Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 8,
  • pp. 2311-2318
  • (2021)

Optical Fiber Delay Lines in Microwave Photonics: Sensitivity to Temperature and Means to Reduce it

Not Accessible

Your library or personal account may give you access

Abstract

One of the key functionalities in microwave photonics is to be able to define controllable time delays during the signal processing. Optical fibers are often used to achieve this functionality, especially when a long delay or a widely-tunable delay is needed. However, the stability of this delay in the presence of environmental changes (e.g., temperature) has not, to the best of our knowledge, been reviewed yet. Here, we firstly discuss the impact of temperature-induced variations on the signal propagation time in optical fibers and its implications in microwave photonics. We compare the impact of the thermal sensitivity of various delay lines for applications in which the signal is transported from point A to point B, as well as for applications in which the propagation time through a fiber or the fiber dispersion is used to create a fixed or tunable delay. In the second part of the article we show the impact of fiber thermal sensitivity on a narrow-band microwave photonics filter made of standard single mode fiber (SSMF) and a hollow core fiber (HCF), which has significantly lower thermal sensitivity of propagation time to temperature. The central frequency of the band-pass filter changes almost 16 times more in the filter made of SSMF as compared to that of HCF, dictating very tight (0.05 °C) temperature stabilization for SSMF-based filters. On the basis of our thermal sensitivity analysis we conclude that HCFs are very promising for environmentally stable microwave photonics applications.

PDF Article
More Like This
Air flowing induced thermo-optic effect for thermal sensitivity reduction in anti-resonant hollow core fibers

Yizhi Sun, Zhi Liang, Yulin Sheng, Shoufei Gao, Zhe Zhang, Anqing Jia, Yingying Wang, and Wei Ding
Opt. Express 30(13) 23138-23148 (2022)

Hollow-core fiber with stable propagation delay between −150°C and +60°C

Zitong Feng, Hesham Sakr, John R. Hayes, Eric Numkam Fokoua, Meng Ding, Francesco Poletti, David J. Richardson, and Radan Slavík
Opt. Lett. 48(3) 763-766 (2023)

Demonstration of opposing thermal sensitivities in hollow-core fibers with open and sealed ends

R. Slavík, E. R. Numkam Fokoua, M. Bukshtab, Y. Chen, T. D. Bradley, S. R. Sandoghchi, M. N. Petrovich, F. Poletti, and D. J. Richardson
Opt. Lett. 44(17) 4367-4370 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.