Abstract

We developed an all-fiber-based optical demodulator for the signal interrogation of low-coherence fiber-optic Fabry–Perot interferometric sensors. The optical demodulator consists of a Michelson interferometer implemented by using a 3 × 3 fiber coupler and two fiber-coupled Faraday reflectors with tunable fiber delay lines. The demodulator's output contains two optical interference signals with a constant phase shift and the output shows no sensitivity to the polarization variation in the light source or fibers. A digital phase recovery algorithm is used to extract the measurand information from the phase-shifted signals at high accuracy, high dynamic range, and high stability. The optical demodulator has been applied to the measurement of high-frequency vibrations and strains using fiber-optic sensors.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription