Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 2,
  • pp. 505-510
  • (2021)

Energy-Efficient Implementation of Carrier Phase Recovery for Higher-Order Modulation Formats

Not Accessible

Your library or personal account may give you access

Abstract

We introduce circuit implementations of one- and two-stage carrier phase recovery (CPR) for 256QAM coherent optical receivers. We describe in detail the optimizations of algorithms, such as modified Viterbi-Viterbi (mVV), blind phase search (BPS), and principal component-based phase estimation (PCPE), that are required to develop energy-efficient CPR circuits and show how design parameter settings and limited fixed-point resolution affect the SNR penalty. 30-GBaud CPR circuit netlists synthesized in a 22-nm CMOS process technology allow us to study trade-offs between energy per bit and SNR penalty. We show that it is possible to reach an energy dissipation of around 1 pJ/bit at an SNR penalty of 0.6 dB for two-stage PCPE+BPS and mVV+BPS implementations, and that PCPE+BPS is the preferred choice thanks to its smaller area.

PDF Article
More Like This
Low-complexity carrier phase recovery based on principal component analysis for square-QAM modulation formats

Júlio César Medeiros Diniz, Qirui Fan, Stenio Magalhães Ranzini, Faisal Nadeem Khan, Francesco Da Ros, Darko Zibar, and Alan Pak Tao Lau
Opt. Express 27(11) 15617-15626 (2019)

Hardware optimization of dual-stage carrier-phase recovery for coherent optical receivers

Celestino S. Martins, Fernando P. Guiomar, and Armando N. Pinto
OSA Continuum 4(12) 3157-3175 (2021)

Carrier phase recovery friendly probabilistic shaping scheme based on a quasi-Maxwell–Boltzmann distribution model

Xishuo Wang, Qi Zhang, Jianjun Yu, Xiangjun Xin, Kai Lv, Ran Gao, Jianxin Ren, Feng Tian, Qinghua Tian, Chuxuan Wang, Xiaolong Pan, Yongjun Wang, Dong Guo, and Leijing Yang
Opt. Lett. 45(17) 4883-4886 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.