Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 13,
  • pp. 4236-4246
  • (2021)

Fault Localization based on Knowledge Graph in Software-Defined Optical Networks

Not Accessible

Your library or personal account may give you access

Abstract

In the era of the fifth-generation fixed network (F5G), optical networks must be developed to support large bandwidth, low latency, high reliability, and intelligent management. Studies have shown that software-defined optical networks (SDON) and artificial intelligence can help improve the performance and management capabilities of optical networks. Inside a large-scale optical network, many types of alarms are reported that indicate network anomalies. Relationships between the alarms are complicated, making it difficult to accurately locate the source of the fault(s). In this work, we propose a knowledge-guided fault localization method, using network alarm knowledge to analyze network abnormalities. Our method introduces knowledge graphs (KGs) into the alarm analysis process. We also propose a reasoning model based on graph neural network (GNN), to perform relational reasoning on alarm KGs and locate the network faults. We develop an ONOS-based SDON platform for experimental verification, which includes a set of processes for the construction and application of alarm KGs. The experimental results show the proposed method has high accuracy and provide motivation for the industry-scale use of KGs for alarm analysis and fault localization.

PDF Article
More Like This
Suspect fault screen assisted graph aggregation network for intra-/inter-node failure localization in ROADM-based optical networks

Ruikun Wang, Jiawei Zhang, Shuangyi Yan, Chuidian Zeng, Hao Yu, Zhiqun Gu, Bojun Zhang, Tarik Taleb, and Yuefeng Ji
J. Opt. Commun. Netw. 15(7) C88-C99 (2023)

Performance evaluation of data center service localization based on virtual resource migration in software defined elastic optical network

Hui Yang, Jie Zhang, Yuefeng Ji, Yuanlong Tan, Yi Lin, Jianrui Han, and Young Lee
Opt. Express 23(18) 23059-23071 (2015)

Machine-learning-based soft-failure localization with partial software-defined networking telemetry

Kayol S. Mayer, Jonathan A. Soares, Rossano P. Pinto, Christian E. Rothenberg, Dalton S. Arantes, and Darli A. A. Mello
J. Opt. Commun. Netw. 13(10) E122-E131 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.