Abstract

We present a concept for networked optical wireless communications, also denoted as LiFi, to meet the requirements of industrial wireless applications. These are primarily mobility support with moderate data rates per device, reliable real-time communication, and integrated positioning. We describe a distributed multiuser multiple-input multiple-output architecture, serving mobile devices via an optical wireless infrastructure. The system consists of a central unit, being connected to a number of distributed optical frontends covering a larger area. Our main contribution is a medium access control protocol based on space division multiple access. Evaluation results demonstrate the advantages of joint transmission from adjacent optical frontends and the dynamic switching between spatial diversity and multiplexing. The relevance of spatial multiplexing becomes obvious through channel measurements in an indoor scenario. Moreover, we highlight a low-power physical layer based on on-off-keying for battery-powered mobile devices. Our architecture can easily integrate positioning by simultaneously measuring the time-of-flight between multiple optical frontends and the mobile device. We highlight the use of plastic optical fiber as an analog fronthaul technology and discuss the integration with other networks. The main functions described in this paper will be supported by the upcoming IEEE Std 802.15.13.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.
  2. B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory of industry 4.0: Key technologies, application case, and challenges,” IEEE Access, vol. 6, pp. 6505–6519, Dec. 2018.
  3. M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial communication: Automation networks in the era of the Internet of Things and industry 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27, 2017.
  4. X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A review of industrial wireless networks in the context of industry 4.0,” Wireless Netw., vol. 23, no. 1, pp. 23–41, 2017.
  5. S. Petersen and S. Carlsen, “WirelessHART versus ISA100.11a: The format war hits the factory floor,” IEEE Ind. Electron. Mag., vol. 5, no. 4, pp. 23–34, 2011.
  6. N. Baker, “ZigBee and bluetooth strengths and weaknesses for industrial applications,” Comput. Control Eng. J., vol. 16, no. 2, pp. 20–25, 2005.
  7. L. Leonardi, G. Patti, and L.L. Bello, “Multi-hop real-time communications over bluetooth low energy industrial wireless mesh networks,” IEEE Access, vol. 6, pp. 26505–26519, May 2018.
  8. K. Das and P. Havinga, “Evaluation of DECT for low latency real-time industrial control networks,” in IEEE Int. Conf. Sens., Commun. Netw., 2013, pp. 10–17.
  9. W. Haerick, and M. Gupta, “5G and the factories of the future,” 5G-PPP White Paper, 2015, Accessed: Feb. 2021. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf
  10. A. Aijaz, “Private 5G: The future of industrial wireless,” IEEE Ind. Electron. Mag., vol. 14, no. 4, pp. 136–145, Dec. 2020, doi: .
  11. S. Gangakhedkar, H. Cao, A. R. Ali, K. Ganesan, M. Gharba, and J. Eichinger, “Use cases, requirements, and challenges of 5G communication for industrial automation,” in Proc. IEEE Int. Conf. Commun. Workshops, 2018, pp. 1–6.
  12. M. Düngen, “Channel measurement campaigns for wireless industrial automation,” Automatisierungstechnik, vol. 67, no. 1, pp. 7–28, 2019.
  13. M. Weiner, M. Jorgovanovic, A. Sahai, and B. Nikolié, “Design of a low-latency, high-reliability wireless communication system for control applications,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3829–3835.
  14. A. Willig, “Redundancy concepts to increase transmission reliability in wireless industrial LANs,” IEEE Trans. Ind. Informat., vol. 1, no. 3, pp. 173–182, 2005.
  15. M. Schneider, J. Rambach, and D. Stricker, “Augmented reality based on edge computing using the example of remote live support,” in Proc. IEEE Int. Conf. Ind. Technol., 2017, pp. 1277–1282.
  16. G. Mohanarajah, D. Hunziker, R. D'Andrea, and M. Waibel, “Rapyuta: A cloud robotics platform,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 481–493, 2015.
  17. S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and J. Rodriguez, “Massive Internet of Things for industrial applications: Addressing wireless IIoT connectivity challenges and ecosystem fragmentation,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 28–33, 2017.
  18. K. Govindaraj, D. Grewe, A. Artemenko, and A. Kirstaedter, “Towards zero factory downtime: Edge computing and SDN as enabling technologies,” in Proc. 14th Int. Conf. Wireless Mobile Comput., Netw. Commun., 2018, pp. 285–290.
  19. S. Melnyk, “Next generation industrial radio LAN for tactile and safety applications,” VDE/ITG Fachtagung Mobilkommunikation, vol. 22, no. 9–10, p. 7, 2017.
  20. F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.
  21. N. Serafimovski, , “An overview on high speed optical wireless/light communications,” Accessed: Feb. 2021. [Online]. Available: https://ieee802.org/802_tutorials/2017-07/11-17-0962-03-00lc-An-Overview-on-High-Speed-Optical-Wireless-Light.pdf
  22. M. Z. Chowdhury, M. Shahjalal, M. K. Hasan, and Y. M. Jang, “The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .
  23. L. Zeng, “High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1654–1662, 2009.
  24. P. W. Berenguer, V. Jungnickel, and J. K. Fischer, “The benefit of frequency-selective rate adaptation for optical wireless communications,” in Proc. 10th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2016, pp. 1–6.
  25. High-speed indoor visible light communication transceiver, “System architecture, physical layer, and data link layer specification,” ITU-T Rec. G.9991 Amendment 1, Jul. 2020.
  26. X. Liu, X. Wei, L. Guo, Y. Liu, Q. Song, and A. Jamalipour, “Turning the signal interference into benefits: Towards indoor self-powered visible light communication for IoT devices in industrial radio-hostile environments,” IEEE Access, vol. 7, pp. 24978–24989, Feb. 2019.
  27. I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the Internet of Things through light communication,” IEEE Commun. Mag., vol. 57, no. 6, pp. 107–113, 2019.
  28. Y. Almadani, M. Ijaz, S. Rajbhandari, B. Adebisi, and U. Raza, “Application of visible light communication in an industrial environment,” in Proc. 11th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2018, pp. 1–6.
  29. V. Jungnickel, “Optical wireless communication for backhaul and access,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 1–3.
  30. P. W. Berenguer, “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.
  31. P. W. Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Glob. LIFI Congr., 2018, pp. 1–5.
  32. P. W. Berenguer, “Real-time optical wireless mobile communication with high physical layer reliability,” J. Lightw. Technol., vol. 37, no. 6, pp. 1638–1646, 2019.
  33. Unified high-speed wire-line based home networking transceivers - System architecture and physical layer specification, ITU-T Rec. G.9960 Corrigendum 1, Int. Telecommun. Union, Sep. 2019.
  34. P. W. Berenguer, “Real-time optical wireless communication: Field-trial in an industrial production environment,” in Proc. Eur. Conf. Opt. Commun., 2018, pp. 1–3.
  35. V. Jungnickel, “LiFi for industrial wireless applications,” in Opt. Fiber Commun. Conf., 2020.
  36. T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., vol. 61, no. 2, pp. 733–742, 2013.
  37. M. O. Damen, O. Narmanlioglu, and M. Uysal, “Comparative performance evaluation of MIMO visible light communication systems,” in Proc. 24th Signal Process. Commun. Appl. Conf., 2016, pp. 525–528.
  38. Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Commun. Mag., vol. 42, no. 10, pp. 60–67, 2004.
  39. Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications,” IEEE Photon. J., vol. 5, no. 4, p. 7800211, 2013.
  40. Z. Yu, R. J. Baxley, and G. T. Zhou, “Multi-user MISO broadcasting for indoor visible light communication,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2013, pp. 4849–4853.
  41. B. Li, J. Wang, R. Zhang, H. Shen, C. Zhao, and L. Hanzo, “Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints,” IEEE Photon. J., vol. 7, no. 4, pp. 1–15, 2015.
  42. M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network coordination for spectrally efficient communications in cellular systems,” IEEE Wireless Commun., vol. 13, no. 4, pp. 56–61, 2006.
  43. R. Irmer, “Coordinated multipoint: Concepts, performance, and field trial results,” IEEE Commun. Mag., vol. 49, no. 2, pp. 102–111, 2011.
  44. V. Jungnickel, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51, 2014.
  45. A. Checko, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tut., vol. 17, no. 1, pp. 405–426, Jan.–Mar. 2015.
  46. A. Maeder, “Towards a flexible functional split for cloud-RAN networks,” in Proc. Eur. Conf. Netw. Commun., 2014, pp. 1–5.
  47. “ECPRI Specification V2.0,” Accessed: 24, 2020. [Online]. Available: http://www.cpri.info/spec.html
  48. L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073–1096, 2003.
  49. T. Le-Anh and M. D. Koster, “A review of design and control of automated guided vehicle systems,” Eur. J. Oper. Res., vol. 171, no. 1, pp. 1–23, 2006.
  50. M. Aminikashani, W. Gu, and M. Kavehrad, “Indoor positioning with OFDM visible light communications,” in Proc. 13th IEEE Annu. Consum. Commun. Netw. Conf., 2016, pp. 505–510.
  51. L. Yin, X. Wu, and H. Haas, “Indoor visible light positioning with angle diversity transmitter,” in Proc. IEEE 82nd Veh. Technol. Conf., 2015, pp. 1–5.
  52. J. Vongkulbhisal, B. Chantaramolee, Y. Zhao, and W. S. Mohammed, “A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes,” Microw. Opt. Technol. Lett., vol. 54, no. 5, pp. 1218–1227, 2012.
  53. A. Naz, H. M. Asif, T. Umer, and B.-S. Kim, “PDOA based indoor positioning using visible light communication,” IEEE Access, vol. 6, pp. 7557–7564, Jan. 2018.
  54. T.-H. Do, J. Hwang, and M. Yoo, “TDoA based indoor visible light positioning systems,” in Proc. 5th Int. Conf. Ubiquitous Future Netw., 2013, pp. 456–458.
  55. S.-Y. Jung, S. Hann, and C.-S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.
  56. G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Modeling and Tools for Network Simulation, Berlin, Heidelberg, Germany: Springer, 2010, pp. 15–34.
  57. A. Aldalbahi, M. Rahaim, A. Khreishah, M. Ayyash, and T. D. C. Little, “Visible light communication module: An open source extension to the ns3 network simulator with real system validation,” IEEE Access, vol. 5, pp. 22144–22158, Oct. 2017.
  58. L. Yin, X. Wu, and H. Haas, “SDMA grouping in coordinated multi-point VLC systems,” in Proc. IEEE Summer Topicals Meeting Ser., 2015, pp. 169–170.
  59. C. Chen, Y. Yang, X. Deng, P. Du, and H. Yang, “Space division multiple access with distributed user grouping for multi-user MIMO-VLC systems,” IEEE Open J. Commun. Soc., pp. 1–1, 2020.
  60. P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, Dec. 2000.
  61. S. Maravanchery, “LiFi experiments in a hospital,” in Opt. Fiber Commun. Conf. Exhibit. (OFC), San Diego, CA, USA, 2020, pp. 1–3.
  62. S. M. Mana, S. M. Kouhini, P. Hellwig, J. Hilt, P. W. Berenguer, and V. Jungnickel, “Distributed MIMO experiments for LiFi in a conference room,” presented at the 12th IEEE/IET Int. Symp. Commun. Syst., Netw. Digit. Signal Process., Porto Portugal, Jul. 2020.
  63. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.
  64. M. Hinrichs, “A physical layer for low power optical wireless communications,” IEEE Trans. Green Commun. Netw., vol. 5, no. 1, pp. 4–17, 2021.
  65. L. Grobe, V. Jungnickel, K.-D. Langer, M. Haardt, and M. Wolf, “On the impact of highpass filtering when using PAM-FDE for visible light communication,” in Proc. IEEE Wireless Commun. Netw. Conf. Workshops, 2016, pp. 239–245.
  66. M. Wolf and M. Haardt, “On the DC balance of multi-level PAM VLC systems,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–5.
  67. M. Hinrichs, “Pulsed modulation PHY for power efficient optical wireless communication,” in Proc. 2019 IEEE Int. Conf. Commun., 2019, pp. 1–7.
  68. M. Hinrichs, “Demonstration of optical wireless communications using the pulsed modulation PHY in IEEE 802.15.13,” in Proc. 22nd Int. Conf. Transparent Opt. Netw. (ICTON), Bari, Italy, 2020, pp. 1–4.
  69. M. Hinrichs, L. F.D. Rosal, C. Kottke, and V. Jungnickel, “Analog vs. next-generation digital fronthaul: How to minimize optical bandwidth utilization,” in Proc. Int. Conf. Opt. Netw. Des. Model. (ONDM), 2017, pp. 1–6.
  70. S. M. Kouhini, “Use of plastic optical fibers for distributed MIMO in Li-Fi systems,” in Proc. Glob. LIFI Congr., 2019, pp. 1–5.
  71. S. M. Kouhini, “Performance of bidirectional LiFi over plastic optical fiber (POF),” presented at the 12th IEEE/IET Int. Symp. Commun. Syst., Netw. Digit. Signal Process., Porto, Portugal, Jul. 2020.
  72. A. Paraskevopoulos, “Design of a secure software-defined access network for flexible industry 4.0 manufacturing - The SESAM-project concept,” in Proc. Glob. LIFI Congr., 2019, pp. 1–5.

2021 (1)

M. Hinrichs, “A physical layer for low power optical wireless communications,” IEEE Trans. Green Commun. Netw., vol. 5, no. 1, pp. 4–17, 2021.

2020 (2)

C. Chen, Y. Yang, X. Deng, P. Du, and H. Yang, “Space division multiple access with distributed user grouping for multi-user MIMO-VLC systems,” IEEE Open J. Commun. Soc., pp. 1–1, 2020.

High-speed indoor visible light communication transceiver, “System architecture, physical layer, and data link layer specification,” ITU-T Rec. G.9991 Amendment 1, Jul. 2020.

2019 (6)

X. Liu, X. Wei, L. Guo, Y. Liu, Q. Song, and A. Jamalipour, “Turning the signal interference into benefits: Towards indoor self-powered visible light communication for IoT devices in industrial radio-hostile environments,” IEEE Access, vol. 7, pp. 24978–24989, Feb. 2019.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the Internet of Things through light communication,” IEEE Commun. Mag., vol. 57, no. 6, pp. 107–113, 2019.

M. Z. Chowdhury, M. Shahjalal, M. K. Hasan, and Y. M. Jang, “The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

M. Düngen, “Channel measurement campaigns for wireless industrial automation,” Automatisierungstechnik, vol. 67, no. 1, pp. 7–28, 2019.

P. W. Berenguer, “Real-time optical wireless mobile communication with high physical layer reliability,” J. Lightw. Technol., vol. 37, no. 6, pp. 1638–1646, 2019.

Unified high-speed wire-line based home networking transceivers - System architecture and physical layer specification, ITU-T Rec. G.9960 Corrigendum 1, Int. Telecommun. Union, Sep. 2019.

2018 (4)

A. Naz, H. M. Asif, T. Umer, and B.-S. Kim, “PDOA based indoor positioning using visible light communication,” IEEE Access, vol. 6, pp. 7557–7564, Jan. 2018.

L. Leonardi, G. Patti, and L.L. Bello, “Multi-hop real-time communications over bluetooth low energy industrial wireless mesh networks,” IEEE Access, vol. 6, pp. 26505–26519, May 2018.

B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory of industry 4.0: Key technologies, application case, and challenges,” IEEE Access, vol. 6, pp. 6505–6519, Dec. 2018.

P. W. Berenguer, “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.

2017 (5)

S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and J. Rodriguez, “Massive Internet of Things for industrial applications: Addressing wireless IIoT connectivity challenges and ecosystem fragmentation,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 28–33, 2017.

S. Melnyk, “Next generation industrial radio LAN for tactile and safety applications,” VDE/ITG Fachtagung Mobilkommunikation, vol. 22, no. 9–10, p. 7, 2017.

M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial communication: Automation networks in the era of the Internet of Things and industry 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27, 2017.

X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A review of industrial wireless networks in the context of industry 4.0,” Wireless Netw., vol. 23, no. 1, pp. 23–41, 2017.

A. Aldalbahi, M. Rahaim, A. Khreishah, M. Ayyash, and T. D. C. Little, “Visible light communication module: An open source extension to the ns3 network simulator with real system validation,” IEEE Access, vol. 5, pp. 22144–22158, Oct. 2017.

2015 (3)

A. Checko, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tut., vol. 17, no. 1, pp. 405–426, Jan.–Mar. 2015.

G. Mohanarajah, D. Hunziker, R. D'Andrea, and M. Waibel, “Rapyuta: A cloud robotics platform,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 481–493, 2015.

B. Li, J. Wang, R. Zhang, H. Shen, C. Zhao, and L. Hanzo, “Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints,” IEEE Photon. J., vol. 7, no. 4, pp. 1–15, 2015.

2014 (2)

V. Jungnickel, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51, 2014.

H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.

2013 (2)

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications,” IEEE Photon. J., vol. 5, no. 4, p. 7800211, 2013.

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., vol. 61, no. 2, pp. 733–742, 2013.

2012 (1)

J. Vongkulbhisal, B. Chantaramolee, Y. Zhao, and W. S. Mohammed, “A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes,” Microw. Opt. Technol. Lett., vol. 54, no. 5, pp. 1218–1227, 2012.

2011 (3)

S.-Y. Jung, S. Hann, and C.-S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.

R. Irmer, “Coordinated multipoint: Concepts, performance, and field trial results,” IEEE Commun. Mag., vol. 49, no. 2, pp. 102–111, 2011.

S. Petersen and S. Carlsen, “WirelessHART versus ISA100.11a: The format war hits the factory floor,” IEEE Ind. Electron. Mag., vol. 5, no. 4, pp. 23–34, 2011.

2009 (1)

L. Zeng, “High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1654–1662, 2009.

2006 (2)

T. Le-Anh and M. D. Koster, “A review of design and control of automated guided vehicle systems,” Eur. J. Oper. Res., vol. 171, no. 1, pp. 1–23, 2006.

M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network coordination for spectrally efficient communications in cellular systems,” IEEE Wireless Commun., vol. 13, no. 4, pp. 56–61, 2006.

2005 (2)

N. Baker, “ZigBee and bluetooth strengths and weaknesses for industrial applications,” Comput. Control Eng. J., vol. 16, no. 2, pp. 20–25, 2005.

A. Willig, “Redundancy concepts to increase transmission reliability in wireless industrial LANs,” IEEE Trans. Ind. Informat., vol. 1, no. 3, pp. 173–182, 2005.

2004 (1)

Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Commun. Mag., vol. 42, no. 10, pp. 60–67, 2004.

2003 (1)

L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073–1096, 2003.

2000 (1)

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, Dec. 2000.

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

1979 (1)

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

Adebisi, B.

Y. Almadani, M. Ijaz, S. Rajbhandari, B. Adebisi, and U. Raza, “Application of visible light communication in an industrial environment,” in Proc. 11th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2018, pp. 1–6.

Aijaz, A.

A. Aijaz, “Private 5G: The future of industrial wireless,” IEEE Ind. Electron. Mag., vol. 14, no. 4, pp. 136–145, Dec. 2020, doi: .

Aldalbahi, A.

A. Aldalbahi, M. Rahaim, A. Khreishah, M. Ayyash, and T. D. C. Little, “Visible light communication module: An open source extension to the ns3 network simulator with real system validation,” IEEE Access, vol. 5, pp. 22144–22158, Oct. 2017.

Ali, A. R.

S. Gangakhedkar, H. Cao, A. R. Ali, K. Ganesan, M. Gharba, and J. Eichinger, “Use cases, requirements, and challenges of 5G communication for industrial automation,” in Proc. IEEE Int. Conf. Commun. Workshops, 2018, pp. 1–6.

Almadani, Y.

Y. Almadani, M. Ijaz, S. Rajbhandari, B. Adebisi, and U. Raza, “Application of visible light communication in an industrial environment,” in Proc. 11th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2018, pp. 1–6.

Alsohaily, A.

S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and J. Rodriguez, “Massive Internet of Things for industrial applications: Addressing wireless IIoT connectivity challenges and ecosystem fragmentation,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 28–33, 2017.

Aminikashani, M.

M. Aminikashani, W. Gu, and M. Kavehrad, “Indoor positioning with OFDM visible light communications,” in Proc. 13th IEEE Annu. Consum. Commun. Netw. Conf., 2016, pp. 505–510.

Artemenko, A.

K. Govindaraj, D. Grewe, A. Artemenko, and A. Kirstaedter, “Towards zero factory downtime: Edge computing and SDN as enabling technologies,” in Proc. 14th Int. Conf. Wireless Mobile Comput., Netw. Commun., 2018, pp. 285–290.

Asif, H. M.

A. Naz, H. M. Asif, T. Umer, and B.-S. Kim, “PDOA based indoor positioning using visible light communication,” IEEE Access, vol. 6, pp. 7557–7564, Jan. 2018.

Ayyash, M.

A. Aldalbahi, M. Rahaim, A. Khreishah, M. Ayyash, and T. D. C. Little, “Visible light communication module: An open source extension to the ns3 network simulator with real system validation,” IEEE Access, vol. 5, pp. 22144–22158, Oct. 2017.

Baker, N.

N. Baker, “ZigBee and bluetooth strengths and weaknesses for industrial applications,” Comput. Control Eng. J., vol. 16, no. 2, pp. 20–25, 2005.

Bapst, U.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

Baxley, R. J.

Z. Yu, R. J. Baxley, and G. T. Zhou, “Multi-user MISO broadcasting for indoor visible light communication,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2013, pp. 4849–4853.

Bello, L.L.

L. Leonardi, G. Patti, and L.L. Bello, “Multi-hop real-time communications over bluetooth low energy industrial wireless mesh networks,” IEEE Access, vol. 6, pp. 26505–26519, May 2018.

Berenguer, P. W.

P. W. Berenguer, “Real-time optical wireless mobile communication with high physical layer reliability,” J. Lightw. Technol., vol. 37, no. 6, pp. 1638–1646, 2019.

P. W. Berenguer, “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.

P. W. Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Glob. LIFI Congr., 2018, pp. 1–5.

P. W. Berenguer, “Real-time optical wireless communication: Field-trial in an industrial production environment,” in Proc. Eur. Conf. Opt. Commun., 2018, pp. 1–3.

P. W. Berenguer, V. Jungnickel, and J. K. Fischer, “The benefit of frequency-selective rate adaptation for optical wireless communications,” in Proc. 10th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2016, pp. 1–6.

S. M. Mana, S. M. Kouhini, P. Hellwig, J. Hilt, P. W. Berenguer, and V. Jungnickel, “Distributed MIMO experiments for LiFi in a conference room,” presented at the 12th IEEE/IET Int. Symp. Commun. Syst., Netw. Digit. Signal Process., Porto Portugal, Jul. 2020.

Camps-Mur, D.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the Internet of Things through light communication,” IEEE Commun. Mag., vol. 57, no. 6, pp. 107–113, 2019.

Cao, H.

S. Gangakhedkar, H. Cao, A. R. Ali, K. Ganesan, M. Gharba, and J. Eichinger, “Use cases, requirements, and challenges of 5G communication for industrial automation,” in Proc. IEEE Int. Conf. Commun. Workshops, 2018, pp. 1–6.

Carlsen, S.

S. Petersen and S. Carlsen, “WirelessHART versus ISA100.11a: The format war hits the factory floor,” IEEE Ind. Electron. Mag., vol. 5, no. 4, pp. 23–34, 2011.

Chantaramolee, B.

J. Vongkulbhisal, B. Chantaramolee, Y. Zhao, and W. S. Mohammed, “A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes,” Microw. Opt. Technol. Lett., vol. 54, no. 5, pp. 1218–1227, 2012.

Checko, A.

A. Checko, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tut., vol. 17, no. 1, pp. 405–426, Jan.–Mar. 2015.

Chen, B.

B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory of industry 4.0: Key technologies, application case, and challenges,” IEEE Access, vol. 6, pp. 6505–6519, Dec. 2018.

Chen, C.

C. Chen, Y. Yang, X. Deng, P. Du, and H. Yang, “Space division multiple access with distributed user grouping for multi-user MIMO-VLC systems,” IEEE Open J. Commun. Soc., pp. 1–1, 2020.

Chen, J.

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications,” IEEE Photon. J., vol. 5, no. 4, p. 7800211, 2013.

Chowdhury, M. Z.

M. Z. Chowdhury, M. Shahjalal, M. K. Hasan, and Y. M. Jang, “The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

Combalia, M.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the Internet of Things through light communication,” IEEE Commun. Mag., vol. 57, no. 6, pp. 107–113, 2019.

Damen, M. O.

M. O. Damen, O. Narmanlioglu, and M. Uysal, “Comparative performance evaluation of MIMO visible light communication systems,” in Proc. 24th Signal Process. Commun. Appl. Conf., 2016, pp. 525–528.

D'Andrea, R.

G. Mohanarajah, D. Hunziker, R. D'Andrea, and M. Waibel, “Rapyuta: A cloud robotics platform,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 481–493, 2015.

Das, K.

K. Das and P. Havinga, “Evaluation of DECT for low latency real-time industrial control networks,” in IEEE Int. Conf. Sens., Commun. Netw., 2013, pp. 10–17.

Demirkol, I.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the Internet of Things through light communication,” IEEE Commun. Mag., vol. 57, no. 6, pp. 107–113, 2019.

Deng, X.

C. Chen, Y. Yang, X. Deng, P. Du, and H. Yang, “Space division multiple access with distributed user grouping for multi-user MIMO-VLC systems,” IEEE Open J. Commun. Soc., pp. 1–1, 2020.

Djahani, P.

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, Dec. 2000.

Do, T.-H.

T.-H. Do, J. Hwang, and M. Yoo, “TDoA based indoor visible light positioning systems,” in Proc. 5th Int. Conf. Ubiquitous Future Netw., 2013, pp. 456–458.

Du, P.

C. Chen, Y. Yang, X. Deng, P. Du, and H. Yang, “Space division multiple access with distributed user grouping for multi-user MIMO-VLC systems,” IEEE Open J. Commun. Soc., pp. 1–1, 2020.

Düngen, M.

M. Düngen, “Channel measurement campaigns for wireless industrial automation,” Automatisierungstechnik, vol. 67, no. 1, pp. 7–28, 2019.

Eichinger, J.

S. Gangakhedkar, H. Cao, A. R. Ali, K. Ganesan, M. Gharba, and J. Eichinger, “Use cases, requirements, and challenges of 5G communication for industrial automation,” in Proc. IEEE Int. Conf. Commun. Workshops, 2018, pp. 1–6.

Fath, T.

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., vol. 61, no. 2, pp. 733–742, 2013.

Feld, T.

H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.

Fettke, P.

H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.

Fischer, J. K.

P. W. Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Glob. LIFI Congr., 2018, pp. 1–5.

P. W. Berenguer, V. Jungnickel, and J. K. Fischer, “The benefit of frequency-selective rate adaptation for optical wireless communications,” in Proc. 10th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2016, pp. 1–6.

Foschini, G. J.

M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network coordination for spectrally efficient communications in cellular systems,” IEEE Wireless Commun., vol. 13, no. 4, pp. 56–61, 2006.

Ganesan, K.

S. Gangakhedkar, H. Cao, A. R. Ali, K. Ganesan, M. Gharba, and J. Eichinger, “Use cases, requirements, and challenges of 5G communication for industrial automation,” in Proc. IEEE Int. Conf. Commun. Workshops, 2018, pp. 1–6.

Gangakhedkar, S.

S. Gangakhedkar, H. Cao, A. R. Ali, K. Ganesan, M. Gharba, and J. Eichinger, “Use cases, requirements, and challenges of 5G communication for industrial automation,” in Proc. IEEE Int. Conf. Commun. Workshops, 2018, pp. 1–6.

Gfeller, F. R.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

Gharba, M.

S. Gangakhedkar, H. Cao, A. R. Ali, K. Ganesan, M. Gharba, and J. Eichinger, “Use cases, requirements, and challenges of 5G communication for industrial automation,” in Proc. IEEE Int. Conf. Commun. Workshops, 2018, pp. 1–6.

Govindaraj, K.

K. Govindaraj, D. Grewe, A. Artemenko, and A. Kirstaedter, “Towards zero factory downtime: Edge computing and SDN as enabling technologies,” in Proc. 14th Int. Conf. Wireless Mobile Comput., Netw. Commun., 2018, pp. 285–290.

Grewe, D.

K. Govindaraj, D. Grewe, A. Artemenko, and A. Kirstaedter, “Towards zero factory downtime: Edge computing and SDN as enabling technologies,” in Proc. 14th Int. Conf. Wireless Mobile Comput., Netw. Commun., 2018, pp. 285–290.

Grobe, L.

L. Grobe, V. Jungnickel, K.-D. Langer, M. Haardt, and M. Wolf, “On the impact of highpass filtering when using PAM-FDE for visible light communication,” in Proc. IEEE Wireless Commun. Netw. Conf. Workshops, 2016, pp. 239–245.

Gu, W.

M. Aminikashani, W. Gu, and M. Kavehrad, “Indoor positioning with OFDM visible light communications,” in Proc. 13th IEEE Annu. Consum. Commun. Netw. Conf., 2016, pp. 505–510.

Guo, L.

X. Liu, X. Wei, L. Guo, Y. Liu, Q. Song, and A. Jamalipour, “Turning the signal interference into benefits: Towards indoor self-powered visible light communication for IoT devices in industrial radio-hostile environments,” IEEE Access, vol. 7, pp. 24978–24989, Feb. 2019.

Gupta, M.

W. Haerick, and M. Gupta, “5G and the factories of the future,” 5G-PPP White Paper, 2015, Accessed: Feb. 2021. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf

Haardt, M.

Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Commun. Mag., vol. 42, no. 10, pp. 60–67, 2004.

L. Grobe, V. Jungnickel, K.-D. Langer, M. Haardt, and M. Wolf, “On the impact of highpass filtering when using PAM-FDE for visible light communication,” in Proc. IEEE Wireless Commun. Netw. Conf. Workshops, 2016, pp. 239–245.

M. Wolf and M. Haardt, “On the DC balance of multi-level PAM VLC systems,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–5.

Haas, H.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the Internet of Things through light communication,” IEEE Commun. Mag., vol. 57, no. 6, pp. 107–113, 2019.

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., vol. 61, no. 2, pp. 733–742, 2013.

L. Yin, X. Wu, and H. Haas, “Indoor visible light positioning with angle diversity transmitter,” in Proc. IEEE 82nd Veh. Technol. Conf., 2015, pp. 1–5.

L. Yin, X. Wu, and H. Haas, “SDMA grouping in coordinated multi-point VLC systems,” in Proc. IEEE Summer Topicals Meeting Ser., 2015, pp. 169–170.

Haerick, W.

W. Haerick, and M. Gupta, “5G and the factories of the future,” 5G-PPP White Paper, 2015, Accessed: Feb. 2021. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf

Hann, S.

S.-Y. Jung, S. Hann, and C.-S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.

Hanzo, L.

B. Li, J. Wang, R. Zhang, H. Shen, C. Zhao, and L. Hanzo, “Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints,” IEEE Photon. J., vol. 7, no. 4, pp. 1–15, 2015.

Hasan, M. K.

M. Z. Chowdhury, M. Shahjalal, M. K. Hasan, and Y. M. Jang, “The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

Havinga, P.

K. Das and P. Havinga, “Evaluation of DECT for low latency real-time industrial control networks,” in IEEE Int. Conf. Sens., Commun. Netw., 2013, pp. 10–17.

Hellwig, P.

P. W. Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Glob. LIFI Congr., 2018, pp. 1–5.

S. M. Mana, S. M. Kouhini, P. Hellwig, J. Hilt, P. W. Berenguer, and V. Jungnickel, “Distributed MIMO experiments for LiFi in a conference room,” presented at the 12th IEEE/IET Int. Symp. Commun. Syst., Netw. Digit. Signal Process., Porto Portugal, Jul. 2020.

Henderson, T. R.

G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Modeling and Tools for Network Simulation, Berlin, Heidelberg, Germany: Springer, 2010, pp. 15–34.

Hilt, J.

S. M. Mana, S. M. Kouhini, P. Hellwig, J. Hilt, P. W. Berenguer, and V. Jungnickel, “Distributed MIMO experiments for LiFi in a conference room,” presented at the 12th IEEE/IET Int. Symp. Commun. Syst., Netw. Digit. Signal Process., Porto Portugal, Jul. 2020.

P. W. Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Glob. LIFI Congr., 2018, pp. 1–5.

Hinrichs, M.

M. Hinrichs, “A physical layer for low power optical wireless communications,” IEEE Trans. Green Commun. Netw., vol. 5, no. 1, pp. 4–17, 2021.

M. Hinrichs, “Pulsed modulation PHY for power efficient optical wireless communication,” in Proc. 2019 IEEE Int. Conf. Commun., 2019, pp. 1–7.

M. Hinrichs, “Demonstration of optical wireless communications using the pulsed modulation PHY in IEEE 802.15.13,” in Proc. 22nd Int. Conf. Transparent Opt. Netw. (ICTON), Bari, Italy, 2020, pp. 1–4.

M. Hinrichs, L. F.D. Rosal, C. Kottke, and V. Jungnickel, “Analog vs. next-generation digital fronthaul: How to minimize optical bandwidth utilization,” in Proc. Int. Conf. Opt. Netw. Des. Model. (ONDM), 2017, pp. 1–6.

Hoffmann, M.

H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.

Hong, Y.

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications,” IEEE Photon. J., vol. 5, no. 4, p. 7800211, 2013.

Hunziker, D.

G. Mohanarajah, D. Hunziker, R. D'Andrea, and M. Waibel, “Rapyuta: A cloud robotics platform,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 481–493, 2015.

Hwang, J.

T.-H. Do, J. Hwang, and M. Yoo, “TDoA based indoor visible light positioning systems,” in Proc. 5th Int. Conf. Ubiquitous Future Netw., 2013, pp. 456–458.

Ijaz, M.

Y. Almadani, M. Ijaz, S. Rajbhandari, B. Adebisi, and U. Raza, “Application of visible light communication in an industrial environment,” in Proc. 11th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2018, pp. 1–6.

Irmer, R.

R. Irmer, “Coordinated multipoint: Concepts, performance, and field trial results,” IEEE Commun. Mag., vol. 49, no. 2, pp. 102–111, 2011.

Jamalipour, A.

X. Liu, X. Wei, L. Guo, Y. Liu, Q. Song, and A. Jamalipour, “Turning the signal interference into benefits: Towards indoor self-powered visible light communication for IoT devices in industrial radio-hostile environments,” IEEE Access, vol. 7, pp. 24978–24989, Feb. 2019.

Jang, Y. M.

M. Z. Chowdhury, M. Shahjalal, M. K. Hasan, and Y. M. Jang, “The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

Jasperneite, J.

M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial communication: Automation networks in the era of the Internet of Things and industry 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27, 2017.

Jorgovanovic, M.

M. Weiner, M. Jorgovanovic, A. Sahai, and B. Nikolié, “Design of a low-latency, high-reliability wireless communication system for control applications,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3829–3835.

Jung, S.-Y.

S.-Y. Jung, S. Hann, and C.-S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.

Jungnickel, V.

V. Jungnickel, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51, 2014.

P. W. Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Glob. LIFI Congr., 2018, pp. 1–5.

V. Jungnickel, “LiFi for industrial wireless applications,” in Opt. Fiber Commun. Conf., 2020.

V. Jungnickel, “Optical wireless communication for backhaul and access,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 1–3.

P. W. Berenguer, V. Jungnickel, and J. K. Fischer, “The benefit of frequency-selective rate adaptation for optical wireless communications,” in Proc. 10th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2016, pp. 1–6.

S. M. Mana, S. M. Kouhini, P. Hellwig, J. Hilt, P. W. Berenguer, and V. Jungnickel, “Distributed MIMO experiments for LiFi in a conference room,” presented at the 12th IEEE/IET Int. Symp. Commun. Syst., Netw. Digit. Signal Process., Porto Portugal, Jul. 2020.

L. Grobe, V. Jungnickel, K.-D. Langer, M. Haardt, and M. Wolf, “On the impact of highpass filtering when using PAM-FDE for visible light communication,” in Proc. IEEE Wireless Commun. Netw. Conf. Workshops, 2016, pp. 239–245.

M. Hinrichs, L. F.D. Rosal, C. Kottke, and V. Jungnickel, “Analog vs. next-generation digital fronthaul: How to minimize optical bandwidth utilization,” in Proc. Int. Conf. Opt. Netw. Des. Model. (ONDM), 2017, pp. 1–6.

Kahn, J. M.

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, Dec. 2000.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

Karakayali, M. K.

M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network coordination for spectrally efficient communications in cellular systems,” IEEE Wireless Commun., vol. 13, no. 4, pp. 56–61, 2006.

Kavehrad, M.

M. Aminikashani, W. Gu, and M. Kavehrad, “Indoor positioning with OFDM visible light communications,” in Proc. 13th IEEE Annu. Consum. Commun. Netw. Conf., 2016, pp. 505–510.

Kemper, H.-G.

H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.

Khreishah, A.

A. Aldalbahi, M. Rahaim, A. Khreishah, M. Ayyash, and T. D. C. Little, “Visible light communication module: An open source extension to the ns3 network simulator with real system validation,” IEEE Access, vol. 5, pp. 22144–22158, Oct. 2017.

Kim, B.-S.

A. Naz, H. M. Asif, T. Umer, and B.-S. Kim, “PDOA based indoor positioning using visible light communication,” IEEE Access, vol. 6, pp. 7557–7564, Jan. 2018.

Kirstaedter, A.

K. Govindaraj, D. Grewe, A. Artemenko, and A. Kirstaedter, “Towards zero factory downtime: Edge computing and SDN as enabling technologies,” in Proc. 14th Int. Conf. Wireless Mobile Comput., Netw. Commun., 2018, pp. 285–290.

Koster, M. D.

T. Le-Anh and M. D. Koster, “A review of design and control of automated guided vehicle systems,” Eur. J. Oper. Res., vol. 171, no. 1, pp. 1–23, 2006.

Kottke, C.

M. Hinrichs, L. F.D. Rosal, C. Kottke, and V. Jungnickel, “Analog vs. next-generation digital fronthaul: How to minimize optical bandwidth utilization,” in Proc. Int. Conf. Opt. Netw. Des. Model. (ONDM), 2017, pp. 1–6.

Kouhini, S. M.

S. M. Kouhini, “Use of plastic optical fibers for distributed MIMO in Li-Fi systems,” in Proc. Glob. LIFI Congr., 2019, pp. 1–5.

S. M. Kouhini, “Performance of bidirectional LiFi over plastic optical fiber (POF),” presented at the 12th IEEE/IET Int. Symp. Commun. Syst., Netw. Digit. Signal Process., Porto, Portugal, Jul. 2020.

S. M. Mana, S. M. Kouhini, P. Hellwig, J. Hilt, P. W. Berenguer, and V. Jungnickel, “Distributed MIMO experiments for LiFi in a conference room,” presented at the 12th IEEE/IET Int. Symp. Commun. Syst., Netw. Digit. Signal Process., Porto Portugal, Jul. 2020.

Lai, C.-F.

X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A review of industrial wireless networks in the context of industry 4.0,” Wireless Netw., vol. 23, no. 1, pp. 23–41, 2017.

Langer, K.-D.

L. Grobe, V. Jungnickel, K.-D. Langer, M. Haardt, and M. Wolf, “On the impact of highpass filtering when using PAM-FDE for visible light communication,” in Proc. IEEE Wireless Commun. Netw. Conf. Workshops, 2016, pp. 239–245.

Lasi, H.

H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.

Le-Anh, T.

T. Le-Anh and M. D. Koster, “A review of design and control of automated guided vehicle systems,” Eur. J. Oper. Res., vol. 171, no. 1, pp. 1–23, 2006.

Leonardi, L.

L. Leonardi, G. Patti, and L.L. Bello, “Multi-hop real-time communications over bluetooth low energy industrial wireless mesh networks,” IEEE Access, vol. 6, pp. 26505–26519, May 2018.

Li, B.

B. Li, J. Wang, R. Zhang, H. Shen, C. Zhao, and L. Hanzo, “Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints,” IEEE Photon. J., vol. 7, no. 4, pp. 1–15, 2015.

Li, D.

X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A review of industrial wireless networks in the context of industry 4.0,” Wireless Netw., vol. 23, no. 1, pp. 23–41, 2017.

Li, P.

B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory of industry 4.0: Key technologies, application case, and challenges,” IEEE Access, vol. 6, pp. 6505–6519, Dec. 2018.

Li, X.

X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A review of industrial wireless networks in the context of industry 4.0,” Wireless Netw., vol. 23, no. 1, pp. 23–41, 2017.

Little, T. D. C.

A. Aldalbahi, M. Rahaim, A. Khreishah, M. Ayyash, and T. D. C. Little, “Visible light communication module: An open source extension to the ns3 network simulator with real system validation,” IEEE Access, vol. 5, pp. 22144–22158, Oct. 2017.

Liu, X.

X. Liu, X. Wei, L. Guo, Y. Liu, Q. Song, and A. Jamalipour, “Turning the signal interference into benefits: Towards indoor self-powered visible light communication for IoT devices in industrial radio-hostile environments,” IEEE Access, vol. 7, pp. 24978–24989, Feb. 2019.

Liu, Y.

X. Liu, X. Wei, L. Guo, Y. Liu, Q. Song, and A. Jamalipour, “Turning the signal interference into benefits: Towards indoor self-powered visible light communication for IoT devices in industrial radio-hostile environments,” IEEE Access, vol. 7, pp. 24978–24989, Feb. 2019.

Maeder, A.

A. Maeder, “Towards a flexible functional split for cloud-RAN networks,” in Proc. Eur. Conf. Netw. Commun., 2014, pp. 1–5.

Mana, S. M.

S. M. Mana, S. M. Kouhini, P. Hellwig, J. Hilt, P. W. Berenguer, and V. Jungnickel, “Distributed MIMO experiments for LiFi in a conference room,” presented at the 12th IEEE/IET Int. Symp. Commun. Syst., Netw. Digit. Signal Process., Porto Portugal, Jul. 2020.

Maravanchery, S.

S. Maravanchery, “LiFi experiments in a hospital,” in Opt. Fiber Commun. Conf. Exhibit. (OFC), San Diego, CA, USA, 2020, pp. 1–3.

Melnyk, S.

S. Melnyk, “Next generation industrial radio LAN for tactile and safety applications,” VDE/ITG Fachtagung Mobilkommunikation, vol. 22, no. 9–10, p. 7, 2017.

Mohammed, W. S.

J. Vongkulbhisal, B. Chantaramolee, Y. Zhao, and W. S. Mohammed, “A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes,” Microw. Opt. Technol. Lett., vol. 54, no. 5, pp. 1218–1227, 2012.

Mohanarajah, G.

G. Mohanarajah, D. Hunziker, R. D'Andrea, and M. Waibel, “Rapyuta: A cloud robotics platform,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 481–493, 2015.

Mukherjee, M.

B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory of industry 4.0: Key technologies, application case, and challenges,” IEEE Access, vol. 6, pp. 6505–6519, Dec. 2018.

Mumtaz, S.

S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and J. Rodriguez, “Massive Internet of Things for industrial applications: Addressing wireless IIoT connectivity challenges and ecosystem fragmentation,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 28–33, 2017.

Narmanlioglu, O.

M. O. Damen, O. Narmanlioglu, and M. Uysal, “Comparative performance evaluation of MIMO visible light communication systems,” in Proc. 24th Signal Process. Commun. Appl. Conf., 2016, pp. 525–528.

Naz, A.

A. Naz, H. M. Asif, T. Umer, and B.-S. Kim, “PDOA based indoor positioning using visible light communication,” IEEE Access, vol. 6, pp. 7557–7564, Jan. 2018.

Nikolié, B.

M. Weiner, M. Jorgovanovic, A. Sahai, and B. Nikolié, “Design of a low-latency, high-reliability wireless communication system for control applications,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3829–3835.

Pang, Z.

S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and J. Rodriguez, “Massive Internet of Things for industrial applications: Addressing wireless IIoT connectivity challenges and ecosystem fragmentation,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 28–33, 2017.

Paradells, J.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the Internet of Things through light communication,” IEEE Commun. Mag., vol. 57, no. 6, pp. 107–113, 2019.

Paraskevopoulos, A.

A. Paraskevopoulos, “Design of a secure software-defined access network for flexible industry 4.0 manufacturing - The SESAM-project concept,” in Proc. Glob. LIFI Congr., 2019, pp. 1–5.

Park, C.-S.

S.-Y. Jung, S. Hann, and C.-S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.

Patti, G.

L. Leonardi, G. Patti, and L.L. Bello, “Multi-hop real-time communications over bluetooth low energy industrial wireless mesh networks,” IEEE Access, vol. 6, pp. 26505–26519, May 2018.

Peel, C. B.

Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Commun. Mag., vol. 42, no. 10, pp. 60–67, 2004.

Petersen, S.

S. Petersen and S. Carlsen, “WirelessHART versus ISA100.11a: The format war hits the factory floor,” IEEE Ind. Electron. Mag., vol. 5, no. 4, pp. 23–34, 2011.

Popoola, W.

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the Internet of Things through light communication,” IEEE Commun. Mag., vol. 57, no. 6, pp. 107–113, 2019.

Rahaim, M.

A. Aldalbahi, M. Rahaim, A. Khreishah, M. Ayyash, and T. D. C. Little, “Visible light communication module: An open source extension to the ns3 network simulator with real system validation,” IEEE Access, vol. 5, pp. 22144–22158, Oct. 2017.

Rajbhandari, S.

Y. Almadani, M. Ijaz, S. Rajbhandari, B. Adebisi, and U. Raza, “Application of visible light communication in an industrial environment,” in Proc. 11th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2018, pp. 1–6.

Rambach, J.

M. Schneider, J. Rambach, and D. Stricker, “Augmented reality based on edge computing using the example of remote live support,” in Proc. IEEE Int. Conf. Ind. Technol., 2017, pp. 1277–1282.

Rayes, A.

S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and J. Rodriguez, “Massive Internet of Things for industrial applications: Addressing wireless IIoT connectivity challenges and ecosystem fragmentation,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 28–33, 2017.

Raza, U.

Y. Almadani, M. Ijaz, S. Rajbhandari, B. Adebisi, and U. Raza, “Application of visible light communication in an industrial environment,” in Proc. 11th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2018, pp. 1–6.

Riley, G. F.

G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Modeling and Tools for Network Simulation, Berlin, Heidelberg, Germany: Springer, 2010, pp. 15–34.

Rodriguez, J.

S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and J. Rodriguez, “Massive Internet of Things for industrial applications: Addressing wireless IIoT connectivity challenges and ecosystem fragmentation,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 28–33, 2017.

Rosal, L. F.D.

M. Hinrichs, L. F.D. Rosal, C. Kottke, and V. Jungnickel, “Analog vs. next-generation digital fronthaul: How to minimize optical bandwidth utilization,” in Proc. Int. Conf. Opt. Netw. Des. Model. (ONDM), 2017, pp. 1–6.

Sahai, A.

M. Weiner, M. Jorgovanovic, A. Sahai, and B. Nikolié, “Design of a low-latency, high-reliability wireless communication system for control applications,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3829–3835.

Sauter, T.

M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial communication: Automation networks in the era of the Internet of Things and industry 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27, 2017.

Schneider, M.

M. Schneider, J. Rambach, and D. Stricker, “Augmented reality based on edge computing using the example of remote live support,” in Proc. IEEE Int. Conf. Ind. Technol., 2017, pp. 1277–1282.

Schulz, D.

P. W. Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Glob. LIFI Congr., 2018, pp. 1–5.

Serafimovski, N.

N. Serafimovski, , “An overview on high speed optical wireless/light communications,” Accessed: Feb. 2021. [Online]. Available: https://ieee802.org/802_tutorials/2017-07/11-17-0962-03-00lc-An-Overview-on-High-Speed-Optical-Wireless-Light.pdf

Shahjalal, M.

M. Z. Chowdhury, M. Shahjalal, M. K. Hasan, and Y. M. Jang, “The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

Shen, H.

B. Li, J. Wang, R. Zhang, H. Shen, C. Zhao, and L. Hanzo, “Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints,” IEEE Photon. J., vol. 7, no. 4, pp. 1–15, 2015.

Shu, L.

B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory of industry 4.0: Key technologies, application case, and challenges,” IEEE Access, vol. 6, pp. 6505–6519, Dec. 2018.

Song, Q.

X. Liu, X. Wei, L. Guo, Y. Liu, Q. Song, and A. Jamalipour, “Turning the signal interference into benefits: Towards indoor self-powered visible light communication for IoT devices in industrial radio-hostile environments,” IEEE Access, vol. 7, pp. 24978–24989, Feb. 2019.

Spencer, Q. H.

Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Commun. Mag., vol. 42, no. 10, pp. 60–67, 2004.

Stricker, D.

M. Schneider, J. Rambach, and D. Stricker, “Augmented reality based on edge computing using the example of remote live support,” in Proc. IEEE Int. Conf. Ind. Technol., 2017, pp. 1277–1282.

Swindlehurst, A. L.

Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Commun. Mag., vol. 42, no. 10, pp. 60–67, 2004.

Tsang, K. F.

S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and J. Rodriguez, “Massive Internet of Things for industrial applications: Addressing wireless IIoT connectivity challenges and ecosystem fragmentation,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 28–33, 2017.

Tse, D. N. C.

L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073–1096, 2003.

Umer, T.

A. Naz, H. M. Asif, T. Umer, and B.-S. Kim, “PDOA based indoor positioning using visible light communication,” IEEE Access, vol. 6, pp. 7557–7564, Jan. 2018.

Uysal, M.

M. O. Damen, O. Narmanlioglu, and M. Uysal, “Comparative performance evaluation of MIMO visible light communication systems,” in Proc. 24th Signal Process. Commun. Appl. Conf., 2016, pp. 525–528.

Valenzuela, R. A.

M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network coordination for spectrally efficient communications in cellular systems,” IEEE Wireless Commun., vol. 13, no. 4, pp. 56–61, 2006.

Vasilakos, A. V.

X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A review of industrial wireless networks in the context of industry 4.0,” Wireless Netw., vol. 23, no. 1, pp. 23–41, 2017.

Vongkulbhisal, J.

J. Vongkulbhisal, B. Chantaramolee, Y. Zhao, and W. S. Mohammed, “A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes,” Microw. Opt. Technol. Lett., vol. 54, no. 5, pp. 1218–1227, 2012.

Waibel, M.

G. Mohanarajah, D. Hunziker, R. D'Andrea, and M. Waibel, “Rapyuta: A cloud robotics platform,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 481–493, 2015.

Wan, J.

B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory of industry 4.0: Key technologies, application case, and challenges,” IEEE Access, vol. 6, pp. 6505–6519, Dec. 2018.

X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A review of industrial wireless networks in the context of industry 4.0,” Wireless Netw., vol. 23, no. 1, pp. 23–41, 2017.

Wang, J.

B. Li, J. Wang, R. Zhang, H. Shen, C. Zhao, and L. Hanzo, “Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints,” IEEE Photon. J., vol. 7, no. 4, pp. 1–15, 2015.

Wang, S.

X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A review of industrial wireless networks in the context of industry 4.0,” Wireless Netw., vol. 23, no. 1, pp. 23–41, 2017.

Wang, Z.

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications,” IEEE Photon. J., vol. 5, no. 4, p. 7800211, 2013.

Wei, X.

X. Liu, X. Wei, L. Guo, Y. Liu, Q. Song, and A. Jamalipour, “Turning the signal interference into benefits: Towards indoor self-powered visible light communication for IoT devices in industrial radio-hostile environments,” IEEE Access, vol. 7, pp. 24978–24989, Feb. 2019.

Weiner, M.

M. Weiner, M. Jorgovanovic, A. Sahai, and B. Nikolié, “Design of a low-latency, high-reliability wireless communication system for control applications,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3829–3835.

Willig, A.

A. Willig, “Redundancy concepts to increase transmission reliability in wireless industrial LANs,” IEEE Trans. Ind. Informat., vol. 1, no. 3, pp. 173–182, 2005.

Wolf, M.

L. Grobe, V. Jungnickel, K.-D. Langer, M. Haardt, and M. Wolf, “On the impact of highpass filtering when using PAM-FDE for visible light communication,” in Proc. IEEE Wireless Commun. Netw. Conf. Workshops, 2016, pp. 239–245.

M. Wolf and M. Haardt, “On the DC balance of multi-level PAM VLC systems,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–5.

Wollschlaeger, M.

M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial communication: Automation networks in the era of the Internet of Things and industry 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27, 2017.

Wu, X.

L. Yin, X. Wu, and H. Haas, “Indoor visible light positioning with angle diversity transmitter,” in Proc. IEEE 82nd Veh. Technol. Conf., 2015, pp. 1–5.

L. Yin, X. Wu, and H. Haas, “SDMA grouping in coordinated multi-point VLC systems,” in Proc. IEEE Summer Topicals Meeting Ser., 2015, pp. 169–170.

Yang, H.

C. Chen, Y. Yang, X. Deng, P. Du, and H. Yang, “Space division multiple access with distributed user grouping for multi-user MIMO-VLC systems,” IEEE Open J. Commun. Soc., pp. 1–1, 2020.

Yang, Y.

C. Chen, Y. Yang, X. Deng, P. Du, and H. Yang, “Space division multiple access with distributed user grouping for multi-user MIMO-VLC systems,” IEEE Open J. Commun. Soc., pp. 1–1, 2020.

Yin, B.

B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory of industry 4.0: Key technologies, application case, and challenges,” IEEE Access, vol. 6, pp. 6505–6519, Dec. 2018.

Yin, L.

L. Yin, X. Wu, and H. Haas, “Indoor visible light positioning with angle diversity transmitter,” in Proc. IEEE 82nd Veh. Technol. Conf., 2015, pp. 1–5.

L. Yin, X. Wu, and H. Haas, “SDMA grouping in coordinated multi-point VLC systems,” in Proc. IEEE Summer Topicals Meeting Ser., 2015, pp. 169–170.

Yoo, M.

T.-H. Do, J. Hwang, and M. Yoo, “TDoA based indoor visible light positioning systems,” in Proc. 5th Int. Conf. Ubiquitous Future Netw., 2013, pp. 456–458.

Yu, C.

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications,” IEEE Photon. J., vol. 5, no. 4, p. 7800211, 2013.

Yu, Z.

Z. Yu, R. J. Baxley, and G. T. Zhou, “Multi-user MISO broadcasting for indoor visible light communication,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2013, pp. 4849–4853.

Zeng, L.

L. Zeng, “High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1654–1662, 2009.

Zhang, R.

B. Li, J. Wang, R. Zhang, H. Shen, C. Zhao, and L. Hanzo, “Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints,” IEEE Photon. J., vol. 7, no. 4, pp. 1–15, 2015.

Zhao, C.

B. Li, J. Wang, R. Zhang, H. Shen, C. Zhao, and L. Hanzo, “Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints,” IEEE Photon. J., vol. 7, no. 4, pp. 1–15, 2015.

Zhao, Y.

J. Vongkulbhisal, B. Chantaramolee, Y. Zhao, and W. S. Mohammed, “A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes,” Microw. Opt. Technol. Lett., vol. 54, no. 5, pp. 1218–1227, 2012.

Zheng, L.

L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073–1096, 2003.

Zhou, G. T.

Z. Yu, R. J. Baxley, and G. T. Zhou, “Multi-user MISO broadcasting for indoor visible light communication,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2013, pp. 4849–4853.

Appl. Sci. (1)

M. Z. Chowdhury, M. Shahjalal, M. K. Hasan, and Y. M. Jang, “The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

Automatisierungstechnik (1)

M. Düngen, “Channel measurement campaigns for wireless industrial automation,” Automatisierungstechnik, vol. 67, no. 1, pp. 7–28, 2019.

Bus. Inf. Syst. Eng. (1)

H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.

Comput. Control Eng. J. (1)

N. Baker, “ZigBee and bluetooth strengths and weaknesses for industrial applications,” Comput. Control Eng. J., vol. 16, no. 2, pp. 20–25, 2005.

Eur. J. Oper. Res. (1)

T. Le-Anh and M. D. Koster, “A review of design and control of automated guided vehicle systems,” Eur. J. Oper. Res., vol. 171, no. 1, pp. 1–23, 2006.

IEEE Access (5)

A. Naz, H. M. Asif, T. Umer, and B.-S. Kim, “PDOA based indoor positioning using visible light communication,” IEEE Access, vol. 6, pp. 7557–7564, Jan. 2018.

A. Aldalbahi, M. Rahaim, A. Khreishah, M. Ayyash, and T. D. C. Little, “Visible light communication module: An open source extension to the ns3 network simulator with real system validation,” IEEE Access, vol. 5, pp. 22144–22158, Oct. 2017.

L. Leonardi, G. Patti, and L.L. Bello, “Multi-hop real-time communications over bluetooth low energy industrial wireless mesh networks,” IEEE Access, vol. 6, pp. 26505–26519, May 2018.

B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory of industry 4.0: Key technologies, application case, and challenges,” IEEE Access, vol. 6, pp. 6505–6519, Dec. 2018.

X. Liu, X. Wei, L. Guo, Y. Liu, Q. Song, and A. Jamalipour, “Turning the signal interference into benefits: Towards indoor self-powered visible light communication for IoT devices in industrial radio-hostile environments,” IEEE Access, vol. 7, pp. 24978–24989, Feb. 2019.

IEEE Commun. Mag. (4)

I. Demirkol, D. Camps-Mur, J. Paradells, M. Combalia, W. Popoola, and H. Haas, “Powering the Internet of Things through light communication,” IEEE Commun. Mag., vol. 57, no. 6, pp. 107–113, 2019.

Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Commun. Mag., vol. 42, no. 10, pp. 60–67, 2004.

R. Irmer, “Coordinated multipoint: Concepts, performance, and field trial results,” IEEE Commun. Mag., vol. 49, no. 2, pp. 102–111, 2011.

V. Jungnickel, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51, 2014.

IEEE Commun. Surv. Tut. (1)

A. Checko, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tut., vol. 17, no. 1, pp. 405–426, Jan.–Mar. 2015.

IEEE Ind. Electron. Mag. (3)

M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial communication: Automation networks in the era of the Internet of Things and industry 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27, 2017.

S. Petersen and S. Carlsen, “WirelessHART versus ISA100.11a: The format war hits the factory floor,” IEEE Ind. Electron. Mag., vol. 5, no. 4, pp. 23–34, 2011.

S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and J. Rodriguez, “Massive Internet of Things for industrial applications: Addressing wireless IIoT connectivity challenges and ecosystem fragmentation,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 28–33, 2017.

IEEE J. Sel. Areas Commun. (2)

L. Zeng, “High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1654–1662, 2009.

P. W. Berenguer, “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.

IEEE Open J. Commun. Soc. (1)

C. Chen, Y. Yang, X. Deng, P. Du, and H. Yang, “Space division multiple access with distributed user grouping for multi-user MIMO-VLC systems,” IEEE Open J. Commun. Soc., pp. 1–1, 2020.

IEEE Photon. J. (2)

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications,” IEEE Photon. J., vol. 5, no. 4, p. 7800211, 2013.

B. Li, J. Wang, R. Zhang, H. Shen, C. Zhao, and L. Hanzo, “Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints,” IEEE Photon. J., vol. 7, no. 4, pp. 1–15, 2015.

IEEE Trans. Autom. Sci. Eng. (1)

G. Mohanarajah, D. Hunziker, R. D'Andrea, and M. Waibel, “Rapyuta: A cloud robotics platform,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 481–493, 2015.

IEEE Trans. Commun. (2)

T. Fath and H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Trans. Commun., vol. 61, no. 2, pp. 733–742, 2013.

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, Dec. 2000.

IEEE Trans. Consum. Electron. (1)

S.-Y. Jung, S. Hann, and C.-S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, 2011.

IEEE Trans. Green Commun. Netw. (1)

M. Hinrichs, “A physical layer for low power optical wireless communications,” IEEE Trans. Green Commun. Netw., vol. 5, no. 1, pp. 4–17, 2021.

IEEE Trans. Ind. Informat. (1)

A. Willig, “Redundancy concepts to increase transmission reliability in wireless industrial LANs,” IEEE Trans. Ind. Informat., vol. 1, no. 3, pp. 173–182, 2005.

IEEE Trans. Inf. Theory (1)

L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073–1096, 2003.

IEEE Wireless Commun. (1)

M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network coordination for spectrally efficient communications in cellular systems,” IEEE Wireless Commun., vol. 13, no. 4, pp. 56–61, 2006.

J. Lightw. Technol. (1)

P. W. Berenguer, “Real-time optical wireless mobile communication with high physical layer reliability,” J. Lightw. Technol., vol. 37, no. 6, pp. 1638–1646, 2019.

Microw. Opt. Technol. Lett. (1)

J. Vongkulbhisal, B. Chantaramolee, Y. Zhao, and W. S. Mohammed, “A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes,” Microw. Opt. Technol. Lett., vol. 54, no. 5, pp. 1218–1227, 2012.

Proc. IEEE (2)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

VDE/ITG Fachtagung Mobilkommunikation (1)

S. Melnyk, “Next generation industrial radio LAN for tactile and safety applications,” VDE/ITG Fachtagung Mobilkommunikation, vol. 22, no. 9–10, p. 7, 2017.

Wireless Netw. (1)

X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A review of industrial wireless networks in the context of industry 4.0,” Wireless Netw., vol. 23, no. 1, pp. 23–41, 2017.

Other (35)

K. Das and P. Havinga, “Evaluation of DECT for low latency real-time industrial control networks,” in IEEE Int. Conf. Sens., Commun. Netw., 2013, pp. 10–17.

W. Haerick, and M. Gupta, “5G and the factories of the future,” 5G-PPP White Paper, 2015, Accessed: Feb. 2021. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf

A. Aijaz, “Private 5G: The future of industrial wireless,” IEEE Ind. Electron. Mag., vol. 14, no. 4, pp. 136–145, Dec. 2020, doi: .

S. Gangakhedkar, H. Cao, A. R. Ali, K. Ganesan, M. Gharba, and J. Eichinger, “Use cases, requirements, and challenges of 5G communication for industrial automation,” in Proc. IEEE Int. Conf. Commun. Workshops, 2018, pp. 1–6.

M. Schneider, J. Rambach, and D. Stricker, “Augmented reality based on edge computing using the example of remote live support,” in Proc. IEEE Int. Conf. Ind. Technol., 2017, pp. 1277–1282.

M. Weiner, M. Jorgovanovic, A. Sahai, and B. Nikolié, “Design of a low-latency, high-reliability wireless communication system for control applications,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 3829–3835.

K. Govindaraj, D. Grewe, A. Artemenko, and A. Kirstaedter, “Towards zero factory downtime: Edge computing and SDN as enabling technologies,” in Proc. 14th Int. Conf. Wireless Mobile Comput., Netw. Commun., 2018, pp. 285–290.

N. Serafimovski, , “An overview on high speed optical wireless/light communications,” Accessed: Feb. 2021. [Online]. Available: https://ieee802.org/802_tutorials/2017-07/11-17-0962-03-00lc-An-Overview-on-High-Speed-Optical-Wireless-Light.pdf

P. W. Berenguer, J. Hilt, P. Hellwig, D. Schulz, J. K. Fischer, and V. Jungnickel, “Analog antenna diversity for reliable optical wireless communication systems,” in Proc. Glob. LIFI Congr., 2018, pp. 1–5.

Unified high-speed wire-line based home networking transceivers - System architecture and physical layer specification, ITU-T Rec. G.9960 Corrigendum 1, Int. Telecommun. Union, Sep. 2019.

P. W. Berenguer, “Real-time optical wireless communication: Field-trial in an industrial production environment,” in Proc. Eur. Conf. Opt. Commun., 2018, pp. 1–3.

V. Jungnickel, “LiFi for industrial wireless applications,” in Opt. Fiber Commun. Conf., 2020.

P. W. Berenguer, V. Jungnickel, and J. K. Fischer, “The benefit of frequency-selective rate adaptation for optical wireless communications,” in Proc. 10th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2016, pp. 1–6.

High-speed indoor visible light communication transceiver, “System architecture, physical layer, and data link layer specification,” ITU-T Rec. G.9991 Amendment 1, Jul. 2020.

Y. Almadani, M. Ijaz, S. Rajbhandari, B. Adebisi, and U. Raza, “Application of visible light communication in an industrial environment,” in Proc. 11th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2018, pp. 1–6.

V. Jungnickel, “Optical wireless communication for backhaul and access,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 1–3.

T.-H. Do, J. Hwang, and M. Yoo, “TDoA based indoor visible light positioning systems,” in Proc. 5th Int. Conf. Ubiquitous Future Netw., 2013, pp. 456–458.

M. Aminikashani, W. Gu, and M. Kavehrad, “Indoor positioning with OFDM visible light communications,” in Proc. 13th IEEE Annu. Consum. Commun. Netw. Conf., 2016, pp. 505–510.

L. Yin, X. Wu, and H. Haas, “Indoor visible light positioning with angle diversity transmitter,” in Proc. IEEE 82nd Veh. Technol. Conf., 2015, pp. 1–5.

M. O. Damen, O. Narmanlioglu, and M. Uysal, “Comparative performance evaluation of MIMO visible light communication systems,” in Proc. 24th Signal Process. Commun. Appl. Conf., 2016, pp. 525–528.

Z. Yu, R. J. Baxley, and G. T. Zhou, “Multi-user MISO broadcasting for indoor visible light communication,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2013, pp. 4849–4853.

A. Maeder, “Towards a flexible functional split for cloud-RAN networks,” in Proc. Eur. Conf. Netw. Commun., 2014, pp. 1–5.

“ECPRI Specification V2.0,” Accessed: 24, 2020. [Online]. Available: http://www.cpri.info/spec.html

L. Grobe, V. Jungnickel, K.-D. Langer, M. Haardt, and M. Wolf, “On the impact of highpass filtering when using PAM-FDE for visible light communication,” in Proc. IEEE Wireless Commun. Netw. Conf. Workshops, 2016, pp. 239–245.

M. Wolf and M. Haardt, “On the DC balance of multi-level PAM VLC systems,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, pp. 1–5.

M. Hinrichs, “Pulsed modulation PHY for power efficient optical wireless communication,” in Proc. 2019 IEEE Int. Conf. Commun., 2019, pp. 1–7.

M. Hinrichs, “Demonstration of optical wireless communications using the pulsed modulation PHY in IEEE 802.15.13,” in Proc. 22nd Int. Conf. Transparent Opt. Netw. (ICTON), Bari, Italy, 2020, pp. 1–4.

M. Hinrichs, L. F.D. Rosal, C. Kottke, and V. Jungnickel, “Analog vs. next-generation digital fronthaul: How to minimize optical bandwidth utilization,” in Proc. Int. Conf. Opt. Netw. Des. Model. (ONDM), 2017, pp. 1–6.

S. M. Kouhini, “Use of plastic optical fibers for distributed MIMO in Li-Fi systems,” in Proc. Glob. LIFI Congr., 2019, pp. 1–5.

S. M. Kouhini, “Performance of bidirectional LiFi over plastic optical fiber (POF),” presented at the 12th IEEE/IET Int. Symp. Commun. Syst., Netw. Digit. Signal Process., Porto, Portugal, Jul. 2020.

A. Paraskevopoulos, “Design of a secure software-defined access network for flexible industry 4.0 manufacturing - The SESAM-project concept,” in Proc. Glob. LIFI Congr., 2019, pp. 1–5.

G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Modeling and Tools for Network Simulation, Berlin, Heidelberg, Germany: Springer, 2010, pp. 15–34.

L. Yin, X. Wu, and H. Haas, “SDMA grouping in coordinated multi-point VLC systems,” in Proc. IEEE Summer Topicals Meeting Ser., 2015, pp. 169–170.

S. Maravanchery, “LiFi experiments in a hospital,” in Opt. Fiber Commun. Conf. Exhibit. (OFC), San Diego, CA, USA, 2020, pp. 1–3.

S. M. Mana, S. M. Kouhini, P. Hellwig, J. Hilt, P. W. Berenguer, and V. Jungnickel, “Distributed MIMO experiments for LiFi in a conference room,” presented at the 12th IEEE/IET Int. Symp. Commun. Syst., Netw. Digit. Signal Process., Porto Portugal, Jul. 2020.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.