Abstract

In this article, for the first time, an efficient multi-wavelength fiber laser based on a Tm:Er:Yb:Ho co-doped germanate glass, optically pumped at 980 nm wavelength and simultaneously emitting at 1550 nm, 1800 nm and 2050 nm wavelengths, is designed and optimized. An exhaustive model, taking into account the energy transfer phenomena between different rare earths, is developed. The device behavior is investigated by means of several parametric sweeps with respect to the input pump power, the fiber length, the dopant concentrations and the output mirrors reflectivities. Four optimal concentrations have been found by means of a home-made computer code based on particle swarm optimization (PSO) approach, allowing a global solution search. These concentrations allow levels of output powers very close to each other, equal to 20 mW  $\pm$  0.1 $\%$ at 1550 nm, 1800 nm and 2050 nm, respectively. These results predict the possibility of tailoring the dopant concentrations in order to construct broadband optical sources with similar emission powers at multiple wavelengths and broadband amplifiers.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B, vol. 93, no. 2, pp. 269–316,  2008.
  2. A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett., vol. 46, no. 24, pp. 1617–1618,  2010.
  3. Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 $\mu$m emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater., vol. 32, no. 11, pp. 1508–1513,  2010.
  4. M. Kochanowicz, “Analysis of upconversion luminescence in germanate glass and optical fiber codoped with Yb3+/Tb3+,” Appl. Opt., vol. 55, no. 9, pp. 2370–2374,  2016.
  5. J. Zmojda, “Investigation of upconversion luminescence in antimony–germanate double-clad two cores optical fiber co-doped with Yb3+/Tm3+ and Yb3+/Ho3+ ions,” J. Lumin., vol. 170, pp. 795–800, 2016.
  6. J. Zmojda, M. Kochanowicz, P. Miluski, G. C. Righini, M. Ferrari, and D. Dorosz, “Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber,” Opt. Mater., vol. 58, pp. 279–284, 2016.
  7. M. Kochanowicz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd., vol. 727, pp. 1221–1226, 2017.
  8. T. Ragin, “Enhanced mid-infrared 2.7 $\mu$m luminescence in low hydroxide bismuth-germanate glass and optical fiber co-doped with Er3+/Yb3+ ions,” J. Non-Cryst. Solids, vol. 457, pp. 169–174, 2017.
  9. A. Albalawi, M. Kochanowicz, J. Zmojda, P. Miluski, D. Dorosz, and S. Taccheo, “Fluorescence spectrum of an Yb:Er:Tm:Ho doped germanate glass,” in Proc. Laser Congr. (ASSL), 2018, Art. no. .
  10. F. Enrichi, “Visible to NIR downconversion process in Tb3+-Yb3+ codoped silica-hafnia glass and glass-ceramic sol-gel waveguides for solar cells,” J. Lumin., vol. 193, pp. 44–50, 2018.
  11. M. Kochanowicz, “Tm3+/Ho3+ co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 $\mu$m,” Opt. Mater. Express, vol. 9, no. 3, pp. 1450–1458,  2019.
  12. L. Sojka, “Ultra-broadband mid-infrared emission from a Pr3+/Dy3+ co-doped selenide-chalcogenide glass fiber spectrally shaped by varying the pumping arrangement,” Opt. Mater. Express, vol. 9, no. 5, pp. 2291–2306,  2019.
  13. M. C. Falconi, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987,  2016.
  14. M. C. Falconi, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightw. Technol., vol. 35, no. 2, pp. 265–273,  2017.
  15. G. Palma, “Design of praseodymium-doped chalcogenide micro-disk emitting at 4.7 $\mu$m,” Opt. Express, vol. 25, no. 6, pp. 7014–7030,  2017.
  16. M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and F. Prudenzano, “Design of an efficient pulsed Dy3+:ZBLAN fiber laser operating in gain switching regime,” J. Lightw. Technol., vol. 36, no. 23, pp. 5327–5333,  2018.
  17. M. Shen, “Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express, vol. 26, no. 18, pp. 23 641–23 660, 2018.
  18. S. Sujecki, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber,” J. Lumin., vol. 209, pp. 14–20, 2019.
  19. S. Sujecki, “Spatiotemporal modeling of mid-infrared photoluminescence from terbium(III) ion doped chalcogenide-selenide multimode fibers,” J. Rare Earths, vol. 37, no. 11, pp. 1157–1163,  2019.
  20. H. T. Munasinghe, “Lead-germanate glasses and fibers: A practical alternative to tellurite for nonlinear fiber applications,” Opt. Mater. Express, vol. 3, no. 9, pp. 1488–1503,  2013.
  21. Q. Lin, H. Xia, Y. Zhang, J. Wang, J. Zhang, and S. He, “Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions,” J. Rare Earths, vol. 27, no. 1, pp. 76–82,  2009.
  22. T. Wei, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep., vol. 4, 2014, Art. no. .
  23. S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quant. Electron., vol. 31, no. 3, pp. 249–262,  1999.
  24. C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a $\scriptstyle\sim$2.1–$\mu$m–Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightw. Technol., vol. 27, no. 19, pp. 4280–4288,  2009.
  25. C. Jiang and W. Xu, “Theoretical model of Yb3+-Er3+-Tm3+-codoped system for white light generation,” IEEE/OSA J. Display Technol., vol. 5, no. 8, pp. 312–318,  2009.
  26. G. Palma, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett., vol. 27, no. 17, pp. 1861–1863,  2015.
  27. G. Palma, “Novel double step approach for optical sensing via microsphere WGM resonance,” Opt. Express, vol. 24, no. 23, pp. 26 956–26 971, 2016.
  28. D. Laneve, “Electromagnetic design of microwave cavities for side-coupled linear accelerators: A hybrid numerical/analytical approach,” IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 2233–2239,  2018.

2019 (4)

M. Kochanowicz, “Tm3+/Ho3+ co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 $\mu$m,” Opt. Mater. Express, vol. 9, no. 3, pp. 1450–1458,  2019.

L. Sojka, “Ultra-broadband mid-infrared emission from a Pr3+/Dy3+ co-doped selenide-chalcogenide glass fiber spectrally shaped by varying the pumping arrangement,” Opt. Mater. Express, vol. 9, no. 5, pp. 2291–2306,  2019.

S. Sujecki, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber,” J. Lumin., vol. 209, pp. 14–20, 2019.

S. Sujecki, “Spatiotemporal modeling of mid-infrared photoluminescence from terbium(III) ion doped chalcogenide-selenide multimode fibers,” J. Rare Earths, vol. 37, no. 11, pp. 1157–1163,  2019.

2018 (4)

F. Enrichi, “Visible to NIR downconversion process in Tb3+-Yb3+ codoped silica-hafnia glass and glass-ceramic sol-gel waveguides for solar cells,” J. Lumin., vol. 193, pp. 44–50, 2018.

M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and F. Prudenzano, “Design of an efficient pulsed Dy3+:ZBLAN fiber laser operating in gain switching regime,” J. Lightw. Technol., vol. 36, no. 23, pp. 5327–5333,  2018.

M. Shen, “Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express, vol. 26, no. 18, pp. 23 641–23 660, 2018.

D. Laneve, “Electromagnetic design of microwave cavities for side-coupled linear accelerators: A hybrid numerical/analytical approach,” IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 2233–2239,  2018.

2017 (4)

M. Kochanowicz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd., vol. 727, pp. 1221–1226, 2017.

T. Ragin, “Enhanced mid-infrared 2.7 $\mu$m luminescence in low hydroxide bismuth-germanate glass and optical fiber co-doped with Er3+/Yb3+ ions,” J. Non-Cryst. Solids, vol. 457, pp. 169–174, 2017.

M. C. Falconi, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightw. Technol., vol. 35, no. 2, pp. 265–273,  2017.

G. Palma, “Design of praseodymium-doped chalcogenide micro-disk emitting at 4.7 $\mu$m,” Opt. Express, vol. 25, no. 6, pp. 7014–7030,  2017.

2016 (5)

M. C. Falconi, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987,  2016.

M. Kochanowicz, “Analysis of upconversion luminescence in germanate glass and optical fiber codoped with Yb3+/Tb3+,” Appl. Opt., vol. 55, no. 9, pp. 2370–2374,  2016.

J. Zmojda, “Investigation of upconversion luminescence in antimony–germanate double-clad two cores optical fiber co-doped with Yb3+/Tm3+ and Yb3+/Ho3+ ions,” J. Lumin., vol. 170, pp. 795–800, 2016.

J. Zmojda, M. Kochanowicz, P. Miluski, G. C. Righini, M. Ferrari, and D. Dorosz, “Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber,” Opt. Mater., vol. 58, pp. 279–284, 2016.

G. Palma, “Novel double step approach for optical sensing via microsphere WGM resonance,” Opt. Express, vol. 24, no. 23, pp. 26 956–26 971, 2016.

2015 (1)

G. Palma, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett., vol. 27, no. 17, pp. 1861–1863,  2015.

2014 (1)

T. Wei, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep., vol. 4, 2014, Art. no. .

2013 (1)

2010 (2)

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett., vol. 46, no. 24, pp. 1617–1618,  2010.

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 $\mu$m emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater., vol. 32, no. 11, pp. 1508–1513,  2010.

2009 (3)

Q. Lin, H. Xia, Y. Zhang, J. Wang, J. Zhang, and S. He, “Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions,” J. Rare Earths, vol. 27, no. 1, pp. 76–82,  2009.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a $\scriptstyle\sim$2.1–$\mu$m–Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightw. Technol., vol. 27, no. 19, pp. 4280–4288,  2009.

C. Jiang and W. Xu, “Theoretical model of Yb3+-Er3+-Tm3+-codoped system for white light generation,” IEEE/OSA J. Display Technol., vol. 5, no. 8, pp. 312–318,  2009.

2008 (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B, vol. 93, no. 2, pp. 269–316,  2008.

1999 (1)

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quant. Electron., vol. 31, no. 3, pp. 249–262,  1999.

Albalawi, A.

A. Albalawi, M. Kochanowicz, J. Zmojda, P. Miluski, D. Dorosz, and S. Taccheo, “Fluorescence spectrum of an Yb:Er:Tm:Ho doped germanate glass,” in Proc. Laser Congr. (ASSL), 2018, Art. no. .

Bennetts, S.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett., vol. 46, no. 24, pp. 1617–1618,  2010.

Bozzetti, M.

M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and F. Prudenzano, “Design of an efficient pulsed Dy3+:ZBLAN fiber laser operating in gain switching regime,” J. Lightw. Technol., vol. 36, no. 23, pp. 5327–5333,  2018.

Dorosz, D.

J. Zmojda, M. Kochanowicz, P. Miluski, G. C. Righini, M. Ferrari, and D. Dorosz, “Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber,” Opt. Mater., vol. 58, pp. 279–284, 2016.

A. Albalawi, M. Kochanowicz, J. Zmojda, P. Miluski, D. Dorosz, and S. Taccheo, “Fluorescence spectrum of an Yb:Er:Tm:Ho doped germanate glass,” in Proc. Laser Congr. (ASSL), 2018, Art. no. .

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B, vol. 93, no. 2, pp. 269–316,  2008.

Enrichi, F.

F. Enrichi, “Visible to NIR downconversion process in Tb3+-Yb3+ codoped silica-hafnia glass and glass-ceramic sol-gel waveguides for solar cells,” J. Lumin., vol. 193, pp. 44–50, 2018.

Evans, C. A.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a $\scriptstyle\sim$2.1–$\mu$m–Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightw. Technol., vol. 27, no. 19, pp. 4280–4288,  2009.

Falconi, M. C.

M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and F. Prudenzano, “Design of an efficient pulsed Dy3+:ZBLAN fiber laser operating in gain switching regime,” J. Lightw. Technol., vol. 36, no. 23, pp. 5327–5333,  2018.

M. C. Falconi, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightw. Technol., vol. 35, no. 2, pp. 265–273,  2017.

M. C. Falconi, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987,  2016.

Feng, S.

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 $\mu$m emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater., vol. 32, no. 11, pp. 1508–1513,  2010.

Fernandez, T. T.

M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and F. Prudenzano, “Design of an efficient pulsed Dy3+:ZBLAN fiber laser operating in gain switching regime,” J. Lightw. Technol., vol. 36, no. 23, pp. 5327–5333,  2018.

Ferrari, M.

J. Zmojda, M. Kochanowicz, P. Miluski, G. C. Righini, M. Ferrari, and D. Dorosz, “Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber,” Opt. Mater., vol. 58, pp. 279–284, 2016.

Galzerano, G.

M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and F. Prudenzano, “Design of an efficient pulsed Dy3+:ZBLAN fiber laser operating in gain switching regime,” J. Lightw. Technol., vol. 36, no. 23, pp. 5327–5333,  2018.

Harrison, P.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a $\scriptstyle\sim$2.1–$\mu$m–Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightw. Technol., vol. 27, no. 19, pp. 4280–4288,  2009.

He, S.

Q. Lin, H. Xia, Y. Zhang, J. Wang, J. Zhang, and S. He, “Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions,” J. Rare Earths, vol. 27, no. 1, pp. 76–82,  2009.

Hemming, A.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett., vol. 46, no. 24, pp. 1617–1618,  2010.

Hu, L.

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 $\mu$m emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater., vol. 32, no. 11, pp. 1508–1513,  2010.

Ikonic, Z.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a $\scriptstyle\sim$2.1–$\mu$m–Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightw. Technol., vol. 27, no. 19, pp. 4280–4288,  2009.

Jackson, S. D.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett., vol. 46, no. 24, pp. 1617–1618,  2010.

Jha, A.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a $\scriptstyle\sim$2.1–$\mu$m–Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightw. Technol., vol. 27, no. 19, pp. 4280–4288,  2009.

Jiang, C.

C. Jiang and W. Xu, “Theoretical model of Yb3+-Er3+-Tm3+-codoped system for white light generation,” IEEE/OSA J. Display Technol., vol. 5, no. 8, pp. 312–318,  2009.

Kochanowicz, M.

M. Kochanowicz, “Tm3+/Ho3+ co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 $\mu$m,” Opt. Mater. Express, vol. 9, no. 3, pp. 1450–1458,  2019.

M. Kochanowicz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd., vol. 727, pp. 1221–1226, 2017.

M. Kochanowicz, “Analysis of upconversion luminescence in germanate glass and optical fiber codoped with Yb3+/Tb3+,” Appl. Opt., vol. 55, no. 9, pp. 2370–2374,  2016.

J. Zmojda, M. Kochanowicz, P. Miluski, G. C. Righini, M. Ferrari, and D. Dorosz, “Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber,” Opt. Mater., vol. 58, pp. 279–284, 2016.

A. Albalawi, M. Kochanowicz, J. Zmojda, P. Miluski, D. Dorosz, and S. Taccheo, “Fluorescence spectrum of an Yb:Er:Tm:Ho doped germanate glass,” in Proc. Laser Congr. (ASSL), 2018, Art. no. .

Lancaster, D. G.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett., vol. 46, no. 24, pp. 1617–1618,  2010.

Laneve, D.

D. Laneve, “Electromagnetic design of microwave cavities for side-coupled linear accelerators: A hybrid numerical/analytical approach,” IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 2233–2239,  2018.

M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and F. Prudenzano, “Design of an efficient pulsed Dy3+:ZBLAN fiber laser operating in gain switching regime,” J. Lightw. Technol., vol. 36, no. 23, pp. 5327–5333,  2018.

Laporta, P.

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quant. Electron., vol. 31, no. 3, pp. 249–262,  1999.

Lin, Q.

Q. Lin, H. Xia, Y. Zhang, J. Wang, J. Zhang, and S. He, “Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions,” J. Rare Earths, vol. 27, no. 1, pp. 76–82,  2009.

Longhi, S.

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quant. Electron., vol. 31, no. 3, pp. 249–262,  1999.

Miluski, P.

J. Zmojda, M. Kochanowicz, P. Miluski, G. C. Righini, M. Ferrari, and D. Dorosz, “Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber,” Opt. Mater., vol. 58, pp. 279–284, 2016.

A. Albalawi, M. Kochanowicz, J. Zmojda, P. Miluski, D. Dorosz, and S. Taccheo, “Fluorescence spectrum of an Yb:Er:Tm:Ho doped germanate glass,” in Proc. Laser Congr. (ASSL), 2018, Art. no. .

Munasinghe, H. T.

Palma, G.

G. Palma, “Design of praseodymium-doped chalcogenide micro-disk emitting at 4.7 $\mu$m,” Opt. Express, vol. 25, no. 6, pp. 7014–7030,  2017.

G. Palma, “Novel double step approach for optical sensing via microsphere WGM resonance,” Opt. Express, vol. 24, no. 23, pp. 26 956–26 971, 2016.

G. Palma, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett., vol. 27, no. 17, pp. 1861–1863,  2015.

Prudenzano, F.

M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and F. Prudenzano, “Design of an efficient pulsed Dy3+:ZBLAN fiber laser operating in gain switching regime,” J. Lightw. Technol., vol. 36, no. 23, pp. 5327–5333,  2018.

Ragin, T.

T. Ragin, “Enhanced mid-infrared 2.7 $\mu$m luminescence in low hydroxide bismuth-germanate glass and optical fiber co-doped with Er3+/Yb3+ ions,” J. Non-Cryst. Solids, vol. 457, pp. 169–174, 2017.

Richards, B.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a $\scriptstyle\sim$2.1–$\mu$m–Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightw. Technol., vol. 27, no. 19, pp. 4280–4288,  2009.

Righini, G. C.

J. Zmojda, M. Kochanowicz, P. Miluski, G. C. Righini, M. Ferrari, and D. Dorosz, “Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber,” Opt. Mater., vol. 58, pp. 279–284, 2016.

Sabella, A.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett., vol. 46, no. 24, pp. 1617–1618,  2010.

Shen, M.

M. Shen, “Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express, vol. 26, no. 18, pp. 23 641–23 660, 2018.

Sojka, L.

Sorbello, G.

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quant. Electron., vol. 31, no. 3, pp. 249–262,  1999.

Sujecki, S.

S. Sujecki, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber,” J. Lumin., vol. 209, pp. 14–20, 2019.

S. Sujecki, “Spatiotemporal modeling of mid-infrared photoluminescence from terbium(III) ion doped chalcogenide-selenide multimode fibers,” J. Rare Earths, vol. 37, no. 11, pp. 1157–1163,  2019.

Taccheo, S.

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quant. Electron., vol. 31, no. 3, pp. 249–262,  1999.

A. Albalawi, M. Kochanowicz, J. Zmojda, P. Miluski, D. Dorosz, and S. Taccheo, “Fluorescence spectrum of an Yb:Er:Tm:Ho doped germanate glass,” in Proc. Laser Congr. (ASSL), 2018, Art. no. .

Tian, Y.

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 $\mu$m emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater., vol. 32, no. 11, pp. 1508–1513,  2010.

Wang, J.

Q. Lin, H. Xia, Y. Zhang, J. Wang, J. Zhang, and S. He, “Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions,” J. Rare Earths, vol. 27, no. 1, pp. 76–82,  2009.

Wei, T.

T. Wei, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep., vol. 4, 2014, Art. no. .

Xia, H.

Q. Lin, H. Xia, Y. Zhang, J. Wang, J. Zhang, and S. He, “Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions,” J. Rare Earths, vol. 27, no. 1, pp. 76–82,  2009.

Xu, R.

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 $\mu$m emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater., vol. 32, no. 11, pp. 1508–1513,  2010.

Xu, W.

C. Jiang and W. Xu, “Theoretical model of Yb3+-Er3+-Tm3+-codoped system for white light generation,” IEEE/OSA J. Display Technol., vol. 5, no. 8, pp. 312–318,  2009.

Zhang, J.

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 $\mu$m emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater., vol. 32, no. 11, pp. 1508–1513,  2010.

Q. Lin, H. Xia, Y. Zhang, J. Wang, J. Zhang, and S. He, “Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions,” J. Rare Earths, vol. 27, no. 1, pp. 76–82,  2009.

Zhang, L.

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 $\mu$m emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater., vol. 32, no. 11, pp. 1508–1513,  2010.

Zhang, Y.

Q. Lin, H. Xia, Y. Zhang, J. Wang, J. Zhang, and S. He, “Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions,” J. Rare Earths, vol. 27, no. 1, pp. 76–82,  2009.

Zmojda, J.

J. Zmojda, “Investigation of upconversion luminescence in antimony–germanate double-clad two cores optical fiber co-doped with Yb3+/Tm3+ and Yb3+/Ho3+ ions,” J. Lumin., vol. 170, pp. 795–800, 2016.

J. Zmojda, M. Kochanowicz, P. Miluski, G. C. Righini, M. Ferrari, and D. Dorosz, “Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber,” Opt. Mater., vol. 58, pp. 279–284, 2016.

A. Albalawi, M. Kochanowicz, J. Zmojda, P. Miluski, D. Dorosz, and S. Taccheo, “Fluorescence spectrum of an Yb:Er:Tm:Ho doped germanate glass,” in Proc. Laser Congr. (ASSL), 2018, Art. no. .

Appl. Opt. (1)

Appl. Phys. B (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B, vol. 93, no. 2, pp. 269–316,  2008.

Electron. Lett. (1)

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett., vol. 46, no. 24, pp. 1617–1618,  2010.

IEEE Photon. Technol. Lett. (2)

M. C. Falconi, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987,  2016.

G. Palma, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett., vol. 27, no. 17, pp. 1861–1863,  2015.

IEEE Trans. Nucl. Sci. (1)

D. Laneve, “Electromagnetic design of microwave cavities for side-coupled linear accelerators: A hybrid numerical/analytical approach,” IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 2233–2239,  2018.

IEEE/OSA J. Display Technol. (1)

C. Jiang and W. Xu, “Theoretical model of Yb3+-Er3+-Tm3+-codoped system for white light generation,” IEEE/OSA J. Display Technol., vol. 5, no. 8, pp. 312–318,  2009.

J. Alloys Compd. (1)

M. Kochanowicz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd., vol. 727, pp. 1221–1226, 2017.

J. Lightw. Technol. (3)

M. C. Falconi, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightw. Technol., vol. 35, no. 2, pp. 265–273,  2017.

M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and F. Prudenzano, “Design of an efficient pulsed Dy3+:ZBLAN fiber laser operating in gain switching regime,” J. Lightw. Technol., vol. 36, no. 23, pp. 5327–5333,  2018.

C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a $\scriptstyle\sim$2.1–$\mu$m–Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightw. Technol., vol. 27, no. 19, pp. 4280–4288,  2009.

J. Lumin. (3)

S. Sujecki, “Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber,” J. Lumin., vol. 209, pp. 14–20, 2019.

F. Enrichi, “Visible to NIR downconversion process in Tb3+-Yb3+ codoped silica-hafnia glass and glass-ceramic sol-gel waveguides for solar cells,” J. Lumin., vol. 193, pp. 44–50, 2018.

J. Zmojda, “Investigation of upconversion luminescence in antimony–germanate double-clad two cores optical fiber co-doped with Yb3+/Tm3+ and Yb3+/Ho3+ ions,” J. Lumin., vol. 170, pp. 795–800, 2016.

J. Non-Cryst. Solids (1)

T. Ragin, “Enhanced mid-infrared 2.7 $\mu$m luminescence in low hydroxide bismuth-germanate glass and optical fiber co-doped with Er3+/Yb3+ ions,” J. Non-Cryst. Solids, vol. 457, pp. 169–174, 2017.

J. Rare Earths (2)

S. Sujecki, “Spatiotemporal modeling of mid-infrared photoluminescence from terbium(III) ion doped chalcogenide-selenide multimode fibers,” J. Rare Earths, vol. 37, no. 11, pp. 1157–1163,  2019.

Q. Lin, H. Xia, Y. Zhang, J. Wang, J. Zhang, and S. He, “Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions,” J. Rare Earths, vol. 27, no. 1, pp. 76–82,  2009.

Opt. Express (3)

M. Shen, “Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express, vol. 26, no. 18, pp. 23 641–23 660, 2018.

G. Palma, “Design of praseodymium-doped chalcogenide micro-disk emitting at 4.7 $\mu$m,” Opt. Express, vol. 25, no. 6, pp. 7014–7030,  2017.

G. Palma, “Novel double step approach for optical sensing via microsphere WGM resonance,” Opt. Express, vol. 24, no. 23, pp. 26 956–26 971, 2016.

Opt. Mater. (2)

J. Zmojda, M. Kochanowicz, P. Miluski, G. C. Righini, M. Ferrari, and D. Dorosz, “Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber,” Opt. Mater., vol. 58, pp. 279–284, 2016.

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 $\mu$m emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater., vol. 32, no. 11, pp. 1508–1513,  2010.

Opt. Mater. Express (3)

Opt. Quant. Electron. (1)

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quant. Electron., vol. 31, no. 3, pp. 249–262,  1999.

Sci. Rep. (1)

T. Wei, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep., vol. 4, 2014, Art. no. .

Other (1)

A. Albalawi, M. Kochanowicz, J. Zmojda, P. Miluski, D. Dorosz, and S. Taccheo, “Fluorescence spectrum of an Yb:Er:Tm:Ho doped germanate glass,” in Proc. Laser Congr. (ASSL), 2018, Art. no. .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.