Abstract

High-sensitivity fiber-optic interferometric refractive index sensors (FIRSs) have been of interest to researchers due to their potential to fabricate specific physical, chemical, and biological sensors. Fabricating interferometers working near the dispersion turning point (DTP) is an effective approach to improve the sensitivity of FIRSs. However, the group effective refractive index (RI) difference approaching 0 and the ratio of the variation of the effective RI difference to the external RI change being −1 cannot be simultaneously realized in low RI sensing, which restricts the further improvement of sensing sensitivity. Here, dual-path Mach-Zehnder interferometers (MZIs) with unequal geometrical path length are proposed for ultrasensitive RI sensing. The dual-path MZIs contain fiber path and sample path of different geometrical lengths to form the optical path difference. The dual-path MZIs can not only show a turning point where the sensing sensitivity tends to be infinite, which is similar to the previously reported DTP, but also get the constant value −1 for the RI response factor, leading to the result that the dips within an over-500-nm band width around the turning point can achieve high sensitivity reaching 105 nm/RIU level or higher. Ultrahigh sensitivity of −1.26 × 106 nm/RIU has been experimentally demonstrated at the RI around 1.35022. The dual-path MZIs proposed here may enlighten new ideas for developing high-sensitivity FIRSs.

PDF Article

References

  • View by:

  1. Y. Huang, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces, vol. 9, no. 10, pp. 9024–9028, 2017.
  2. H. Yang, J. Wang, Y. Liao, S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J., vol. 17, no. 8, pp. 2398–2403, 2017.
  3. Y. Jiang, Z. Fang, Y. Du, E. Lewis, G. Farrell, and P. Wang, “Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids,” Opt. Express, vol. 26, no. 1, pp. 356–366, 2018.
  4. J. Villatoro, A. V. Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett., vol. 41, no. 4, pp. 832–835, 2016.
  5. J. Li, J. Chen, S. Yan, Y. Ruan, F. Xu, and Y. Lu, “Versatile hybrid plasmonic microfiber knot resonator,” Opt. Lett., vol. 42, no. 17, pp. 3395–3398, 2017.
  6. Y. Huang, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuator B-Chem., vol. 255, pp. 57–69, 2018.
  7. B. C. Yao, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express, vol. 22, no. 23, pp. 28154–28162, 2014.
  8. K. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal−organic framework thin film coated optical fiber sensors: A novel waveguide-based chemical sensing platform,” ACS Sens, vol. 3, no. 2, pp. 386–394, 2018.
  9. L. Sun, “High sensitivity ammonia gas sensor based on a silica-gel-coated microfiber coupler,” J. Lightw. Technol., vol. 35, no. 14, pp. 2864–2870, 2017.
  10. B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach—Zehnder interferometer,” Biosens. Bioelectron., vol. 81, pp. 151–158, 2016.
  11. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett., vol. 36, no. 16, pp. 3115–3117, 2011.
  12. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett., vol. 35, no. 7, pp. 1007–1009, 2010.
  13. X. Guo and L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express, vol. 16, no. 19, pp. 14429–14434, 2008.
  14. Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys., vol. 233, pp. 22–25, 2015.
  15. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express, vol. 15, no. 12, pp. 7888–7893, 2007.
  16. C. Caucheteur, T. Guo, F. Liu, B. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun., vol. 7, 2016, Art. no. .
  17. M. Janik, M. Koba, K. Król, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period fiber grating and microcavity in-line Mach—Zehnder interferometer for refractive index measurements with limited cross-sensitivity,” Sensors, vol. 20, no. 8, 2020, Art. no. .
  18. J. Sadeghi, A. H. B. Ghasemiab, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip, vol. 16, pp. 3957–3968, 2016.
  19. X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuator B-Chem., vol. 269, pp. 103–109, 2018.
  20. Y. Liu and S. Qu, “Optical fiber Fabry—Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing,” Appl. Opt., vol. 53, no. 3, pp. 469–474, 2014.
  21. M. R. Islam, M. M. Ali, M. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry—Perot interferometer fiber-optic sensors and their applications: A review,” Sensors, vol. 14, no. 4, pp. 7451–7488, 2014.
  22. A. Urrutia, I. Del Villar, P. Zubiate, and C. R. Zamarreño, “A comprehensive review of optical fiber refractometers: Toward a standard comparative criterion,” Laser Photon. Rev, vol. 13, 2019, Art. no. .
  23. J. Chen, D. Li, and F. Xu, “Optical microfiber sensors: Sensing mechanisms, and recent advances,” J. Lightw. Technol., vol. 37, no. 11, pp. 2577–2589, 2019.
  24. R. Chu, “All-optical graphene-oxide humidity sensor based on a side-polished symmetrical twin-core fiber michelson interferometer,” Sens. Actuator B-Chem., vol. 284, pp. 623–627, 2019.
  25. Y. Bai, Y. Miao, H. Zhang, and J. Yao, “Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2,” J. Lightw. Technol., vol. 38, no. 4, pp. 840–845, 2020.
  26. T. Liu, J. Wang, Y. Liao, L. Yang, and S. Wang, “Splicing point tapered fiber Mach—Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater,” Opt. Express, vol. 27, no. 17, pp. 23905–23918, 2019.
  27. X. Zhang and W. Peng, “Bent fiber interferometer,” J. Lightw. Technol., vol. 33, no. 15, pp. 3351–3356, 2015.
  28. J. Li, “Ultrasensitive refractive index sensor based on enhanced vernier effect through cascaded fiber core-offset pairs,” Opt. Express, vol. 28, no. 3, pp. 4145–4155, 2020.
  29. T. Liu, J. Wang, Y. Liao, X. Wang, and S. Wang, “All-fiber Mach—Zehnder interferometer for tunable two quasi-continuous points’ temperature sensing in seawater,” Opt. Express, vol. 26, no. 9, pp. 12277–12290, 2018.
  30. J. Li, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett., vol. 36, no. 18, pp. 3593–3595, 2011.
  31. H. Luo, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach—Zehnder interferometer,” Opt. Lett., vol. 40, no. 21, pp. 5042–5045, 2015.
  32. J. Wang, Y. Liao, S. Wang, and X. Wang, “Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer,” Opt. Express, vol. 26, no. 19, pp. 24843–24853, 2018.
  33. W. Talataisong, R. Ismaeel, T. Lee, M. Beresna, and G. Brambilla. “Optical nanofiber coupler sensors operating in the cut-off wavelength region,” IEEE Sens. J., vol. 18, no. 7, pp. 2782–2787, 2018.
  34. K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2409–2415, 2018.
  35. K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett., vol. 109, 2016, Art. no. .
  36. S. Gao, “Ultrasensitive refractive index sensor based on microfiber-assisted U-shape cavity,” IEEE Photon. Technol. Lett., vol. 25, no. 18, pp. 1815–1818, 2013.
  37. L. P. Sun, “Ultrasensitive optofluidic interferometer for online monitoring of photocatalytic reactions,” J. Lightw. Technol., vol. 37, no. 21, pp. 5435–5441, 2019.
  38. Y. Li, X. Wang, and X. Bao, “Sensitive acoustic vibration sensor using single-mode fiber tapers,” Appl. Opt., vol. 50, no. 13, pp. 1873–1878, 2011.
  39. J. W. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt., vol. 23, no. 24, pp. 4486–4493, 1984.
  40. J. Wang, X. Li, J. Fu, and K. Li, “High-sensitivity, large dynamic range refractive index measurement using an optical microfiber coupler,” Sensors, vol. 19, no. 23, 2019, Art. no. .
  41. R. Martínez-Manuel, D. A. May-Arrioja, J. Acevedo-Mijangos, R. F. Domínguez-Cruz, D. López-Cortés, and M. Torres-Cisneros, “Ultra-high-sensitivity temperature sensor using a fiber loop mirror based on a water-filled asymmetric two-hole fiber,” IEEE Sensors J., vol. 20, no. 11, pp. 5953–5961, 2020.

2020 (4)

M. Janik, M. Koba, K. Król, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period fiber grating and microcavity in-line Mach—Zehnder interferometer for refractive index measurements with limited cross-sensitivity,” Sensors, vol. 20, no. 8, 2020, Art. no. .

Y. Bai, Y. Miao, H. Zhang, and J. Yao, “Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2,” J. Lightw. Technol., vol. 38, no. 4, pp. 840–845, 2020.

J. Li, “Ultrasensitive refractive index sensor based on enhanced vernier effect through cascaded fiber core-offset pairs,” Opt. Express, vol. 28, no. 3, pp. 4145–4155, 2020.

R. Martínez-Manuel, D. A. May-Arrioja, J. Acevedo-Mijangos, R. F. Domínguez-Cruz, D. López-Cortés, and M. Torres-Cisneros, “Ultra-high-sensitivity temperature sensor using a fiber loop mirror based on a water-filled asymmetric two-hole fiber,” IEEE Sensors J., vol. 20, no. 11, pp. 5953–5961, 2020.

2019 (6)

T. Liu, J. Wang, Y. Liao, L. Yang, and S. Wang, “Splicing point tapered fiber Mach—Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater,” Opt. Express, vol. 27, no. 17, pp. 23905–23918, 2019.

A. Urrutia, I. Del Villar, P. Zubiate, and C. R. Zamarreño, “A comprehensive review of optical fiber refractometers: Toward a standard comparative criterion,” Laser Photon. Rev, vol. 13, 2019, Art. no. .

J. Chen, D. Li, and F. Xu, “Optical microfiber sensors: Sensing mechanisms, and recent advances,” J. Lightw. Technol., vol. 37, no. 11, pp. 2577–2589, 2019.

R. Chu, “All-optical graphene-oxide humidity sensor based on a side-polished symmetrical twin-core fiber michelson interferometer,” Sens. Actuator B-Chem., vol. 284, pp. 623–627, 2019.

L. P. Sun, “Ultrasensitive optofluidic interferometer for online monitoring of photocatalytic reactions,” J. Lightw. Technol., vol. 37, no. 21, pp. 5435–5441, 2019.

J. Wang, X. Li, J. Fu, and K. Li, “High-sensitivity, large dynamic range refractive index measurement using an optical microfiber coupler,” Sensors, vol. 19, no. 23, 2019, Art. no. .

2018 (8)

J. Wang, Y. Liao, S. Wang, and X. Wang, “Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer,” Opt. Express, vol. 26, no. 19, pp. 24843–24853, 2018.

W. Talataisong, R. Ismaeel, T. Lee, M. Beresna, and G. Brambilla. “Optical nanofiber coupler sensors operating in the cut-off wavelength region,” IEEE Sens. J., vol. 18, no. 7, pp. 2782–2787, 2018.

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2409–2415, 2018.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuator B-Chem., vol. 269, pp. 103–109, 2018.

T. Liu, J. Wang, Y. Liao, X. Wang, and S. Wang, “All-fiber Mach—Zehnder interferometer for tunable two quasi-continuous points’ temperature sensing in seawater,” Opt. Express, vol. 26, no. 9, pp. 12277–12290, 2018.

Y. Huang, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuator B-Chem., vol. 255, pp. 57–69, 2018.

Y. Jiang, Z. Fang, Y. Du, E. Lewis, G. Farrell, and P. Wang, “Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids,” Opt. Express, vol. 26, no. 1, pp. 356–366, 2018.

K. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal−organic framework thin film coated optical fiber sensors: A novel waveguide-based chemical sensing platform,” ACS Sens, vol. 3, no. 2, pp. 386–394, 2018.

2017 (4)

L. Sun, “High sensitivity ammonia gas sensor based on a silica-gel-coated microfiber coupler,” J. Lightw. Technol., vol. 35, no. 14, pp. 2864–2870, 2017.

Y. Huang, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces, vol. 9, no. 10, pp. 9024–9028, 2017.

H. Yang, J. Wang, Y. Liao, S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J., vol. 17, no. 8, pp. 2398–2403, 2017.

J. Li, J. Chen, S. Yan, Y. Ruan, F. Xu, and Y. Lu, “Versatile hybrid plasmonic microfiber knot resonator,” Opt. Lett., vol. 42, no. 17, pp. 3395–3398, 2017.

2016 (5)

C. Caucheteur, T. Guo, F. Liu, B. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun., vol. 7, 2016, Art. no. .

J. Sadeghi, A. H. B. Ghasemiab, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip, vol. 16, pp. 3957–3968, 2016.

J. Villatoro, A. V. Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett., vol. 41, no. 4, pp. 832–835, 2016.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach—Zehnder interferometer,” Biosens. Bioelectron., vol. 81, pp. 151–158, 2016.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett., vol. 109, 2016, Art. no. .

2015 (3)

H. Luo, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach—Zehnder interferometer,” Opt. Lett., vol. 40, no. 21, pp. 5042–5045, 2015.

X. Zhang and W. Peng, “Bent fiber interferometer,” J. Lightw. Technol., vol. 33, no. 15, pp. 3351–3356, 2015.

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys., vol. 233, pp. 22–25, 2015.

2014 (3)

2013 (1)

S. Gao, “Ultrasensitive refractive index sensor based on microfiber-assisted U-shape cavity,” IEEE Photon. Technol. Lett., vol. 25, no. 18, pp. 1815–1818, 2013.

2011 (3)

2010 (1)

2008 (1)

2007 (1)

1984 (1)

Acevedo-Mijangos, J.

R. Martínez-Manuel, D. A. May-Arrioja, J. Acevedo-Mijangos, R. F. Domínguez-Cruz, D. López-Cortés, and M. Torres-Cisneros, “Ultra-high-sensitivity temperature sensor using a fiber loop mirror based on a water-filled asymmetric two-hole fiber,” IEEE Sensors J., vol. 20, no. 11, pp. 5953–5961, 2020.

Ahmad, H.

M. R. Islam, M. M. Ali, M. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry—Perot interferometer fiber-optic sensors and their applications: A review,” Sensors, vol. 14, no. 4, pp. 7451–7488, 2014.

Albert, J.

C. Caucheteur, T. Guo, F. Liu, B. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun., vol. 7, 2016, Art. no. .

Ali, M. M.

M. R. Islam, M. M. Ali, M. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry—Perot interferometer fiber-optic sensors and their applications: A review,” Sensors, vol. 14, no. 4, pp. 7451–7488, 2014.

Amezcua-Correa, R.

Antonio-Lopez, E.

Bai, Y.

Y. Bai, Y. Miao, H. Zhang, and J. Yao, “Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2,” J. Lightw. Technol., vol. 38, no. 4, pp. 840–845, 2020.

Bao, X.

Beresna, M.

W. Talataisong, R. Ismaeel, T. Lee, M. Beresna, and G. Brambilla. “Optical nanofiber coupler sensors operating in the cut-off wavelength region,” IEEE Sens. J., vol. 18, no. 7, pp. 2782–2787, 2018.

Bock, W. J.

M. Janik, M. Koba, K. Król, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period fiber grating and microcavity in-line Mach—Zehnder interferometer for refractive index measurements with limited cross-sensitivity,” Sensors, vol. 20, no. 8, 2020, Art. no. .

Brambilla, G.

W. Talataisong, R. Ismaeel, T. Lee, M. Beresna, and G. Brambilla. “Optical nanofiber coupler sensors operating in the cut-off wavelength region,” IEEE Sens. J., vol. 18, no. 7, pp. 2782–2787, 2018.

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express, vol. 15, no. 12, pp. 7888–7893, 2007.

Caucheteur, C.

C. Caucheteur, T. Guo, F. Liu, B. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun., vol. 7, 2016, Art. no. .

Chen, J.

J. Chen, D. Li, and F. Xu, “Optical microfiber sensors: Sensing mechanisms, and recent advances,” J. Lightw. Technol., vol. 37, no. 11, pp. 2577–2589, 2019.

J. Li, J. Chen, S. Yan, Y. Ruan, F. Xu, and Y. Lu, “Versatile hybrid plasmonic microfiber knot resonator,” Opt. Lett., vol. 42, no. 17, pp. 3395–3398, 2017.

Chu, R.

R. Chu, “All-optical graphene-oxide humidity sensor based on a side-polished symmetrical twin-core fiber michelson interferometer,” Sens. Actuator B-Chem., vol. 284, pp. 623–627, 2019.

Culp, J. T.

K. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal−organic framework thin film coated optical fiber sensors: A novel waveguide-based chemical sensing platform,” ACS Sens, vol. 3, no. 2, pp. 386–394, 2018.

Del Villar, I.

A. Urrutia, I. Del Villar, P. Zubiate, and C. R. Zamarreño, “A comprehensive review of optical fiber refractometers: Toward a standard comparative criterion,” Laser Photon. Rev, vol. 13, 2019, Art. no. .

Domínguez-Cruz, R. F.

R. Martínez-Manuel, D. A. May-Arrioja, J. Acevedo-Mijangos, R. F. Domínguez-Cruz, D. López-Cortés, and M. Torres-Cisneros, “Ultra-high-sensitivity temperature sensor using a fiber loop mirror based on a water-filled asymmetric two-hole fiber,” IEEE Sensors J., vol. 20, no. 11, pp. 5953–5961, 2020.

Du, Y.

Ebendorff-Heidepriem, H.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuator B-Chem., vol. 269, pp. 103–109, 2018.

Fang, X.

Fang, Z.

Farrell, G.

Fleming, J. W.

Fu, J.

J. Wang, X. Li, J. Fu, and K. Li, “High-sensitivity, large dynamic range refractive index measurement using an optical microfiber coupler,” Sensors, vol. 19, no. 23, 2019, Art. no. .

Gao, S.

S. Gao, “Ultrasensitive refractive index sensor based on microfiber-assisted U-shape cavity,” IEEE Photon. Technol. Lett., vol. 25, no. 18, pp. 1815–1818, 2013.

Ghasemiab, A. H. B.

J. Sadeghi, A. H. B. Ghasemiab, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip, vol. 16, pp. 3957–3968, 2016.

Guan, B.

C. Caucheteur, T. Guo, F. Liu, B. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun., vol. 7, 2016, Art. no. .

Guo, T.

C. Caucheteur, T. Guo, F. Liu, B. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun., vol. 7, 2016, Art. no. .

Guo, X.

Horak, P.

Huang, Y.

Y. Huang, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuator B-Chem., vol. 255, pp. 57–69, 2018.

Y. Huang, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces, vol. 9, no. 10, pp. 9024–9028, 2017.

Islam, M. R.

M. R. Islam, M. M. Ali, M. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry—Perot interferometer fiber-optic sensors and their applications: A review,” Sensors, vol. 14, no. 4, pp. 7451–7488, 2014.

Ismaeel, R.

W. Talataisong, R. Ismaeel, T. Lee, M. Beresna, and G. Brambilla. “Optical nanofiber coupler sensors operating in the cut-off wavelength region,” IEEE Sens. J., vol. 18, no. 7, pp. 2782–2787, 2018.

Janik, M.

M. Janik, M. Koba, K. Król, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period fiber grating and microcavity in-line Mach—Zehnder interferometer for refractive index measurements with limited cross-sensitivity,” Sensors, vol. 20, no. 8, 2020, Art. no. .

Jiang, Y.

Kim, K.

K. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal−organic framework thin film coated optical fiber sensors: A novel waveguide-based chemical sensing platform,” ACS Sens, vol. 3, no. 2, pp. 386–394, 2018.

Koba, M.

M. Janik, M. Koba, K. Król, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period fiber grating and microcavity in-line Mach—Zehnder interferometer for refractive index measurements with limited cross-sensitivity,” Sensors, vol. 20, no. 8, 2020, Art. no. .

Król, K.

M. Janik, M. Koba, K. Król, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period fiber grating and microcavity in-line Mach—Zehnder interferometer for refractive index measurements with limited cross-sensitivity,” Sensors, vol. 20, no. 8, 2020, Art. no. .

Lai, M.

M. R. Islam, M. M. Ali, M. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry—Perot interferometer fiber-optic sensors and their applications: A review,” Sensors, vol. 14, no. 4, pp. 7451–7488, 2014.

Latifi, H.

J. Sadeghi, A. H. B. Ghasemiab, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip, vol. 16, pp. 3957–3968, 2016.

Lee, T.

W. Talataisong, R. Ismaeel, T. Lee, M. Beresna, and G. Brambilla. “Optical nanofiber coupler sensors operating in the cut-off wavelength region,” IEEE Sens. J., vol. 18, no. 7, pp. 2782–2787, 2018.

Lewis, E.

Li, D.

J. Chen, D. Li, and F. Xu, “Optical microfiber sensors: Sensing mechanisms, and recent advances,” J. Lightw. Technol., vol. 37, no. 11, pp. 2577–2589, 2019.

Li, J.

Li, K.

J. Wang, X. Li, J. Fu, and K. Li, “High-sensitivity, large dynamic range refractive index measurement using an optical microfiber coupler,” Sensors, vol. 19, no. 23, 2019, Art. no. .

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2409–2415, 2018.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett., vol. 109, 2016, Art. no. .

Li, X.

J. Wang, X. Li, J. Fu, and K. Li, “High-sensitivity, large dynamic range refractive index measurement using an optical microfiber coupler,” Sensors, vol. 19, no. 23, 2019, Art. no. .

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuator B-Chem., vol. 269, pp. 103–109, 2018.

Li, Y.

Liao, C. R.

Liao, Y.

Lim, K. S.

M. R. Islam, M. M. Ali, M. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry—Perot interferometer fiber-optic sensors and their applications: A review,” Sensors, vol. 14, no. 4, pp. 7451–7488, 2014.

Lin, W.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach—Zehnder interferometer,” Biosens. Bioelectron., vol. 81, pp. 151–158, 2016.

Liu, B.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach—Zehnder interferometer,” Biosens. Bioelectron., vol. 81, pp. 151–158, 2016.

Liu, F.

C. Caucheteur, T. Guo, F. Liu, B. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun., vol. 7, 2016, Art. no. .

Liu, G.

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2409–2415, 2018.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett., vol. 109, 2016, Art. no. .

Liu, T.

Liu, Y.

López-Cortés, D.

R. Martínez-Manuel, D. A. May-Arrioja, J. Acevedo-Mijangos, R. F. Domínguez-Cruz, D. López-Cortés, and M. Torres-Cisneros, “Ultra-high-sensitivity temperature sensor using a fiber loop mirror based on a water-filled asymmetric two-hole fiber,” IEEE Sensors J., vol. 20, no. 11, pp. 5953–5961, 2020.

Lu, P.

K. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal−organic framework thin film coated optical fiber sensors: A novel waveguide-based chemical sensing platform,” ACS Sens, vol. 3, no. 2, pp. 386–394, 2018.

Lu, Y.

Luo, H.

Martínez-Manuel, R.

R. Martínez-Manuel, D. A. May-Arrioja, J. Acevedo-Mijangos, R. F. Domínguez-Cruz, D. López-Cortés, and M. Torres-Cisneros, “Ultra-high-sensitivity temperature sensor using a fiber loop mirror based on a water-filled asymmetric two-hole fiber,” IEEE Sensors J., vol. 20, no. 11, pp. 5953–5961, 2020.

May-Arrioja, D. A.

R. Martínez-Manuel, D. A. May-Arrioja, J. Acevedo-Mijangos, R. F. Domínguez-Cruz, D. López-Cortés, and M. Torres-Cisneros, “Ultra-high-sensitivity temperature sensor using a fiber loop mirror based on a water-filled asymmetric two-hole fiber,” IEEE Sensors J., vol. 20, no. 11, pp. 5953–5961, 2020.

Meng, C.

Miao, Y.

Y. Bai, Y. Miao, H. Zhang, and J. Yao, “Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2,” J. Lightw. Technol., vol. 38, no. 4, pp. 840–845, 2020.

Mikulic, P.

M. Janik, M. Koba, K. Król, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period fiber grating and microcavity in-line Mach—Zehnder interferometer for refractive index measurements with limited cross-sensitivity,” Sensors, vol. 20, no. 8, 2020, Art. no. .

Newkirk, A. V.

Nguyen, L. V.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuator B-Chem., vol. 269, pp. 103–109, 2018.

Ohodnicki, P. R.

K. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal−organic framework thin film coated optical fiber sensors: A novel waveguide-based chemical sensing platform,” ACS Sens, vol. 3, no. 2, pp. 386–394, 2018.

Peng, W.

X. Zhang and W. Peng, “Bent fiber interferometer,” J. Lightw. Technol., vol. 33, no. 15, pp. 3351–3356, 2015.

Qu, S.

Ruan, Y.

Sadeghi, J.

J. Sadeghi, A. H. B. Ghasemiab, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip, vol. 16, pp. 3957–3968, 2016.

Schülzgen, A.

Smietana, M.

M. Janik, M. Koba, K. Król, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period fiber grating and microcavity in-line Mach—Zehnder interferometer for refractive index measurements with limited cross-sensitivity,” Sensors, vol. 20, no. 8, 2020, Art. no. .

Song, B.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach—Zehnder interferometer,” Biosens. Bioelectron., vol. 81, pp. 151–158, 2016.

Sun, L.

L. Sun, “High sensitivity ammonia gas sensor based on a silica-gel-coated microfiber coupler,” J. Lightw. Technol., vol. 35, no. 14, pp. 2864–2870, 2017.

Sun, L. P.

L. P. Sun, “Ultrasensitive optofluidic interferometer for online monitoring of photocatalytic reactions,” J. Lightw. Technol., vol. 37, no. 21, pp. 5435–5441, 2019.

Talataisong, W.

W. Talataisong, R. Ismaeel, T. Lee, M. Beresna, and G. Brambilla. “Optical nanofiber coupler sensors operating in the cut-off wavelength region,” IEEE Sens. J., vol. 18, no. 7, pp. 2782–2787, 2018.

Tong, L.

Torres-Cisneros, M.

R. Martínez-Manuel, D. A. May-Arrioja, J. Acevedo-Mijangos, R. F. Domínguez-Cruz, D. López-Cortés, and M. Torres-Cisneros, “Ultra-high-sensitivity temperature sensor using a fiber loop mirror based on a water-filled asymmetric two-hole fiber,” IEEE Sensors J., vol. 20, no. 11, pp. 5953–5961, 2020.

Urrutia, A.

A. Urrutia, I. Del Villar, P. Zubiate, and C. R. Zamarreño, “A comprehensive review of optical fiber refractometers: Toward a standard comparative criterion,” Laser Photon. Rev, vol. 13, 2019, Art. no. .

Villatoro, J.

Wang, D. N.

Wang, J.

T. Liu, J. Wang, Y. Liao, L. Yang, and S. Wang, “Splicing point tapered fiber Mach—Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater,” Opt. Express, vol. 27, no. 17, pp. 23905–23918, 2019.

J. Wang, X. Li, J. Fu, and K. Li, “High-sensitivity, large dynamic range refractive index measurement using an optical microfiber coupler,” Sensors, vol. 19, no. 23, 2019, Art. no. .

T. Liu, J. Wang, Y. Liao, X. Wang, and S. Wang, “All-fiber Mach—Zehnder interferometer for tunable two quasi-continuous points’ temperature sensing in seawater,” Opt. Express, vol. 26, no. 9, pp. 12277–12290, 2018.

J. Wang, Y. Liao, S. Wang, and X. Wang, “Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer,” Opt. Express, vol. 26, no. 19, pp. 24843–24853, 2018.

H. Yang, J. Wang, Y. Liao, S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J., vol. 17, no. 8, pp. 2398–2403, 2017.

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys., vol. 233, pp. 22–25, 2015.

Wang, P.

Wang, S.

Wang, X.

Warren-Smith, S. C.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuator B-Chem., vol. 269, pp. 103–109, 2018.

Wei, L.

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2409–2415, 2018.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett., vol. 109, 2016, Art. no. .

Wu, J.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach—Zehnder interferometer,” Biosens. Bioelectron., vol. 81, pp. 151–158, 2016.

Xiao, Y.

Xu, F.

Yan, S.

Yang, H.

H. Yang, J. Wang, Y. Liao, S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J., vol. 17, no. 8, pp. 2398–2403, 2017.

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys., vol. 233, pp. 22–25, 2015.

Yang, L.

Yao, B. C.

Yao, J.

Y. Bai, Y. Miao, H. Zhang, and J. Yao, “Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2,” J. Lightw. Technol., vol. 38, no. 4, pp. 840–845, 2020.

Yu, H.

Zamarreño, C. R.

A. Urrutia, I. Del Villar, P. Zubiate, and C. R. Zamarreño, “A comprehensive review of optical fiber refractometers: Toward a standard comparative criterion,” Laser Photon. Rev, vol. 13, 2019, Art. no. .

Zhang, A. P.

Zhang, H.

Y. Bai, Y. Miao, H. Zhang, and J. Yao, “Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2,” J. Lightw. Technol., vol. 38, no. 4, pp. 840–845, 2020.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach—Zehnder interferometer,” Biosens. Bioelectron., vol. 81, pp. 151–158, 2016.

Zhang, M.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett., vol. 109, 2016, Art. no. .

Zhang, N.

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2409–2415, 2018.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett., vol. 109, 2016, Art. no. .

Zhang, N. M. Y.

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2409–2415, 2018.

Zhang, T.

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2409–2415, 2018.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett., vol. 109, 2016, Art. no. .

Zhang, X.

X. Zhang and W. Peng, “Bent fiber interferometer,” J. Lightw. Technol., vol. 33, no. 15, pp. 3351–3356, 2015.

Zhao, Y.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuator B-Chem., vol. 269, pp. 103–109, 2018.

Zubia, J.

Zubiate, P.

A. Urrutia, I. Del Villar, P. Zubiate, and C. R. Zamarreño, “A comprehensive review of optical fiber refractometers: Toward a standard comparative criterion,” Laser Photon. Rev, vol. 13, 2019, Art. no. .

ACS Appl. Mater. Interfaces (1)

Y. Huang, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces, vol. 9, no. 10, pp. 9024–9028, 2017.

ACS Sens (1)

K. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, “Metal−organic framework thin film coated optical fiber sensors: A novel waveguide-based chemical sensing platform,” ACS Sens, vol. 3, no. 2, pp. 386–394, 2018.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett., vol. 109, 2016, Art. no. .

Biosens. Bioelectron. (1)

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach—Zehnder interferometer,” Biosens. Bioelectron., vol. 81, pp. 151–158, 2016.

IEEE Photon. Technol. Lett. (1)

S. Gao, “Ultrasensitive refractive index sensor based on microfiber-assisted U-shape cavity,” IEEE Photon. Technol. Lett., vol. 25, no. 18, pp. 1815–1818, 2013.

IEEE Sens. J. (2)

W. Talataisong, R. Ismaeel, T. Lee, M. Beresna, and G. Brambilla. “Optical nanofiber coupler sensors operating in the cut-off wavelength region,” IEEE Sens. J., vol. 18, no. 7, pp. 2782–2787, 2018.

H. Yang, J. Wang, Y. Liao, S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J., vol. 17, no. 8, pp. 2398–2403, 2017.

IEEE Sensors J. (1)

R. Martínez-Manuel, D. A. May-Arrioja, J. Acevedo-Mijangos, R. F. Domínguez-Cruz, D. López-Cortés, and M. Torres-Cisneros, “Ultra-high-sensitivity temperature sensor using a fiber loop mirror based on a water-filled asymmetric two-hole fiber,” IEEE Sensors J., vol. 20, no. 11, pp. 5953–5961, 2020.

J. Lightw. Technol. (6)

L. Sun, “High sensitivity ammonia gas sensor based on a silica-gel-coated microfiber coupler,” J. Lightw. Technol., vol. 35, no. 14, pp. 2864–2870, 2017.

K. Li, N. M. Y. Zhang, N. Zhang, T. Zhang, G. Liu, and L. Wei, “Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers,” J. Lightw. Technol., vol. 36, no. 12, pp. 2409–2415, 2018.

L. P. Sun, “Ultrasensitive optofluidic interferometer for online monitoring of photocatalytic reactions,” J. Lightw. Technol., vol. 37, no. 21, pp. 5435–5441, 2019.

Y. Bai, Y. Miao, H. Zhang, and J. Yao, “Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2,” J. Lightw. Technol., vol. 38, no. 4, pp. 840–845, 2020.

J. Chen, D. Li, and F. Xu, “Optical microfiber sensors: Sensing mechanisms, and recent advances,” J. Lightw. Technol., vol. 37, no. 11, pp. 2577–2589, 2019.

X. Zhang and W. Peng, “Bent fiber interferometer,” J. Lightw. Technol., vol. 33, no. 15, pp. 3351–3356, 2015.

Lab Chip (1)

J. Sadeghi, A. H. B. Ghasemiab, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip, vol. 16, pp. 3957–3968, 2016.

Laser Photon. Rev (1)

A. Urrutia, I. Del Villar, P. Zubiate, and C. R. Zamarreño, “A comprehensive review of optical fiber refractometers: Toward a standard comparative criterion,” Laser Photon. Rev, vol. 13, 2019, Art. no. .

Nat. Commun. (1)

C. Caucheteur, T. Guo, F. Liu, B. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun., vol. 7, 2016, Art. no. .

Opt. Express (8)

X. Guo and L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express, vol. 16, no. 19, pp. 14429–14434, 2008.

B. C. Yao, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express, vol. 22, no. 23, pp. 28154–28162, 2014.

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express, vol. 15, no. 12, pp. 7888–7893, 2007.

Y. Jiang, Z. Fang, Y. Du, E. Lewis, G. Farrell, and P. Wang, “Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids,” Opt. Express, vol. 26, no. 1, pp. 356–366, 2018.

J. Wang, Y. Liao, S. Wang, and X. Wang, “Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer,” Opt. Express, vol. 26, no. 19, pp. 24843–24853, 2018.

T. Liu, J. Wang, Y. Liao, L. Yang, and S. Wang, “Splicing point tapered fiber Mach—Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater,” Opt. Express, vol. 27, no. 17, pp. 23905–23918, 2019.

J. Li, “Ultrasensitive refractive index sensor based on enhanced vernier effect through cascaded fiber core-offset pairs,” Opt. Express, vol. 28, no. 3, pp. 4145–4155, 2020.

T. Liu, J. Wang, Y. Liao, X. Wang, and S. Wang, “All-fiber Mach—Zehnder interferometer for tunable two quasi-continuous points’ temperature sensing in seawater,” Opt. Express, vol. 26, no. 9, pp. 12277–12290, 2018.

Opt. Lett. (6)

Sens. Actuator A-Phys. (1)

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys., vol. 233, pp. 22–25, 2015.

Sens. Actuator B-Chem. (3)

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuator B-Chem., vol. 269, pp. 103–109, 2018.

Y. Huang, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuator B-Chem., vol. 255, pp. 57–69, 2018.

R. Chu, “All-optical graphene-oxide humidity sensor based on a side-polished symmetrical twin-core fiber michelson interferometer,” Sens. Actuator B-Chem., vol. 284, pp. 623–627, 2019.

Sensors (3)

M. R. Islam, M. M. Ali, M. Lai, K. S. Lim, and H. Ahmad, “Chronology of Fabry—Perot interferometer fiber-optic sensors and their applications: A review,” Sensors, vol. 14, no. 4, pp. 7451–7488, 2014.

M. Janik, M. Koba, K. Król, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period fiber grating and microcavity in-line Mach—Zehnder interferometer for refractive index measurements with limited cross-sensitivity,” Sensors, vol. 20, no. 8, 2020, Art. no. .

J. Wang, X. Li, J. Fu, and K. Li, “High-sensitivity, large dynamic range refractive index measurement using an optical microfiber coupler,” Sensors, vol. 19, no. 23, 2019, Art. no. .

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.