Abstract

We proposed novel 16λ demultiplexer based on cascaded connection of silicon-nanowire waveguide type delayed interferometric filters and arrayed waveguide gratings, and experimentally verified 100-GHz-spaced bandpass filtering operation with nearly identical insertion loss (<6 dB) and low crosstalk (<−19.5 dB to <−34.6 dB for a single channel, <−12.7 dB for entire output channels). We also demonstrated polarization diversified operation with 32  Gbps non-return-to-zero (NRZ) signal transmissions in C-band range. We also verified the operation of 140-GHz-spaced bandpass filtering in O-band spectral range.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Ram, “Optical network technologies for datacenter networks,” in Proc. Opt. Commun. Conf., Mar. 2010, Art. no. .
  2. R. -J. Essiambre and R. W. Tkach, “Capacity trends and limit of optical communication networks,” Proc. IEEE, vol. 100, no. 5, pp. 1035–1055, 2012.
  3. X. Zhao, V. Vusirikala, B. Koley, V. Kamalov, and T. Hofmeister, “The prospect of inter-data-center optical networks,” IEEE Commun. Magz., pp. 32–38, 2013.
  4. Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica, vol. 5, no. 11, pp. 1354–1370, 2018.
  5. Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag., vol. 50, no. 2, pp. S67–S72, 2012.
  6. C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys., vol. 3, no. 37, pp. 1–16, 2015.
  7. D. W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, and A. Liu, “Silicon-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach–Zehnder interferometers,” Opt. Lett., vol. 33, no. 5, pp. 530–532, 2008.
  8. F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach–Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express, vol. 21, no. 10, pp. 11652–11658, 2013.
  9. S.-H. Jeong, D. Shimura, T. Simoyama, T. Horikawa, Y. Tanaka, and K. Morito, “Si-nanowire-based multistage delayed Mach–Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on a 300 mm SOI wafer,” Opt. Lett., vol. 39, no. 13, pp. 3702–3705, 2014.
  10. S.-H. Jeong and K. Morito, “1 × 4 channel Si-nanowire microring-assisted multiple delayline-based optical MUX/DeMUX,” IEEE J. Lightwave Technol., vol. 33, no. 17, pp. 3736–3743, 2015.
  11. S.-H. Jeong and Y. Tanaka, “Silicon-wire delayed interferometric wavelength-division multiplexing filters operating in the broadband spectral range,” J. Opt. Soc. Am. (B), vol. 35, no. 8, pp. 1871–1877, 2018.
  12. S.-H. Jeong and Y. Tanaka, “Silicon-wire optical demultiplexers based on multistage delayed Mach–Zehnder interferometers for higher production yield,” Appl. Opt., vol. 57, no. 22, pp. 6474–6480, 2018.
  13. H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100 GHz spacing arrayed-waveguide grating using minimal terrace at slab-array interface,” Electron Lett., vol. 52, no. 18, pp. 1545–1546, 2016.
  14. Y. Onawa, H. Okayama, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “'Polarisation insensitive wavelength de-multiplexer using arrayed waveguide grating and polarisation rotator/splitter,” Electron Lett., vol. 55, no. 8, pp. 475–476, 2019.
  15. M. K. Smit and V. C. Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 2, pp. 236–250, 1996.
  16. J. Wang, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express, vol. 22 no. 8, pp. 9395–9403, 2014.
  17. M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, and Y. Ohmori, “Mach–Zehnder interferometer and arrayed waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett., vol. 37 no. 6, pp. 376–377, 2001.
  18. S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” IEEE J. Lightwave Techhnol., vol. 33, no. 11, pp. 2279–2286, 2015.
  19. L. Chen, C. Doerr, and Y. Chen, “Polarization diversified DWDM receiver on silicon free of polarization dependent wavelength shift,” in Proc. Opt. Fiber Commun. Conf., Mar. 2012, Art. no. .
  20. Q. Fang, “A high-crosstalk silicon photonic arrayed waveguide grating,” Proc. Int. J. Electron. Commun. Eng., vol. 10, no. 3, pp. 372–373, 2016.
  21. S.-H. Jeong, “Low-loss, flat-topped and spectral uniform silicon-nanowire-based 5th order CROW fabricated by an ArF-immersion lithography process on a 300 mm SOI wafer,” Opt. Express, vol. 21, no. 22, pp. 30163–30174, 2013.
  22. T. Horikawa, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Lightwave Technol., vol. 24, no. 4, 2018, Art. no. .
  23. G. P. Agrawal, “Lightwave Technology: Telecommunication Systems,”: Chapter 9, WDM system. Hoboken, John Wiley & Sons, pp. 351–353, 2005.
  24. J. Fujikata, “High-speed and 16λ-WDM operation of Ge/Si electro-absorption modulator for C-band spectral regime,” in Proc. Opt. Commun. Conf., Mar. 2020, Art. no. .
  25. K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett., vol. 20, no. 1, pp. 43–45, 1995.
  26. H. -C. Lu and W. -S. Wang, “Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response,” IEEE Photon. Technol. Lett., vol. 20, no. 1, pp. 3–5, 2008.
  27. B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express, vol. 20, no. 16, pp. 18313–18318, 2012.
  28. T. Akiyama, “Error-free loopback of a compact 25 Gb/s × 4ch WDM transceiver assembly incorporating silicon (De)multiplexer with automated phase-error correction,” in Proc. Opt. Fiber Commun. Conf., San Diego, USA, Mar. 2018, Art. no. .
  29. T. Akiyama, “An Extremely low-crosstalk WDM demultiplexer with an automatic error-correction capability enabling temperature insensitivity and high-yield integration on low-end Si PICs,” in Proc. European Conf. Op. Commun., Dublin, Ireland, Sept. 2019, Art. no. .
  30. J. C. Rosenberg, “Monolithic silicon photonic WDM transceivers,” in Proc. European Conf. Op. Commun., Gothenbury, Sweden, Sept. 2017, Art. no. .
  31. S.-H. Jeong, “Broadband operating 1 × 8 channel silicon-nanowire-waveguide WDM filter based on point-symmetric Mach–Zehnder interferometric optical couplers in the O-band spectral regime,” OSA Continuum., vol. 2, no. 12, pp. 3564–3575, 2019.

2019 (2)

Y. Onawa, H. Okayama, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “'Polarisation insensitive wavelength de-multiplexer using arrayed waveguide grating and polarisation rotator/splitter,” Electron Lett., vol. 55, no. 8, pp. 475–476, 2019.

S.-H. Jeong, “Broadband operating 1 × 8 channel silicon-nanowire-waveguide WDM filter based on point-symmetric Mach–Zehnder interferometric optical couplers in the O-band spectral regime,” OSA Continuum., vol. 2, no. 12, pp. 3564–3575, 2019.

2018 (4)

T. Horikawa, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Lightwave Technol., vol. 24, no. 4, 2018, Art. no. .

S.-H. Jeong and Y. Tanaka, “Silicon-wire delayed interferometric wavelength-division multiplexing filters operating in the broadband spectral range,” J. Opt. Soc. Am. (B), vol. 35, no. 8, pp. 1871–1877, 2018.

S.-H. Jeong and Y. Tanaka, “Silicon-wire optical demultiplexers based on multistage delayed Mach–Zehnder interferometers for higher production yield,” Appl. Opt., vol. 57, no. 22, pp. 6474–6480, 2018.

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica, vol. 5, no. 11, pp. 1354–1370, 2018.

2016 (2)

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100 GHz spacing arrayed-waveguide grating using minimal terrace at slab-array interface,” Electron Lett., vol. 52, no. 18, pp. 1545–1546, 2016.

Q. Fang, “A high-crosstalk silicon photonic arrayed waveguide grating,” Proc. Int. J. Electron. Commun. Eng., vol. 10, no. 3, pp. 372–373, 2016.

2015 (3)

S.-H. Jeong and K. Morito, “1 × 4 channel Si-nanowire microring-assisted multiple delayline-based optical MUX/DeMUX,” IEEE J. Lightwave Technol., vol. 33, no. 17, pp. 3736–3743, 2015.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” IEEE J. Lightwave Techhnol., vol. 33, no. 11, pp. 2279–2286, 2015.

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys., vol. 3, no. 37, pp. 1–16, 2015.

2014 (2)

2013 (3)

2012 (3)

B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express, vol. 20, no. 16, pp. 18313–18318, 2012.

R. -J. Essiambre and R. W. Tkach, “Capacity trends and limit of optical communication networks,” Proc. IEEE, vol. 100, no. 5, pp. 1035–1055, 2012.

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag., vol. 50, no. 2, pp. S67–S72, 2012.

2008 (2)

D. W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, and A. Liu, “Silicon-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach–Zehnder interferometers,” Opt. Lett., vol. 33, no. 5, pp. 530–532, 2008.

H. -C. Lu and W. -S. Wang, “Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response,” IEEE Photon. Technol. Lett., vol. 20, no. 1, pp. 3–5, 2008.

2001 (1)

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, and Y. Ohmori, “Mach–Zehnder interferometer and arrayed waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett., vol. 37 no. 6, pp. 376–377, 2001.

1996 (1)

M. K. Smit and V. C. Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 2, pp. 236–250, 1996.

1995 (1)

Abe, M.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, and Y. Ohmori, “Mach–Zehnder interferometer and arrayed waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett., vol. 37 no. 6, pp. 376–377, 2001.

Agrawal, G. P.

G. P. Agrawal, “Lightwave Technology: Telecommunication Systems,”: Chapter 9, WDM system. Hoboken, John Wiley & Sons, pp. 351–353, 2005.

Akca, B. I.

Akiyama, T.

T. Akiyama, “Error-free loopback of a compact 25 Gb/s × 4ch WDM transceiver assembly incorporating silicon (De)multiplexer with automated phase-error correction,” in Proc. Opt. Fiber Commun. Conf., San Diego, USA, Mar. 2018, Art. no. .

T. Akiyama, “An Extremely low-crosstalk WDM demultiplexer with an automatic error-correction capability enabling temperature insensitivity and high-yield integration on low-end Si PICs,” in Proc. European Conf. Op. Commun., Dublin, Ireland, Sept. 2019, Art. no. .

Assefa, S.

Bahadori, M.

Barkai, A.

Bergman, K.

Chen, L.

L. Chen, C. Doerr, and Y. Chen, “Polarization diversified DWDM receiver on silicon free of polarization dependent wavelength shift,” in Proc. Opt. Fiber Commun. Conf., Mar. 2012, Art. no. .

Chen, S.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” IEEE J. Lightwave Techhnol., vol. 33, no. 11, pp. 2279–2286, 2015.

Chen, Y.

L. Chen, C. Doerr, and Y. Chen, “Polarization diversified DWDM receiver on silicon free of polarization dependent wavelength shift,” in Proc. Opt. Fiber Commun. Conf., Mar. 2012, Art. no. .

Cheng, Q.

Dai, D.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” IEEE J. Lightwave Techhnol., vol. 33, no. 11, pp. 2279–2286, 2015.

Dam, V. C.

M. K. Smit and V. C. Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 2, pp. 236–250, 1996.

de Ridder, R. M.

Doerr, C.

L. Chen, C. Doerr, and Y. Chen, “Polarization diversified DWDM receiver on silicon free of polarization dependent wavelength shift,” in Proc. Opt. Fiber Commun. Conf., Mar. 2012, Art. no. .

Doerr, C. R.

Elek, N.

Essiambre, R. -J.

R. -J. Essiambre and R. W. Tkach, “Capacity trends and limit of optical communication networks,” Proc. IEEE, vol. 100, no. 5, pp. 1035–1055, 2012.

Fang, Q.

Q. Fang, “A high-crosstalk silicon photonic arrayed waveguide grating,” Proc. Int. J. Electron. Commun. Eng., vol. 10, no. 3, pp. 372–373, 2016.

Fu, X.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” IEEE J. Lightwave Techhnol., vol. 33, no. 11, pp. 2279–2286, 2015.

Fujikata, J.

J. Fujikata, “High-speed and 16λ-WDM operation of Ge/Si electro-absorption modulator for C-band spectral regime,” in Proc. Opt. Commun. Conf., Mar. 2020, Art. no. .

Glick, M.

Green, W. M. J.

He, S.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” IEEE J. Lightwave Techhnol., vol. 33, no. 11, pp. 2279–2286, 2015.

Hibino, Y.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, and Y. Ohmori, “Mach–Zehnder interferometer and arrayed waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett., vol. 37 no. 6, pp. 376–377, 2001.

Himeno, A.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, and Y. Ohmori, “Mach–Zehnder interferometer and arrayed waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett., vol. 37 no. 6, pp. 376–377, 2001.

Hofmeister, T.

X. Zhao, V. Vusirikala, B. Koley, V. Kamalov, and T. Hofmeister, “The prospect of inter-data-center optical networks,” IEEE Commun. Magz., pp. 32–38, 2013.

Horikawa, T.

Horst, F.

Itoh, M.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, and Y. Ohmori, “Mach–Zehnder interferometer and arrayed waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett., vol. 37 no. 6, pp. 376–377, 2001.

Jeong, S.-H.

S.-H. Jeong, “Broadband operating 1 × 8 channel silicon-nanowire-waveguide WDM filter based on point-symmetric Mach–Zehnder interferometric optical couplers in the O-band spectral regime,” OSA Continuum., vol. 2, no. 12, pp. 3564–3575, 2019.

S.-H. Jeong and Y. Tanaka, “Silicon-wire optical demultiplexers based on multistage delayed Mach–Zehnder interferometers for higher production yield,” Appl. Opt., vol. 57, no. 22, pp. 6474–6480, 2018.

S.-H. Jeong and Y. Tanaka, “Silicon-wire delayed interferometric wavelength-division multiplexing filters operating in the broadband spectral range,” J. Opt. Soc. Am. (B), vol. 35, no. 8, pp. 1871–1877, 2018.

S.-H. Jeong and K. Morito, “1 × 4 channel Si-nanowire microring-assisted multiple delayline-based optical MUX/DeMUX,” IEEE J. Lightwave Technol., vol. 33, no. 17, pp. 3736–3743, 2015.

S.-H. Jeong, D. Shimura, T. Simoyama, T. Horikawa, Y. Tanaka, and K. Morito, “Si-nanowire-based multistage delayed Mach–Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on a 300 mm SOI wafer,” Opt. Lett., vol. 39, no. 13, pp. 3702–3705, 2014.

S.-H. Jeong, “Low-loss, flat-topped and spectral uniform silicon-nanowire-based 5th order CROW fabricated by an ArF-immersion lithography process on a 300 mm SOI wafer,” Opt. Express, vol. 21, no. 22, pp. 30163–30174, 2013.

Jones, R.

Kamalov, V.

X. Zhao, V. Vusirikala, B. Koley, V. Kamalov, and T. Hofmeister, “The prospect of inter-data-center optical networks,” IEEE Commun. Magz., pp. 32–38, 2013.

Kim, D. W.

Koley, B.

X. Zhao, V. Vusirikala, B. Koley, V. Kamalov, and T. Hofmeister, “The prospect of inter-data-center optical networks,” IEEE Commun. Magz., pp. 32–38, 2013.

Liu, A.

Lu, H. -C.

H. -C. Lu and W. -S. Wang, “Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response,” IEEE Photon. Technol. Lett., vol. 20, no. 1, pp. 3–5, 2008.

Morito, K.

Nguyen, H.

Offrein, B. J.

Ohmori, Y.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, and Y. Ohmori, “Mach–Zehnder interferometer and arrayed waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett., vol. 37 no. 6, pp. 376–377, 2001.

Okamoto, K.

Okayama, H.

Y. Onawa, H. Okayama, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “'Polarisation insensitive wavelength de-multiplexer using arrayed waveguide grating and polarisation rotator/splitter,” Electron Lett., vol. 55, no. 8, pp. 475–476, 2019.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100 GHz spacing arrayed-waveguide grating using minimal terrace at slab-array interface,” Electron Lett., vol. 52, no. 18, pp. 1545–1546, 2016.

Onawa, Y.

Y. Onawa, H. Okayama, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “'Polarisation insensitive wavelength de-multiplexer using arrayed waveguide grating and polarisation rotator/splitter,” Electron Lett., vol. 55, no. 8, pp. 475–476, 2019.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100 GHz spacing arrayed-waveguide grating using minimal terrace at slab-array interface,” Electron Lett., vol. 52, no. 18, pp. 1545–1546, 2016.

Pollnau, M.

Ram, C. F.

C. F. Ram, “Optical network technologies for datacenter networks,” in Proc. Opt. Commun. Conf., Mar. 2010, Art. no. .

Rosenberg, J. C.

J. C. Rosenberg, “Monolithic silicon photonic WDM transceivers,” in Proc. European Conf. Op. Commun., Gothenbury, Sweden, Sept. 2017, Art. no. .

Rumley, S.

Sasaki, H.

Y. Onawa, H. Okayama, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “'Polarisation insensitive wavelength de-multiplexer using arrayed waveguide grating and polarisation rotator/splitter,” Electron Lett., vol. 55, no. 8, pp. 475–476, 2019.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100 GHz spacing arrayed-waveguide grating using minimal terrace at slab-array interface,” Electron Lett., vol. 52, no. 18, pp. 1545–1546, 2016.

Sengo, G.

Shank, S. M.

Shi, Y.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” IEEE J. Lightwave Techhnol., vol. 33, no. 11, pp. 2279–2286, 2015.

Shimura, D.

Y. Onawa, H. Okayama, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “'Polarisation insensitive wavelength de-multiplexer using arrayed waveguide grating and polarisation rotator/splitter,” Electron Lett., vol. 55, no. 8, pp. 475–476, 2019.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100 GHz spacing arrayed-waveguide grating using minimal terrace at slab-array interface,” Electron Lett., vol. 52, no. 18, pp. 1545–1546, 2016.

S.-H. Jeong, D. Shimura, T. Simoyama, T. Horikawa, Y. Tanaka, and K. Morito, “Si-nanowire-based multistage delayed Mach–Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on a 300 mm SOI wafer,” Opt. Lett., vol. 39, no. 13, pp. 3702–3705, 2014.

Simoyama, T.

Smit, M. K.

M. K. Smit and V. C. Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 2, pp. 236–250, 1996.

Takahashi, H.

Y. Onawa, H. Okayama, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “'Polarisation insensitive wavelength de-multiplexer using arrayed waveguide grating and polarisation rotator/splitter,” Electron Lett., vol. 55, no. 8, pp. 475–476, 2019.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100 GHz spacing arrayed-waveguide grating using minimal terrace at slab-array interface,” Electron Lett., vol. 52, no. 18, pp. 1545–1546, 2016.

Tanaka, T.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, and Y. Ohmori, “Mach–Zehnder interferometer and arrayed waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett., vol. 37 no. 6, pp. 376–377, 2001.

Tanaka, Y.

Tkach, R. W.

R. -J. Essiambre and R. W. Tkach, “Capacity trends and limit of optical communication networks,” Proc. IEEE, vol. 100, no. 5, pp. 1035–1055, 2012.

Vlasov, Y. A.

Vusirikala, V.

X. Zhao, V. Vusirikala, B. Koley, V. Kamalov, and T. Hofmeister, “The prospect of inter-data-center optical networks,” IEEE Commun. Magz., pp. 32–38, 2013.

Wang, J.

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” IEEE J. Lightwave Techhnol., vol. 33, no. 11, pp. 2279–2286, 2015.

J. Wang, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express, vol. 22 no. 8, pp. 9395–9403, 2014.

Wang, W. -S.

H. -C. Lu and W. -S. Wang, “Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response,” IEEE Photon. Technol. Lett., vol. 20, no. 1, pp. 3–5, 2008.

Wörhoff, K.

Yaegashi, H.

Y. Onawa, H. Okayama, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “'Polarisation insensitive wavelength de-multiplexer using arrayed waveguide grating and polarisation rotator/splitter,” Electron Lett., vol. 55, no. 8, pp. 475–476, 2019.

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100 GHz spacing arrayed-waveguide grating using minimal terrace at slab-array interface,” Electron Lett., vol. 52, no. 18, pp. 1545–1546, 2016.

Yamada, H.

Zhao, X.

X. Zhao, V. Vusirikala, B. Koley, V. Kamalov, and T. Hofmeister, “The prospect of inter-data-center optical networks,” IEEE Commun. Magz., pp. 32–38, 2013.

Appl. Opt. (1)

Electron Lett. (2)

H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “Low loss 100 GHz spacing arrayed-waveguide grating using minimal terrace at slab-array interface,” Electron Lett., vol. 52, no. 18, pp. 1545–1546, 2016.

Y. Onawa, H. Okayama, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, “'Polarisation insensitive wavelength de-multiplexer using arrayed waveguide grating and polarisation rotator/splitter,” Electron Lett., vol. 55, no. 8, pp. 475–476, 2019.

Electron. Lett. (1)

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, and Y. Ohmori, “Mach–Zehnder interferometer and arrayed waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett., vol. 37 no. 6, pp. 376–377, 2001.

Front. Phys. (1)

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys., vol. 3, no. 37, pp. 1–16, 2015.

IEEE Commun. Mag. (1)

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag., vol. 50, no. 2, pp. S67–S72, 2012.

IEEE Commun. Magz. (1)

X. Zhao, V. Vusirikala, B. Koley, V. Kamalov, and T. Hofmeister, “The prospect of inter-data-center optical networks,” IEEE Commun. Magz., pp. 32–38, 2013.

IEEE J. Lightwave Techhnol. (1)

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer,” IEEE J. Lightwave Techhnol., vol. 33, no. 11, pp. 2279–2286, 2015.

IEEE J. Lightwave Technol. (2)

S.-H. Jeong and K. Morito, “1 × 4 channel Si-nanowire microring-assisted multiple delayline-based optical MUX/DeMUX,” IEEE J. Lightwave Technol., vol. 33, no. 17, pp. 3736–3743, 2015.

T. Horikawa, “A 300-mm silicon photonics platform for large-scale device integration,” IEEE J. Lightwave Technol., vol. 24, no. 4, 2018, Art. no. .

IEEE J. Sel. Top. Quantum Electron. (1)

M. K. Smit and V. C. Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 2, pp. 236–250, 1996.

IEEE Photon. Technol. Lett. (1)

H. -C. Lu and W. -S. Wang, “Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response,” IEEE Photon. Technol. Lett., vol. 20, no. 1, pp. 3–5, 2008.

J. Opt. Soc. Am. (B) (1)

S.-H. Jeong and Y. Tanaka, “Silicon-wire delayed interferometric wavelength-division multiplexing filters operating in the broadband spectral range,” J. Opt. Soc. Am. (B), vol. 35, no. 8, pp. 1871–1877, 2018.

Opt. Express (4)

Opt. Lett. (3)

Optica (1)

OSA Continuum. (1)

S.-H. Jeong, “Broadband operating 1 × 8 channel silicon-nanowire-waveguide WDM filter based on point-symmetric Mach–Zehnder interferometric optical couplers in the O-band spectral regime,” OSA Continuum., vol. 2, no. 12, pp. 3564–3575, 2019.

Proc. IEEE (1)

R. -J. Essiambre and R. W. Tkach, “Capacity trends and limit of optical communication networks,” Proc. IEEE, vol. 100, no. 5, pp. 1035–1055, 2012.

Proc. Int. J. Electron. Commun. Eng. (1)

Q. Fang, “A high-crosstalk silicon photonic arrayed waveguide grating,” Proc. Int. J. Electron. Commun. Eng., vol. 10, no. 3, pp. 372–373, 2016.

Other (7)

G. P. Agrawal, “Lightwave Technology: Telecommunication Systems,”: Chapter 9, WDM system. Hoboken, John Wiley & Sons, pp. 351–353, 2005.

J. Fujikata, “High-speed and 16λ-WDM operation of Ge/Si electro-absorption modulator for C-band spectral regime,” in Proc. Opt. Commun. Conf., Mar. 2020, Art. no. .

T. Akiyama, “Error-free loopback of a compact 25 Gb/s × 4ch WDM transceiver assembly incorporating silicon (De)multiplexer with automated phase-error correction,” in Proc. Opt. Fiber Commun. Conf., San Diego, USA, Mar. 2018, Art. no. .

T. Akiyama, “An Extremely low-crosstalk WDM demultiplexer with an automatic error-correction capability enabling temperature insensitivity and high-yield integration on low-end Si PICs,” in Proc. European Conf. Op. Commun., Dublin, Ireland, Sept. 2019, Art. no. .

J. C. Rosenberg, “Monolithic silicon photonic WDM transceivers,” in Proc. European Conf. Op. Commun., Gothenbury, Sweden, Sept. 2017, Art. no. .

C. F. Ram, “Optical network technologies for datacenter networks,” in Proc. Opt. Commun. Conf., Mar. 2010, Art. no. .

L. Chen, C. Doerr, and Y. Chen, “Polarization diversified DWDM receiver on silicon free of polarization dependent wavelength shift,” in Proc. Opt. Fiber Commun. Conf., Mar. 2012, Art. no. .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.