Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 5,
  • pp. 1306-1311
  • (2021)

Simple Closed-Form Approximations for Achievable Information Rates of Coded Modulation Systems

Not Accessible

Your library or personal account may give you access

Abstract

The intuitive sphere-packing argument is used to obtain analytically-tractable closed-form approximations for achievable information rates of coded modulation transmission systems, for which only analytically-intractable expressions are available in the literature. These approximations provide a number of insights, possess useful properties, and facilitate design/optimization of such systems. They apply to constellations of various cardinalities (including large ones), are simple yet reasonably accurate over the whole signal-to-noise ratio range, and compare favorably to the achieved rates of recent state-of-the art experiments.

PDF Article
More Like This
Channel model and the achievable information rates of the optical nonlinear frequency division-multiplexed systems employing continuous b-modulation

Stanislav Derevyanko, Muyiwa Balogun, Ofer Aluf, Dmitry Shepelsky, and Jaroslaw E. Prilepsky
Opt. Express 29(5) 6384-6406 (2021)

Achievable information rate enhancement of visible light communication using probabilistically shaped OFDM modulation

Chenhui Xie, Zexin Chen, Songnian Fu, Wu Liu, Zhixue He, Lei Deng, Ming Tang, and Deming Liu
Opt. Express 26(1) 367-375 (2018)

Achievable information rates estimates in optically amplified transmission systems using nonlinearity compensation and probabilistic shaping

Daniel Semrau, Tianhua Xu, Nikita A. Shevchenko, Milen Paskov, Alex Alvarado, Robert I. Killey, and Polina Bayvel
Opt. Lett. 42(1) 121-124 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.