Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 8,
  • pp. 2285-2291
  • (2020)

Measurement of Instantaneous Microwave Frequency by Optical Power Monitoring Based on Polarization Interference

Not Accessible

Your library or personal account may give you access

Abstract

A photonic-assisted approach for instantaneous frequency measurement based on optical power monitoring is proposed and demonstrated. Instead of using optical filter, a dual-polarization Mach–Zehnder modulator is used to modulate the unknown RF signal with a designed electrical time delay. Due to the property of electrical time delay, the frequency information is firstly converted to phase shift and then to the optical power. By monitoring the optical power, a monotonic relationship between the incident microwave frequency and optical power ratio can be easily established. A detailed theoretical analysis is carried out to illustrate the mechanism of the proposed instantaneous frequency measurement setup. Simulation has been performed to investigate the tuning of measurement range and the impact of imperfection devices. A proof-of-concept experiment has been carried out to verify the mechanism.

PDF Article
More Like This
Instantaneous microwave frequency measurement using optical carrier suppression based DC power monitoring

Songnian Fu, Ming Tang, and Perry Shum
Opt. Express 19(24) 24712-24717 (2011)

Instantaneous microwave frequency measurement with single branch detection based on the birefringence effect

Wei Zhu, Jing Li, Li Pei, Tigang Ning, Jingjing Zheng, and Jianshuai Wang
Appl. Opt. 61(20) 5894-5901 (2022)

Instantaneous microwave frequency measurement using few-mode fiber-based microwave photonic filters

Zhiyong Zhao, Kun Zhu, Linyue Lu, and Chao Lu
Opt. Express 28(25) 37353-37361 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.