Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 18,
  • Issue 6,
  • pp. 455-464
  • (2010)

Predicting Microfibril Angle in Eucalyptus Wood from Different Wood Faces and Surface Qualities Using near Infrared Spectra

Not Accessible

Your library or personal account may give you access

Abstract

The microfibril angle (MFA) of crystalline cellulose in the wood cell wall along the stem axis has major effects on stiffness and longitudinal shrinkage of wood and is of key importance to timber quality. The aims of this study were: (1) to develop partial least square (PLS) regression models for microfibril angle (measured on tangential sections by X-ray diffraction) based on NIR spectra measured on tangential and on radial surfaces; (2) to develop PLS regression models for MFA based on radial NIR spectra collected from wood surfaces of different quality; and (3) to verify the reliability of these PLS-R models by external validations. T values were recorded by X-ray diffraction on tangential sections while NIR spectra were taken on tangential and radial wood surfaces. PLS-R calibrations for MFA based on tangential NIR spectra were better (r2p = 0.72) than those using radial NIR spectra (r2p = 0.64). The key role of the chemical components and the effect of surface quality of wood on NIR spectroscopy calibrations are discussed. Considering the differences between experimental conditions, these findings showed the potential of the NIR-based models for predicting MFA in Eucalyptus wood, even using spectra taken from different wood faces and surface qualities.

© 2010 IM Publications LLP

PDF Article
More Like This
Measurement of microfibril angles in bamboo using Mueller matrix imaging

Sayyad Mannan, Mohammad Zaffar, Asima Pradhan, and Sumit Basu
Appl. Opt. 55(32) 8971-8978 (2016)

Wood quality of Chinese zither panel based on convolutional neural network and near-infrared spectroscopy

Yinglai Huang, Shiyu Meng, Peng Zhao, and Chao Li
Appl. Opt. 58(18) 5122-5127 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.