Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 1,
  • pp. 73-82
  • (2021)

Nonlinear Equalization Based on Artificial Neural Network in DML-Based OFDM Transmission Systems

Not Accessible

Your library or personal account may give you access

Abstract

This article reports the application of an equalizer based on an artificial neural network (ANN), in the form of nonlinear waveform regression, to mitigate nonlinear impairments in directly modulated laser (DML)-based orthogonal frequency-division multiplexing (OFDM) optical transmission. Experiments involving transmission over 0–200 km demonstrate that using an ANN with one hidden layer can greatly reduce nonlinear distortion. The proposed scheme outperformed a Volterra nonlinear equalizer at transmission distances exceeding 25 km. Using a 10G-class DML, the proposed scheme achieved the following data rates: 39.2 Gbps at 100 km (an improvement of 59%) and 33.5 Gbps at 150 km (an improvement of 57%). We also modified the cost function of the ANN during the training procedure to overcome the poor signal-to-noise ratio of the original ANN at low frequencies. This resulted in $>$ 30-Gbps transmission over 0–200 km.

PDF Article
More Like This
Two-stage artificial neural network-based burst-subcarrier joint equalization in nonlinear frequency division multiplexing systems

Xinyu Chen, Hao Ming, Chenjia Li, Guangqiang He, and Fan Zhang
Opt. Lett. 46(7) 1700-1703 (2021)

Nonlinear equalization based on pruned artificial neural networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF

Zhiquan Wan, Jianqiang Li, Liang Shu, Ming Luo, Xiang Li, Songnian Fu, and Kun Xu
Opt. Express 26(8) 10631-10642 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved