of Near-Infrared Analysis , Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker Inc., New York, USA, p. 419 (2001).

Wright, P.J.

L.R. Schimleck, P.J. Wright, and A.J. Michell, and A.F.A. Wallis, , “Near-infrared spectra and chemical compositions of E-globulus and E-nitens plantation woods”, Appita J.  50(1), 40 (1997).

Wüst, E.

E. Wüst, and L. Rudzik, , in Infrarotspektroskopie. Highlight aus dem Analytiker-Taschenbuch , Ed by A.M.B.H. Günzler, R. Borsdorf, K. Danzer, W. Fresenius, R. Galensa, W. Huber, I. Lüderwald, G. Schwedt, and G. Tölg, and H. Wisser, Springer, Berlin, Germany, p. 221 (1996).

Yamada, T.

T.F. Yeh, T. Yamada, E. Capanema, H.M. Chang, and V. Chiang, and J.F. Kadla, , “Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  53(9), 3328 (2005). doi: 10.1021/jf0480647

Yamamoto, H.

Yeh, T.F.

T.F. Yeh, T. Yamada, E. Capanema, H.M. Chang, and V. Chiang, and J.F. Kadla, , “Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  53(9), 3328 (2005). doi: 10.1021/jf0480647

Yeh, T.-F.

T.-F. Yeh and H.-M. Chang, and J.F. Kadla, , “Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  52(6), 1435 (2004). doi: 10.1021/jf034874r

Yonenobu, H.

Zimmer, B.

H. Bächle, B. Zimmer, and E. Windeisen, and G. Wegener, , “Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy”, Wood Sci. Technol.  44(3), 421 (2010). doi: 10.1007/s00226-010-0361-3

Anal. Chem. (16)

R.B. Barnes, and R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  21(1), 7 (1949). doi: 10.1021/ac60025a003

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  22(1), 7 (1950). doi: 10.1021/ac60037a003

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  23(1), 7 (1951). doi: 10.1021/ac60049a003

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  24(1), 8 (1952). doi: 10.1021/ac60061a002

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  26(1), 11 (1954). doi: 10.1021/ac60085a003

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  28(4), 577 (1956). doi: 10.1021/ac60112a002

R.C. Gore, , “Infrared spectroscopy”, Anal. Chem.  30(4), 570 (1958). doi: 10.1021/ac50163a004

R. McDonald, , “Review: Infrared Spectrometry”, Anal. Chem.  54(8), 1250 (1982). doi: 10.1021/ac00245a601

R.S. McDonald, , “Review: Infrared spectrometry”, Anal. Chem.  58(9), 1906 (1986). doi: 10.1021/ac00122a003

D.L. Wetzel, , “Near-infrared reflectance analysis–sleeper among spectroscopic techniques”, Anal. Chem.  55(12), 1165A (1983). doi: 10.1021/ac00262a001

O. Berntsson, T. Burger, S. Folestad, L.G. Danielsson, and J. Kuhn, and J. Fricke, , “Effective sample size in diffuse reflectance near-IR spectrometry”, Anal. Chem.  71(3), 617 (1999). doi: 10.1021/ac980652u

A. Savitzky, and M.J.E. Golay, , “Smoothing and differentiation of data by simplified least squares procedures”, Anal. Chem.  36(8), 1627 (1964). doi: 10.1021/ac60214a047

R.F. Goddu, and D.A. Delker, , “Spectra-structure correlations for the near-infrared region”, Anal. Chem.  32(1), 140 (1960). doi: 10.1021/ac60157a048

B. Stefke, E. Windeisen, and M. Schwanninger, and B. Hinterstoisser, , “Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods”, Anal. Chem.  80(4), 1272 (2008). doi: 10.1021/ac7020823

R.T. Holman, and P.R. Edmondson, , “Near-infrared spectra of fatty acids and some related substances”, Anal. Chem.  28(10), 1533 (1956). doi: 10.1021/ac60118a010

J.A. Mitchell and C.D. Bockman, and A.V. Lee, , “Determination of acetyl content of cellulose acetate by near infrared spectroscopy”, Anal. Chem.  29(4), 499 (1957). doi: 10.1021/ac50162a023

Anal. Chim. Acta. (1)

O. Berntsson and L.G. Danielsson, and S. Folestad, , “Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry”, Anal. Chim. Acta.  364(1–3), 243 (1998). doi: 10.1016/S0003-2670(98)00196-2

Analyst (4)

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy”, Analyst  124(1), 33 (1999). doi: 10.1039/a807134i

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “The application of multiple linear regression to the measurement of the median particle size of drugs and pharmaceutical excipients by near-infrared spectroscopy”, Analyst  123(11), 2297 (1998). doi: 10.1039/A806001K

A.J. O'Neil and R.D. Jee, and A.C. Moffat, , “Measurement of the percentage volume particle size distribution of powdered microcrystalline cellulose using reflectance near-infrared spectroscopy”, Analyst  128(11), 1326 (2003). doi: 10.1039/A807134I

S. Tsuchikawa and H. Yonenobu, and H.W. Siesler, , “Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method”, Analyst  130(3), 379 (2005). doi: 10.1039/b412759e

Ann. For. Sci. (1)

H. Baillères and F. Davrieus, and F.H. Pichavant, , “Near infrared analysis as a tool for rapid screening of some major wood characteristics in a Eucalyptus breeding program”, Ann. For. Sci.  59(5/6), 479 (2002). doi: 10.1051/forest:20032

Annalen der Physik und Chemie (1)

B. Donath, , “Bolometrische Untersuchungen über Absorptionsspectra fluorescirender Substanzen und ätherischer Oele”, Annalen der Physik und Chemie  58(8), 609 (1896). doi: 10.1002/andp.18962940802

Appita J. (2)

A.J. Michell, and L.R. Schimleck, , “NIR spectroscopy of woods from Eucalyptus globulus”, Appita J.  49(1), 23 (1996).

L.R. Schimleck, P.J. Wright, and A.J. Michell, and A.F.A. Wallis, , “Near-infrared spectra and chemical compositions of E-globulus and E-nitens plantation woods”, Appita J.  50(1), 40 (1997).

Appl. Spectrosc. (13)

A. Watanabe and S. Morita, and Y. Ozaki, , “Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis”, Appl. Spectrosc.  60(6), 611 (2006). doi: 10.1366/000370206777670549

A. Watanabe and S. Morita, and Y. Ozaki, , “A study on water adsorption onto microcrystalline cellulose by near-infrared spectroscopy with two-dimensional correlation spectroscopy and principal component analysis”, Appl. Spectrosc.  60(9), 1054 (2006). doi: 10.1366/000370206778397452

H. Yonenobu, and S. Tsuchikawa, , “Near-infrared spectroscopic comparison of antique and modern wood”, Appl. Spectrosc.  57(11), 1451 (2003). doi: 10.1366/000370203322554635

S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: Softwood”, Appl. Spectrosc.  57(6), 667 (2003). doi: 10.1366/000370203322005364

S. Tsuchikawa, and H.W. Siesler, , “Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: Hardwood”, Appl. Spectrosc.  57(6), 675 (2003). doi: 10.1366/000370203322005373

S. Tsuchikawa, and S. Tsutsumi, , “Application of time-of-flight near-infrared spectroscopy to wood with anisotropic cellular structure”, Appl. Spectrosc.  56(7), 869 (2002). doi: 10.1366/000370202760171545

S. Tsuchikawa and K. Hayashi, and S. Tsutsumi, , “Nondestructive measurement of subsurface structure of biological material having cellular structure by using near-infrared spectroscopy”, Appl. Spectrosc.  50(9), 1117 (1996). doi: 10.1366/0003702963905114

F.E. Barton, D.S. Himmelsbach, and J.H. Duckworth, and M.J. Smith, , “Two-dimensional vibration spectroscopy—Correlation of mid- and near-infrared regions”, Appl. Spectrosc.  46(3), 420 (1992). doi: 10.1366/0003702924125375

F.E. Barton, and D.S. Himmelsbach, , “Two-dimensional vibrational spectroscopy. II. Correlation of the absorptions of lignins in the mid-infrared and near-infrared”, Appl. Spectrosc.  47(11), 1920 (1993). doi: 10.1366/0003702934066091

L. May, , “Spectroscopic nomenclature”, Appl. Spectrosc.  27(6), 419 (1973). doi: 10.1366/000370273774333100

T. Fujimoto and H. Yamamoto, and S. Tsuchikawa, , “Estimation of wood stiffness and strength properties of hybrid larch by near-infrared spectroscopy”, Appl. Spectrosc.  61(8), 882 (2007). doi: 10.1366/000370207781540150

T. Inagaki and H. Yonenobu, and S. Tsuchikawa, , “Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood”, Appl. Spectrosc.  62(8), 860 (2008). doi: 10.1366/000370208785284312

C. Cairós and J. Coello, and S. Maspoch, , “Application of representative layer theory to near-infrared reflectance spectra of powdered samples”, Appl. Spectrosc.  62(12), 1363 (2008). doi: 10.1366/000370208786822313

Appl. Spectrosc. Rev. (2)

S. Tsuchikawa, , “A review of recent near infrared research for wood and paper”, Appl. Spectrosc. Rev.  42, 43 (2007). doi: 10.1080/05704920601036707

J.J. Workman, , “Infrared and Raman spectroscopy in paper and pulp analysis”, Appl. Spectrosc. Rev.  36(2/3), 139 (2001). doi: 10.1081/ASR-100106154

Astrophys. J. (1)

W.W. Coblentz, , “Preliminary communication on the infra-red absorption spectra of organic compounds”, Astrophys. J.  20(3), 207 (1904). doi: 10.1086/141152

Biomacromolecules (2)

K. Mitsui and T. Inagaki, and S. Tsuchikawa, , “Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy”, Biomacromolecules  9(1), 286 (2008). doi: 10.1021/bm7008069

T. Inagaki, H.W. Siesler, and K. Mitsui, and S. Tsuchikawa, , “Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: A NIR spectroscopy and XRD study”, Biomacromolecules  11(9), 2300 (2010). doi: 10.1021/bm100403y

Chem. Rev. (1)

O.H. Wheeler, , “Near infrared spectra of organic compounds”, Chem. Rev.  59(4), 629 (1959). doi: 10.1021/cr50028a004

Chemometr. Intell. Lab. Syst. (1)

S. Wold, and M. Sjöström, , “Chemometrics, present and future success”, Chemometr. Intell. Lab. Syst.  44, 3 (1998). doi: 10.1016/S0169-7439(98)00075-6

Enzyme Microb. Technol. (1)

K. Fackler, J.S. Stevanic, T. Ters, B. Hinterstoisser, and M. Schwanninger, and L. Salmén, , “Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy”, Enzyme Microb. Technol.  47(6), 257 (2010). doi: 10.1016/j.enzmictec.2010.07.009

Eur. J. Wood Wood Prod. (1)

P.R.G. Hein, A.C.M. Campos, R.F. Mendes, and L.M. Mendes, and G. Chaix, , “Estimation of physical and mechanical properties of agro-based particleboards by near infrared spectroscopy”, Eur. J. Wood Wood Prod.  69(3), 431 (2011). doi: 10.1007/s00107-010-0471-5

Forest Prod. J. (1)

C.L. So, B.K. Via, L.H. Groom, L.R. Schimleck, T.F. Shupe, and S.S. Kelley, and T.G. Rials, , “Near infrared spectroscopy in the forest products industry”, Forest Prod. J.  54(3), 6 (2004).

Holz Rob Werkst. (2)

M. Schwanninger, B. Hinterstoisser, N. Gierlinger, and R. Wimmer, and J. Hanger, , “Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood”, Holz Rob Werkst.  62(6), 483 (2004). doi: 10.1007/s00107-004-0520-z

B. Esteves, and H. Pereira, , “Quality assessment of heat-treated wood by NIR spectroscopy. Qualitätsbewertung von wärmebehandeltem Holz mittels NIR-Spektroskopie”, Holz Rob Werkst.  66(5), 323 (2008). doi: 10.1007/s00107-008-0262-4

Holzforschung (3)

Y. Kurata and S. Tsuchikawa, and T. Fujimoto, , “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy”, Holzforschung  65(3), 389 (2011). doi: 10.1515/HF.2011.034

I. Çelen and D. Harper, and N. Labbé, , “A multivariate approach to the acetylated poplar wood samples by near infrared spectroscopy”, Holzforschung  62(2), 189 (2008). doi: 10.1515/HF.2008.048

L.R. Schimleck, and R. Evans, , “Estimation of Pinus radiata D. Don tracheid morphological characteristics by near infrared spectroscopy”, Holzforschung  58(1), 66 (2004). doi: 10.1515/HF.2004.009

Il Nuovo Cimento (1)

L. Puccianti, , “Spettri di assorbimento di liquini nell'ultrarosso Memoria del Dott. L. Puccianti”, Il Nuovo Cimento  11(1), 241 (1900). doi: 10.1007/BF02720459

J. Agr. Food. Chem. (2)

T.F. Yeh, T. Yamada, E. Capanema, H.M. Chang, and V. Chiang, and J.F. Kadla, , “Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  53(9), 3328 (2005). doi: 10.1021/jf0480647

T.-F. Yeh and H.-M. Chang, and J.F. Kadla, , “Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy”, J. Agr. Food. Chem.  52(6), 1435 (2004). doi: 10.1021/jf034874r

J. Am. Chem. Soc. (2)

J.W. Ellis, , “The near infra-red absorption spectra of some aldehydes, ketones, esters and ethers”, J. Am. Chem. Soc.  51(5), 1384 (1929). doi: 10.1021/ja01380a012

J.W. Ellis, and J. Bath, , “Hydrogen bridging in cellulose as shown by infrared absorption spectra”, J. Am. Chem. Soc.  62(10), 2859 (1940). doi: 10.1021/ja01867a064

J. Chem. Phys. (3)

A.M. Buswell and V. Deitz, and W.H. Rodebush, , “A study of the effect of hydrogen bonding upon the infrared absorption of the hydroxyl group”, J. Chem. Phys.  5(7), 501 (1937). doi: 10.1063/1.1750065

V. Fornes, and J. Chaussidon, , “Interpretation of evolution with temperature of ν2 + ν3 combination band in water”, J. Chem. Phys.  68(10), 4667 (1978). doi: 10.1063/1.435576

K. Buijs, and G.R. Choppin, , “Near-infrared studies of structure of water. 1. Pure water”, J. Chem. Phys.  39(8), 2035 (1963). doi: 10.1063/1.1734579

J. Mater. Sci. Lett. (1)

S. Tsuchikawa, and S. Tsutsumi, , “Adsorptive and capillary condensed water in biological material”, J. Mater. Sci. Lett.  17(8), 661 (1998). doi: 10.1023/A:1006672324163

J. Mot. Struct. (1)

Y. Maréchal, and H. Chanzy, , “The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry”, J. Mot. Struct.  523, 183 (2000). doi: 10.1016/S0022-2860(99)00389-0

J. Near Infrared Spectrosc. (19)

L.G. Thygesen, , “Determination of dry matter content and basic density of Norway spruce by near infrared reflectance and transmittance spectroscopy”, J. Near Infrared Spectrosc.  2, 127 (1994). doi: 10.1255/jnirs.39

L. Bokobza, , “Near infrared spectroscopy”, J. Near Infrared Spectrosc.  6(1/4), 3 (1998). doi: 10.1255/jnirs.116

S. Tsuchikawa and M. Torii, and S. Tsutsumi, , “Directional characteristics of near infrared light in the process of radiation and transmission from wood”, J. Near Infrared Spectrosc.  6, 47 (1998). doi: 10.1255/jnirs.120

L.G. Thygesen, and S.-O. Lundqvist, , “NIR measurement of moisture content in wood under stable temperature conditions. Part 1. Thermal effects in near infrared spectra of wood”, J. Near Infrared Spectrosc.  8(3), 183 (2000). doi: 10.1255/jnirs.277

L.G. Thygesen, and S.-O. Lundqvist, , “NIR measurement of moisture content in wood under stable temperature conditions. Part 2. Handling temperature fluctuations”, J. Near Infrared Spectrosc.  8(3), 191 (2000). doi: 10.1255/jnirs.278

W. Gindl, A. Teischinger, and M. Schwanninger, and B. Hinterstoisser, , “The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties”, J. Near Infrared Spectrosc.  9(4), 255 (2001). doi: 10.1255/jnirs.311

M.C. Pasikatan, J.L. Steele, and C.K. Spillmand, and E. Haque, , “Review: Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials”, J. Near Infrared Spectrosc.  9(3), 153 (2001). doi: 10.1255/jnirs.303

Y. Ozaki and S. Šašic, and J.H. Jiang, , “Review: How can we unravel complicated near infrared spectra?—Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region”, J. Near Infrared Spectrosc.  9(2), 63 (2001). doi: 10.1255/jnirs.295

D.J. Dahm, and K.D. Dahm, , “Illustration of failure of continuum models of diffuse reflectance”, J. Near Infrared Spectrosc.  11(6), 479 (2003). doi: 10.1255/jnirs.398

M. Schwanninger, B. Hinterstoisser, C. Gradinger, and K. Messner, and K. Fackler, , “Examination of spruce wood biodegraded by Ceriporiopsis subvermispora using near and mid infrared spectroscopy”, J. Near Infrared Spectrosc.  12(6), 397 (2004a). doi: 10.1255/jnirs.449

K.C. Dahm, and D.J. Dahm, , “Relation of representative layer theory to other theories of diffuse reflection”, J. Near Infrared Spectrosc.  12(3), 189 (2004). doi: 10.1255/jnirs.426

N. Heigl, C.H. Petter, M. Rainer, M. Najam-ul-Haq, R.M. Valiant, R. Bakry, and G.K. Bonn, and C.W. Huck, , “Review: Near infrared spectroscopy for polymer research, quality control and reaction monitoring”, J. Near Infrared Spectrosc.  15(5), 269 (2007). doi: 10.1255/jnirs.747

T. Fujimoto, Y. Kurata, and K. Matsumoto, and S. Tsuchikawa, , “Application of near infrared spectroscopy for estimating wood mechanical properties of small clear and full length lumber specimens”, J. Near Infrared Spectrosc.  16(6), 529 (2008). doi: 10.1255/jnirs.818

K. Fackler, and M. Schwanninger, , “Polysaccharide degradation and lignin modification during brown rot of spruce wood: A polarised Fourier transform near infra-red study”, J. Near Infrared Spectrosc.  18(6), 403 (2010). doi: 10.1255/jnirs.901

P.R.G. Hein, L. Brancheriau, P.F. Trugilho, and J.T. Lima, and G. Chaix, , “Resonance and near infrared spectroscopy for evaluating dynamic wood properties”, J. Near Infrared Spectrosc.  18(6), 443 (2010). doi: 10.1255/jnirs.907

T. Fujimoto, and S. Tsuchikawa, , “Identification of dead and sound knots by near infrared spectroscopy”, J. Near Infrared Spectrosc.  18(6), 473 (2010). doi: 10.1255/jnirs.887

M. Schwanninger and B. Stefke, and B. Hinterstoisser, , “Qualitative assessment of acetylated wood with infra-red spectroscopic methods”, J. Near Infrared Spectrosc.  19(5), 349 (2011). doi: 10.1255/jnirs.942

K. Fackler, and M. Schwanninger, , “Accessibility of hydroxyl groups of brown-rot degraded spruce wood to heavy water”, J. Near Infrared Spectrosc.  19(5), 359 (2011). doi: 10.1255/jnirs.943

W. Herschel, , “Herschel's paper”, J. Near Infrared Spectrosc.  8(2), 75 (2000).

J. Pharm. Sci. (1)

Z. Shi, and C.A. Anderson, , “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)”, J. Pharm. Sci.  99(12), 4766 (2010). doi: 10.1002/jps.22228

J. Phys. Chem. (1)

W.H. Rodebush, and A.M. Buswell, , “Association through hydrogen”, J. Phys. Chem.  43(2), 219 (1939). doi: 10.1021/j150389a004

J. Polym. Sci. Part A (1)

K.H. Bassett and R.H. Marchessault, and C.Y. Liang, , “Infrared spectrum of crystalline polysaccharides. 9. near infrared spectrum of cellulose”, J. Polym. Sci. Part A  1(5), 1687 (1963). doi: 10.1002/poL.1963.100010520

J. Polym. Sci. Pol. Chem. (1)

A. Basch and T. Wasserman, and M. Lewin, , “Near-infrared spectrum of cellulose—new method for obtaining crystallinity ratios”, J. Polym. Sci. Pol. Chem.  12(6), 1143 (1974). doi: 10.1002/pol.1974.170120601

J. Res. Nat. Bur. Standards (1)

J.W. Rowen, and E.K. Plyler, , “Effect of deuteration oxidation and hydrogen-bonding on the infrared spectrum of cellulose”, J. Res. Nat. Bur. Standards  44(3), 313 (1950).

Philos. Trans. R. Soc. (5)

W. Herschel, , “Investigation of the powers of the prismatic colours to heat and illuminate objects; with remarks, that prove the different refrangibility of radiant heat. To which is added, an inquiry into the method of viewing the sun advantageously, with telescopes of large apertures and high magnifying powers”, Philos. Trans. R. Soc.  90, 255 (1800). doi: 10.1098/rstl.1800.0014

W. Herschel, , “Experiments on the refrangibility of the invisible rays of the sun”, Philos. Trans. R. Soc.  90, 284 (1800). doi: 10.1098/rstl.1800.0015

W. Herschel, , “Experiments on the solar and on the terrestrial rays that occasion heat; with a comparative view of the laws to which light and heat, or rather the rays which occasion them, are subject, in order to determine whether they are the same, or different. Part I”, Philos. Trans. R. Soc.  90, 293 (1800). doi: 10.1098/rstl.1800.0016

W. Herschel, , “Experiments on the solar and on the terrestrial rays that occasion heat; with a comparative view of the laws to which light and heat, or rather the rays which occasion them, are subject, in order to determine whether they are the same, or different. Part II”, Philos. Trans. R. Soc.  90, 437 (1800). doi: 10.1098/rstl.1800.0020

C. Abney, and L.-C. Festing, , “On the influence of the atomic grouping in the molecules of organic bodies on their absorption in the infra-red region of the spectrum”, Philos. Trans. R. Soc.  172, 887 (1881). doi: 10.1098/rstl.1881.0020

Phys. Rev. (3)

W.W. Coblentz, , “Infra-red absorption and reflection spectra”, Phys. Rev.  23(2), 125 (1906). doi: 10.1103/PhysRevSeriesl.23.125

W.W. Coblentz, , “Infra-red absorption spectra, II”, Phys. Rev.  20(6), 337 (1905). doi: 10.1103/PhysRevSeriesl.20.337x

J.W. Ellis, , “The near infra-red absorption spectra of some organic liquids”, Phys. Rev.  23(1), 48 (1924). doi: 10.1103/PhysRev.23.48

Polymer (2)

S. Tasker, J.P.S. Badyal, and S.C.E. Backson, and R.W. Richards, , “Hydroxyl accessibility in celluloses”, Polymer  35(22), 4717 (1994). doi: 10.1016/0032-3861(94)90723-4

M. All, A.M. Emsley, and H. Herman, and R.J. Heywood, , “Spectroscopic studies of the ageing of cellulosic paper”, Polymer  42, 2893 (2001). doi: 10.1016/S0032-3861(00)00691-1

Powder Technol. (1)

M. Otsuka, , “Comparative particle size determination of phenacetin bulk powder by using Kubelka–Munk theory and principal component regression analysis based on near-infrared spectroscopy”, Powder Technol.  141(3), 244 (2004). doi: 10.1016/j.powtec.2004.01.025

Proc. Natl. Acad. Sci. USA (1)

F.S. Brackett, , “Characteristic differentiation in the spectra of saturated hydrocarbons”, Proc. Natl. Acad. Sci. USA  14, 857 (1928). doi: 10.1073/pnas.14.11.857

Spectrochim. Acta (3)

M.S.C. Flett, , “Studies of the band near 3 μ in some hydroxy compounds”, Spectrochim. Acta  10(1), 21 (1957). doi: 10.1016/0371-1951(57)80160-X

W. Kaye, , “Near-infrared spectroscopy: I. Spectral identification and analytical applications”, Spectrochim. Acta  6(4), 257 (1954). doi: 10.1016/0371-1951(54)80011-7

W. Kaye, , “Near-infrared spectroscopy: II. Instrumentation and technique a review”, Spectrochim. Acta  7, 181 (1955). doi: 10.1016/0371-1951(55)80025-2

Spectroscopy (1)

E.W. Ciurczak and R.P. Torlini, and M.P. Demkowicz, , “Determination of particle size of pharmaceutical raw materials using near infrared spectroscopy”, Spectroscopy  1, 36 (1986).

Tappi J. (1)

R.L. Jackson, , “Determination of total hydroxyl content of cellulose esters by near-infrared spectroscopy”, Tappi J.  51(12), 560 (1968).

Text. Res. J. (2)

R.T. O'Connor and E.F. DuPre, and D. Mitcham, , “Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons, Part I: Physical and crystalline modifications and oxidation”, Text. Res. J.  28, 382 (1958). doi: 10.1177/004051755802800503

R. Steele, and E. Pacsu, , “Cellulose studies.15. Infrared spectra of trimethyl cellulose, cellulose and starch”, Text. Res. J.  19(12), 790 (1949). doi: 10.1177/004051754901901203

Tr. Leningr. Lesotekhn. Akad. (1)

V.P. Korelova, , Tr. Leningr. Lesotekhn. Akad.  2, 167 (1957).

Trans. Faraday Soc. (1)

J.W. Ellis, , “Molecular absorption spectra of liquids below 3 mu”, Trans. Faraday Soc.  25, 0888 (1929). doi: 10.1039/tf9292500888

Vestnik Leningradskogo Universiteta (1)

V.I. Nikitin, , Vestnik Leningradskogo Universiteta  5(3), 33 (1950).

Wood Sci. Technol. (3)

H. Bächle, B. Zimmer, and E. Windeisen, and G. Wegener, , “Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy”, Wood Sci. Technol.  44(3), 421 (2010). doi: 10.1007/s00226-010-0361-3

A. Sandak and J. Sandak, and M. Negri, , “Relationship between near-infrared (NIR) spectra and the geographical provenance of timber”, Wood Sci. Technol.  45(1), 35 (2011). doi: 10.1007/s00226-010-0313-y

A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, and M. Schwanninger, and J. Rodrigues, , “A common near infrared-based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix x eurolepis”, Wood Sci. Technol.  online first, 1 (2010). doi: 10.1007/s00226-010-0383-x

Other (24)

E. Wüst, and L. Rudzik, , in Infrarotspektroskopie. Highlight aus dem Analytiker-Taschenbuch , Ed by A.M.B.H. Günzler, R. Borsdorf, K. Danzer, W. Fresenius, R. Galensa, W. Huber, I. Lüderwald, G. Schwedt, and G. Tölg, and H. Wisser, Springer, Berlin, Germany, p. 221 (1996).

B.G. Osborne, and T. Fearn, Near Infrared Spectroscopy in food analysis. Longman Scientific & Technical, Harlow, Essex, UK (1998).

L.J. Bellamy, , Infrared Spectra of Complex Molecules. John Wiley and Sons, Inc., New York, USA (1958).

H.W. Siesler, Y. Ozaki, and S. Kawata, and H.M. Heise, Near-Infrared Spectroscopy. Principles, Instruments, Applications , 1st Edn.Wiley-VCH Verlag GmbH, Weinheim, Germany (2002).

D. Fengel, and G. Wegener, Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter & Co., Berlin, Germany (1989).

Y. Ozaki, , in Near-Infrared Spectroscopy: Principles, Instruments and Applications , Ed by H.W. Siesler, Y. Ozaki, and S. Kawata, and H.M. Heise, Wiley-VCH, Weinheim Germany, p. 163 (2002).

J.S. Shenk and J.J. Workman, and M.O. Westerhaus, , in Handbook of Near-Infrared Analysis , Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker Inc., New York, USA, p. 419 (2001).

E.W. Ciurczak, , in Handbook of Vibrational Spectroscopy , Vol. 3, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 8 (2002).

M. Milosevic, and S.L. Berets, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 9 (2002).

L. Weyer, and S.-C. Lo, , in Handbook of Vibrational Spectroscopy , Vol. 3, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 1817 (2002).

L.K. DeNoyer, and J.G. Dodd, , in Handbook of Vibrational Spectroscopy , Vol. 3, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 12 (2002).

W.O. George, and R. Lewis, , in Handbook of Vibrational Spectroscopy , Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 16 (2002).

A.J. Eilert, and D.L. Wetzel, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 12 (2002).

K.P. Huber, and G. Herzberg, , Molecular Spectra and Structure: Vol. 1-Spectra of Diatomic Molecules. Van Nostrand Reinhold, New York, USA (1979).

J.M. Olinger and P.R. Griffiths, and T. Burger, , in Handbook of Near-Infrared Analysis , 2nd Edn, Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker, Inc., New York, USA, p. 19 (2001).

P.R. Griffiths, and J.M. Olinger, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 15 (2002).

D.J. Dahm, and K.D. Dahm, , in Handbook of Vibrational Spectroscopy , Vol. 2, Ed by J.M. Chalmers, and P.R. Griffiths, John Wiley & Sons Ltd, Chichester, UK, p. 14 (2002).

D.J. Dahm, and K.D. Dahm, , Interpreting Diffuse Reflectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials. IM Publications LLP, Chichester, UK (2007).

J.M. Chalmers, and P.R. Griffiths, (Eds), Handbook of Vibrational Spectroscopy. John Wiley & Sons Ltd: Chichester, UK (2002).

P. Williams, and K. Norris, Near-Infrared Technology in the Agricultural and Food Industries , 2nd Edn.American Association of Cereal Chemists, Inc., St Paul, Minnesota, USA (2004).

D.A. Burns, and E.W. Ciurczak, , Eds, Handbook of Near-Infrared Analysis , 2nd Edn.Marcel Dekker, Inc., New York, USA (2001).

J. Workman, and L. Weyer, , Practical Guide to Interpretive Near-Infrared Spectroscopy , 1st Edn.CRC Press, Boca Raton, Florida, USA (2007).

E.W. Ciurczak, , in Handbook of Near-Infrared Analysis , 2nd Edn, Ed by D.A. Burns, and E.W. Ciurczak, Marcel Dekker, Inc., New York, USA, p. 7 (2001).

L. Bokobza, , in Near-Infrared Spectroscopy: Principles, Instruments and Applications , Ed by H.W. Siesler, Y. Ozaki, and S. Kawata, and H.M. Heise, Wiley-VCH, Weinheim, Germany, p. 11 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.