Abstract

Ammonia (NH3) and carbon dioxide (CO2) are important breath biomarkers for diagnosis of renal and respiratory diseases. Simultaneous sensing of the two gases is useful for assessment of Helicobacter Pylori infection. This article introduces a multi-parameter optical fibre sensor by coating two different dyes, i.e., thymol blue and tetraphenylporphyrin tetrasulfonic acid hydrate (TPPS) into one optical fibre sensing system for multi-sensing of the two gases. The dyes are separately coated on distal ends of a 2 × 2 optical fibre coupler using the sol-gel technique. The reflection spectrum contains distinctive absorption peaks of the two dyes in the wavelength domain and hence can be analysed using a single spectrometer. The absorbance at a wavelength of 608 nm corresponding to the absorption peak of the thymol blue exhibits an exponential decrease as the CO2 concentration increases from 0 ppm to 60 000 ppm. The absorption bands at approximately 490 nm and 711 nm corresponding to the Soret band and Q-band of TPPS, respectively, show changes both in absorbance and central wavelengths in response to NH3 concentration in the range from 0 ppm to 80 ppm. The limit of detection and response time for CO2 and NH3 are 637 ppm and 0.15 ppm, 86 s and 83 s, respectively. The proposed sensor demonstrates the capability of sensing NH3 and CO2 simultaneously in a complex gas atmosphere containing other chemicals such as methanol and acetone, which are representative of industrial or metabolic compounds that may confound measurements.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pospíšilová, G. Kuncová, and J. Trögl, “Fiber-optic chemical sensors and fiber-optic bio-sensors,” Sensors, vol. 15, no. 10, pp. 25 208–25 259, 2015.
  2. A. Kharaz and B. E. Jones, “A distributed optical-fibre sensing system for multi-point humidity measurement,” Sensors Actuators A, Phys., vol. 47, no. 1, pp. 491–493, 1995.
  3. R. B. Thompson, “Fluorescence-based fiber-optic sensors,” in Topics in Fluorescence Spectroscopy: Principles, J. R. Lakowicz, Ed. Boston, MA, USA: Springer, 2002, pp. 345–365.
  4. L. Liu, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sensors Actuators B, Chem., vol. 271, pp. 24–32, 2018.
  5. R. Correia, S. James, S. Lee, S. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt., vol. 20, no. 7, 2018, Art. no. .
  6. G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A, Pure Appl. Opt., vol. 5, no. 5, 2003, Art. no. .
  7. M. Uttamlal and D. R. Walt, “A fiber-optic carbon dioxide sensor for fermentation monitoring,” Bio/Technol., vol. 13, no. 6, pp. 597–601, 1995.
  8. P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett., vol. 27, no. 16, pp. 1385–1387, 2002.
  9. J. Hromadka, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensors Actuators B, Chem., vol. 244, pp. 217–225, 2017.
  10. L. Li and D. R. Walt, “Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen,” Analytical Chem., vol. 67, no. 20, pp. 3746–3752, 1995.
  11. B. Sciacca and T. M. Monro, “Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber,” Langmuir, vol. 30, no. 3, pp. 946–954, 2014.
  12. K. J. Donham, “Association of environmental air contaminants with disease and productivity in swine,” Amer. J. Veterinary Res., vol. 52, no. 10, pp. 1723–1730, 1991.
  13. C. Charavaryamath and B. Singh, “Pulmonary effects of exposure to pig barnair,” J. Occupational Med. Toxicol., vol. 1, no. 1, 2006, Art. no. .
  14. N. Roney and F. Llados, “Toxicological profile for ammonia,” Agency for Toxic Substances and Disease Registry, Syracuse Research Corp., U.S. Dept. Health Human Services, Atlanta, GA, 2004.
  15. S. Davies, P. Spanel, and D. Smith, “Quantitative analysis of ammonia on the breath of patients in end-stage renal failure,” Kidney Int., vol. 52, no. 1, pp. 223–228, 1997.
  16. J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. R. Sama, and D. K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy,” J. Breath Res., vol. 5, no. 3, 2011, Art. no. (in English).
  17. J. G. Kusters, A. H. van Vliet, and E. J. Kuipers, “Pathogenesis of Helicobacter pylori infection,” Clin. Microbiol. Rev., vol. 19, no. 3, pp. 449–490, 2006.
  18. C. Lourenço and C. Turner, “Breath analysis in disease diagnosis: Methodological considerations and applications,” Metabolites, vol. 4, no. 2, pp. 465–498, 2014.
  19. A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrometry, vol. 239, no. 2–3, pp. 227–233, 2004.
  20. W. Cao and Y. Duan, “Current status of methods and techniques for breath analysis,” Crit. Rev. Analytical Chem., vol. 37, no. 1, pp. 3–13, 2007.
  21. K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.
  22. A. Rodríguez, C. Zamarreño, I. Matías, F. Arregui, R. Cruz, and D. May-Arrioja, “A fiber optic ammonia sensor using a universal pH indicator,” Sensors, vol. 14, no. 3, pp. 4060–4073, 2014.
  23. L. Liu, F. Hao, S. P. Morgan, R. Correia, A. Norris, and S. Korposh, “A reflection-mode fibre-optic sensor for breath carbon dioxide measurement in healthcare,” Sens. Bio-Sens. Res., vol. 22, 2019, Art. no. .
  24. S. Korposh, S. Kodaira, W. Batty, S. W. James, and S.-W. Lee, “Nanoassembled thin-film gas sensor II. An intrinsic highly sensitive fibre-optic sensor for ammonia detection,” Sensors Mater., vol. 21, no. 4, pp. 179–189, 2009.
  25. R. Selyanchyn, S. Korposh, W. Yasukochi, and S.-W. Lee, “A preliminary test for skin gas assessment using a porphyrin based evanescent wave optical fiber sensor,” Sensors Transducers, vol. 125, no. 2, pp. 54–67, 2011.
  26. S. Takagi, M. Eguchi, D. A. Tryk, and H. Inoue, “Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials,” J. Photochemi. Photobiol. C, Photochemistry Rev., vol. 7, no. 2, pp. 104–126, 2006.
  27. K. Ariga, Y. Lvov, and T. Kunitake, “Assembling alternate dye−polyion molecular films by electrostatic layer-by-layer adsorption,” J. Amer. Chem. Soc., vol. 119, no. 9, pp. 2224–2231, 1997.
  28. A. Shrivastava and V. B. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Scientists, vol. 2, no. 1, pp. 15–21, 2011.
  29. K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.
  30. S. M. Mejia Quintero, L. C. Guedes Valente, M. S. de Paula Gomes, H. Gomes da Silva, B. Caroli de Souza, and S. R. K. Morikawa, “All-fiber CO2 sensor using hollow core PCF operating in the 2 μm region,” Sensors Basel, Switzerland, vol. 18, no. 12, 2018, Art. no. .
  31. J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1,” Sensors Actuators B, Chem., vol. 255, pp. 2483–2494, 2018.
  32. W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sensors Actuators B, Chem., vol. 110, no. 2, pp. 252–259, 2005.
  33. A. L. Khalaf, “Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite,” Opt. Mater. Exp., vol. 7, no. 6, pp. 1858–1870, 2017.
  34. M. Maierhofer, S. M. Borisov, and T. Mayr, “Optical ammonia sensor for continuous bioprocess monitoring,” Proceedings, vol. 2, no. 13, 2018, Art. no. .
  35. C. He, S. Korposh, R. Correia, B. R. Hayes-Gill, and S. P. Morgan, “Optical fibre temperature sensor based on thermochromic liquid crystal,” Proc. SPIE, vol. 11199, 2019, Art. no. 1119908.
  36. W. Knoche, Chemical Reactions of CO2 in Water, Berlin, Germany: Springer, 1980, pp. 3–11.

2019 (1)

L. Liu, F. Hao, S. P. Morgan, R. Correia, A. Norris, and S. Korposh, “A reflection-mode fibre-optic sensor for breath carbon dioxide measurement in healthcare,” Sens. Bio-Sens. Res., vol. 22, 2019, Art. no. .

2018 (5)

S. M. Mejia Quintero, L. C. Guedes Valente, M. S. de Paula Gomes, H. Gomes da Silva, B. Caroli de Souza, and S. R. K. Morikawa, “All-fiber CO2 sensor using hollow core PCF operating in the 2 μm region,” Sensors Basel, Switzerland, vol. 18, no. 12, 2018, Art. no. .

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1,” Sensors Actuators B, Chem., vol. 255, pp. 2483–2494, 2018.

M. Maierhofer, S. M. Borisov, and T. Mayr, “Optical ammonia sensor for continuous bioprocess monitoring,” Proceedings, vol. 2, no. 13, 2018, Art. no. .

L. Liu, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sensors Actuators B, Chem., vol. 271, pp. 24–32, 2018.

R. Correia, S. James, S. Lee, S. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt., vol. 20, no. 7, 2018, Art. no. .

2017 (2)

J. Hromadka, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensors Actuators B, Chem., vol. 244, pp. 217–225, 2017.

A. L. Khalaf, “Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite,” Opt. Mater. Exp., vol. 7, no. 6, pp. 1858–1870, 2017.

2015 (3)

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

M. Pospíšilová, G. Kuncová, and J. Trögl, “Fiber-optic chemical sensors and fiber-optic bio-sensors,” Sensors, vol. 15, no. 10, pp. 25 208–25 259, 2015.

2014 (3)

B. Sciacca and T. M. Monro, “Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber,” Langmuir, vol. 30, no. 3, pp. 946–954, 2014.

C. Lourenço and C. Turner, “Breath analysis in disease diagnosis: Methodological considerations and applications,” Metabolites, vol. 4, no. 2, pp. 465–498, 2014.

A. Rodríguez, C. Zamarreño, I. Matías, F. Arregui, R. Cruz, and D. May-Arrioja, “A fiber optic ammonia sensor using a universal pH indicator,” Sensors, vol. 14, no. 3, pp. 4060–4073, 2014.

2011 (3)

R. Selyanchyn, S. Korposh, W. Yasukochi, and S.-W. Lee, “A preliminary test for skin gas assessment using a porphyrin based evanescent wave optical fiber sensor,” Sensors Transducers, vol. 125, no. 2, pp. 54–67, 2011.

A. Shrivastava and V. B. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Scientists, vol. 2, no. 1, pp. 15–21, 2011.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. R. Sama, and D. K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy,” J. Breath Res., vol. 5, no. 3, 2011, Art. no. (in English).

2009 (1)

S. Korposh, S. Kodaira, W. Batty, S. W. James, and S.-W. Lee, “Nanoassembled thin-film gas sensor II. An intrinsic highly sensitive fibre-optic sensor for ammonia detection,” Sensors Mater., vol. 21, no. 4, pp. 179–189, 2009.

2007 (1)

W. Cao and Y. Duan, “Current status of methods and techniques for breath analysis,” Crit. Rev. Analytical Chem., vol. 37, no. 1, pp. 3–13, 2007.

2006 (3)

S. Takagi, M. Eguchi, D. A. Tryk, and H. Inoue, “Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials,” J. Photochemi. Photobiol. C, Photochemistry Rev., vol. 7, no. 2, pp. 104–126, 2006.

J. G. Kusters, A. H. van Vliet, and E. J. Kuipers, “Pathogenesis of Helicobacter pylori infection,” Clin. Microbiol. Rev., vol. 19, no. 3, pp. 449–490, 2006.

C. Charavaryamath and B. Singh, “Pulmonary effects of exposure to pig barnair,” J. Occupational Med. Toxicol., vol. 1, no. 1, 2006, Art. no. .

2005 (1)

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sensors Actuators B, Chem., vol. 110, no. 2, pp. 252–259, 2005.

2004 (1)

A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrometry, vol. 239, no. 2–3, pp. 227–233, 2004.

2003 (1)

G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A, Pure Appl. Opt., vol. 5, no. 5, 2003, Art. no. .

2002 (1)

1997 (2)

K. Ariga, Y. Lvov, and T. Kunitake, “Assembling alternate dye−polyion molecular films by electrostatic layer-by-layer adsorption,” J. Amer. Chem. Soc., vol. 119, no. 9, pp. 2224–2231, 1997.

S. Davies, P. Spanel, and D. Smith, “Quantitative analysis of ammonia on the breath of patients in end-stage renal failure,” Kidney Int., vol. 52, no. 1, pp. 223–228, 1997.

1995 (3)

M. Uttamlal and D. R. Walt, “A fiber-optic carbon dioxide sensor for fermentation monitoring,” Bio/Technol., vol. 13, no. 6, pp. 597–601, 1995.

A. Kharaz and B. E. Jones, “A distributed optical-fibre sensing system for multi-point humidity measurement,” Sensors Actuators A, Phys., vol. 47, no. 1, pp. 491–493, 1995.

L. Li and D. R. Walt, “Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen,” Analytical Chem., vol. 67, no. 20, pp. 3746–3752, 1995.

1991 (1)

K. J. Donham, “Association of environmental air contaminants with disease and productivity in swine,” Amer. J. Veterinary Res., vol. 52, no. 10, pp. 1723–1730, 1991.

Amann, A.

A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrometry, vol. 239, no. 2–3, pp. 227–233, 2004.

Ariga, K.

K. Ariga, Y. Lvov, and T. Kunitake, “Assembling alternate dye−polyion molecular films by electrostatic layer-by-layer adsorption,” J. Amer. Chem. Soc., vol. 119, no. 9, pp. 2224–2231, 1997.

Arregui, F.

A. Rodríguez, C. Zamarreño, I. Matías, F. Arregui, R. Cruz, and D. May-Arrioja, “A fiber optic ammonia sensor using a universal pH indicator,” Sensors, vol. 14, no. 3, pp. 4060–4073, 2014.

Atherton, K.

G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A, Pure Appl. Opt., vol. 5, no. 5, 2003, Art. no. .

Batty, W.

S. Korposh, S. Kodaira, W. Batty, S. W. James, and S.-W. Lee, “Nanoassembled thin-film gas sensor II. An intrinsic highly sensitive fibre-optic sensor for ammonia detection,” Sensors Mater., vol. 21, no. 4, pp. 179–189, 2009.

Borisov, S. M.

M. Maierhofer, S. M. Borisov, and T. Mayr, “Optical ammonia sensor for continuous bioprocess monitoring,” Proceedings, vol. 2, no. 13, 2018, Art. no. .

Cao, W.

W. Cao and Y. Duan, “Current status of methods and techniques for breath analysis,” Crit. Rev. Analytical Chem., vol. 37, no. 1, pp. 3–13, 2007.

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sensors Actuators B, Chem., vol. 110, no. 2, pp. 252–259, 2005.

Caroli de Souza, B.

S. M. Mejia Quintero, L. C. Guedes Valente, M. S. de Paula Gomes, H. Gomes da Silva, B. Caroli de Souza, and S. R. K. Morikawa, “All-fiber CO2 sensor using hollow core PCF operating in the 2 μm region,” Sensors Basel, Switzerland, vol. 18, no. 12, 2018, Art. no. .

Charavaryamath, C.

C. Charavaryamath and B. Singh, “Pulmonary effects of exposure to pig barnair,” J. Occupational Med. Toxicol., vol. 1, no. 1, 2006, Art. no. .

Correia, R.

L. Liu, F. Hao, S. P. Morgan, R. Correia, A. Norris, and S. Korposh, “A reflection-mode fibre-optic sensor for breath carbon dioxide measurement in healthcare,” Sens. Bio-Sens. Res., vol. 22, 2019, Art. no. .

R. Correia, S. James, S. Lee, S. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt., vol. 20, no. 7, 2018, Art. no. .

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1,” Sensors Actuators B, Chem., vol. 255, pp. 2483–2494, 2018.

C. He, S. Korposh, R. Correia, B. R. Hayes-Gill, and S. P. Morgan, “Optical fibre temperature sensor based on thermochromic liquid crystal,” Proc. SPIE, vol. 11199, 2019, Art. no. 1119908.

Cruz, R.

A. Rodríguez, C. Zamarreño, I. Matías, F. Arregui, R. Cruz, and D. May-Arrioja, “A fiber optic ammonia sensor using a universal pH indicator,” Sensors, vol. 14, no. 3, pp. 4060–4073, 2014.

Culshaw, B.

G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A, Pure Appl. Opt., vol. 5, no. 5, 2003, Art. no. .

Davies, S.

S. Davies, P. Spanel, and D. Smith, “Quantitative analysis of ammonia on the breath of patients in end-stage renal failure,” Kidney Int., vol. 52, no. 1, pp. 223–228, 1997.

de Paula Gomes, M. S.

S. M. Mejia Quintero, L. C. Guedes Valente, M. S. de Paula Gomes, H. Gomes da Silva, B. Caroli de Souza, and S. R. K. Morikawa, “All-fiber CO2 sensor using hollow core PCF operating in the 2 μm region,” Sensors Basel, Switzerland, vol. 18, no. 12, 2018, Art. no. .

Donham, K. J.

K. J. Donham, “Association of environmental air contaminants with disease and productivity in swine,” Amer. J. Veterinary Res., vol. 52, no. 10, pp. 1723–1730, 1991.

Duan, Y.

W. Cao and Y. Duan, “Current status of methods and techniques for breath analysis,” Crit. Rev. Analytical Chem., vol. 37, no. 1, pp. 3–13, 2007.

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sensors Actuators B, Chem., vol. 110, no. 2, pp. 252–259, 2005.

Eguchi, M.

S. Takagi, M. Eguchi, D. A. Tryk, and H. Inoue, “Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials,” J. Photochemi. Photobiol. C, Photochemistry Rev., vol. 7, no. 2, pp. 104–126, 2006.

Giaccari, P.

Gomes da Silva, H.

S. M. Mejia Quintero, L. C. Guedes Valente, M. S. de Paula Gomes, H. Gomes da Silva, B. Caroli de Souza, and S. R. K. Morikawa, “All-fiber CO2 sensor using hollow core PCF operating in the 2 μm region,” Sensors Basel, Switzerland, vol. 18, no. 12, 2018, Art. no. .

Guedes Valente, L. C.

S. M. Mejia Quintero, L. C. Guedes Valente, M. S. de Paula Gomes, H. Gomes da Silva, B. Caroli de Souza, and S. R. K. Morikawa, “All-fiber CO2 sensor using hollow core PCF operating in the 2 μm region,” Sensors Basel, Switzerland, vol. 18, no. 12, 2018, Art. no. .

Gupta, V. B.

A. Shrivastava and V. B. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Scientists, vol. 2, no. 1, pp. 15–21, 2011.

Hao, F.

L. Liu, F. Hao, S. P. Morgan, R. Correia, A. Norris, and S. Korposh, “A reflection-mode fibre-optic sensor for breath carbon dioxide measurement in healthcare,” Sens. Bio-Sens. Res., vol. 22, 2019, Art. no. .

Hayes-Gill, B. R.

C. He, S. Korposh, R. Correia, B. R. Hayes-Gill, and S. P. Morgan, “Optical fibre temperature sensor based on thermochromic liquid crystal,” Proc. SPIE, vol. 11199, 2019, Art. no. 1119908.

He, C.

C. He, S. Korposh, R. Correia, B. R. Hayes-Gill, and S. P. Morgan, “Optical fibre temperature sensor based on thermochromic liquid crystal,” Proc. SPIE, vol. 11199, 2019, Art. no. 1119908.

Hromadka, J.

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1,” Sensors Actuators B, Chem., vol. 255, pp. 2483–2494, 2018.

J. Hromadka, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensors Actuators B, Chem., vol. 244, pp. 217–225, 2017.

Inoue, H.

S. Takagi, M. Eguchi, D. A. Tryk, and H. Inoue, “Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials,” J. Photochemi. Photobiol. C, Photochemistry Rev., vol. 7, no. 2, pp. 104–126, 2006.

James, S.

R. Correia, S. James, S. Lee, S. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt., vol. 20, no. 7, 2018, Art. no. .

James, S. W.

S. Korposh, S. Kodaira, W. Batty, S. W. James, and S.-W. Lee, “Nanoassembled thin-film gas sensor II. An intrinsic highly sensitive fibre-optic sensor for ammonia detection,” Sensors Mater., vol. 21, no. 4, pp. 179–189, 2009.

Johnstone, W.

G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A, Pure Appl. Opt., vol. 5, no. 5, 2003, Art. no. .

Jones, B. E.

A. Kharaz and B. E. Jones, “A distributed optical-fibre sensing system for multi-point humidity measurement,” Sensors Actuators A, Phys., vol. 47, no. 1, pp. 491–493, 1995.

Khalaf, A. L.

A. L. Khalaf, “Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite,” Opt. Mater. Exp., vol. 7, no. 6, pp. 1858–1870, 2017.

Kharaz, A.

A. Kharaz and B. E. Jones, “A distributed optical-fibre sensing system for multi-point humidity measurement,” Sensors Actuators A, Phys., vol. 47, no. 1, pp. 491–493, 1995.

Knoche, W.

W. Knoche, Chemical Reactions of CO2 in Water, Berlin, Germany: Springer, 1980, pp. 3–11.

Kodaira, S.

S. Korposh, S. Kodaira, W. Batty, S. W. James, and S.-W. Lee, “Nanoassembled thin-film gas sensor II. An intrinsic highly sensitive fibre-optic sensor for ammonia detection,” Sensors Mater., vol. 21, no. 4, pp. 179–189, 2009.

Korposh, S.

L. Liu, F. Hao, S. P. Morgan, R. Correia, A. Norris, and S. Korposh, “A reflection-mode fibre-optic sensor for breath carbon dioxide measurement in healthcare,” Sens. Bio-Sens. Res., vol. 22, 2019, Art. no. .

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1,” Sensors Actuators B, Chem., vol. 255, pp. 2483–2494, 2018.

R. Correia, S. James, S. Lee, S. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt., vol. 20, no. 7, 2018, Art. no. .

R. Selyanchyn, S. Korposh, W. Yasukochi, and S.-W. Lee, “A preliminary test for skin gas assessment using a porphyrin based evanescent wave optical fiber sensor,” Sensors Transducers, vol. 125, no. 2, pp. 54–67, 2011.

S. Korposh, S. Kodaira, W. Batty, S. W. James, and S.-W. Lee, “Nanoassembled thin-film gas sensor II. An intrinsic highly sensitive fibre-optic sensor for ammonia detection,” Sensors Mater., vol. 21, no. 4, pp. 179–189, 2009.

C. He, S. Korposh, R. Correia, B. R. Hayes-Gill, and S. P. Morgan, “Optical fibre temperature sensor based on thermochromic liquid crystal,” Proc. SPIE, vol. 11199, 2019, Art. no. 1119908.

Kronenberg, P.

Kuipers, E. J.

J. G. Kusters, A. H. van Vliet, and E. J. Kuipers, “Pathogenesis of Helicobacter pylori infection,” Clin. Microbiol. Rev., vol. 19, no. 3, pp. 449–490, 2006.

Kuncová, G.

M. Pospíšilová, G. Kuncová, and J. Trögl, “Fiber-optic chemical sensors and fiber-optic bio-sensors,” Sensors, vol. 15, no. 10, pp. 25 208–25 259, 2015.

Kunitake, T.

K. Ariga, Y. Lvov, and T. Kunitake, “Assembling alternate dye−polyion molecular films by electrostatic layer-by-layer adsorption,” J. Amer. Chem. Soc., vol. 119, no. 9, pp. 2224–2231, 1997.

Kusters, J. G.

J. G. Kusters, A. H. van Vliet, and E. J. Kuipers, “Pathogenesis of Helicobacter pylori infection,” Clin. Microbiol. Rev., vol. 19, no. 3, pp. 449–490, 2006.

Ledochowski, M.

A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrometry, vol. 239, no. 2–3, pp. 227–233, 2004.

Lee, S.

R. Correia, S. James, S. Lee, S. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt., vol. 20, no. 7, 2018, Art. no. .

Lee, S.-W.

R. Selyanchyn, S. Korposh, W. Yasukochi, and S.-W. Lee, “A preliminary test for skin gas assessment using a porphyrin based evanescent wave optical fiber sensor,” Sensors Transducers, vol. 125, no. 2, pp. 54–67, 2011.

S. Korposh, S. Kodaira, W. Batty, S. W. James, and S.-W. Lee, “Nanoassembled thin-film gas sensor II. An intrinsic highly sensitive fibre-optic sensor for ammonia detection,” Sensors Mater., vol. 21, no. 4, pp. 179–189, 2009.

Li, L.

L. Li and D. R. Walt, “Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen,” Analytical Chem., vol. 67, no. 20, pp. 3746–3752, 1995.

Limberger, H. G.

Lipinski, S.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

Liu, L.

L. Liu, F. Hao, S. P. Morgan, R. Correia, A. Norris, and S. Korposh, “A reflection-mode fibre-optic sensor for breath carbon dioxide measurement in healthcare,” Sens. Bio-Sens. Res., vol. 22, 2019, Art. no. .

L. Liu, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sensors Actuators B, Chem., vol. 271, pp. 24–32, 2018.

Llados, F.

N. Roney and F. Llados, “Toxicological profile for ammonia,” Agency for Toxic Substances and Disease Registry, Syracuse Research Corp., U.S. Dept. Health Human Services, Atlanta, GA, 2004.

Lourenço, C.

C. Lourenço and C. Turner, “Breath analysis in disease diagnosis: Methodological considerations and applications,” Metabolites, vol. 4, no. 2, pp. 465–498, 2014.

Lvov, Y.

K. Ariga, Y. Lvov, and T. Kunitake, “Assembling alternate dye−polyion molecular films by electrostatic layer-by-layer adsorption,” J. Amer. Chem. Soc., vol. 119, no. 9, pp. 2224–2231, 1997.

Maierhofer, M.

M. Maierhofer, S. M. Borisov, and T. Mayr, “Optical ammonia sensor for continuous bioprocess monitoring,” Proceedings, vol. 2, no. 13, 2018, Art. no. .

Matías, I.

A. Rodríguez, C. Zamarreño, I. Matías, F. Arregui, R. Cruz, and D. May-Arrioja, “A fiber optic ammonia sensor using a universal pH indicator,” Sensors, vol. 14, no. 3, pp. 4060–4073, 2014.

May-Arrioja, D.

A. Rodríguez, C. Zamarreño, I. Matías, F. Arregui, R. Cruz, and D. May-Arrioja, “A fiber optic ammonia sensor using a universal pH indicator,” Sensors, vol. 14, no. 3, pp. 4060–4073, 2014.

Mayr, T.

M. Maierhofer, S. M. Borisov, and T. Mayr, “Optical ammonia sensor for continuous bioprocess monitoring,” Proceedings, vol. 2, no. 13, 2018, Art. no. .

McManus, J. B.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. R. Sama, and D. K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy,” J. Breath Res., vol. 5, no. 3, 2011, Art. no. (in English).

Mechtcheriakov, S.

A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrometry, vol. 239, no. 2–3, pp. 227–233, 2004.

Mejia Quintero, S. M.

S. M. Mejia Quintero, L. C. Guedes Valente, M. S. de Paula Gomes, H. Gomes da Silva, B. Caroli de Souza, and S. R. K. Morikawa, “All-fiber CO2 sensor using hollow core PCF operating in the 2 μm region,” Sensors Basel, Switzerland, vol. 18, no. 12, 2018, Art. no. .

Milton, D. K.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. R. Sama, and D. K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy,” J. Breath Res., vol. 5, no. 3, 2011, Art. no. (in English).

Monro, T. M.

B. Sciacca and T. M. Monro, “Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber,” Langmuir, vol. 30, no. 3, pp. 946–954, 2014.

Morgan, S.

R. Correia, S. James, S. Lee, S. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt., vol. 20, no. 7, 2018, Art. no. .

Morgan, S. P.

L. Liu, F. Hao, S. P. Morgan, R. Correia, A. Norris, and S. Korposh, “A reflection-mode fibre-optic sensor for breath carbon dioxide measurement in healthcare,” Sens. Bio-Sens. Res., vol. 22, 2019, Art. no. .

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1,” Sensors Actuators B, Chem., vol. 255, pp. 2483–2494, 2018.

C. He, S. Korposh, R. Correia, B. R. Hayes-Gill, and S. P. Morgan, “Optical fibre temperature sensor based on thermochromic liquid crystal,” Proc. SPIE, vol. 11199, 2019, Art. no. 1119908.

Morikawa, S. R. K.

S. M. Mejia Quintero, L. C. Guedes Valente, M. S. de Paula Gomes, H. Gomes da Silva, B. Caroli de Souza, and S. R. K. Morikawa, “All-fiber CO2 sensor using hollow core PCF operating in the 2 μm region,” Sensors Basel, Switzerland, vol. 18, no. 12, 2018, Art. no. .

Napierala, M.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

Nasilowski, T.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

Nelson, D. D.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. R. Sama, and D. K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy,” J. Breath Res., vol. 5, no. 3, 2011, Art. no. (in English).

Norris, A.

L. Liu, F. Hao, S. P. Morgan, R. Correia, A. Norris, and S. Korposh, “A reflection-mode fibre-optic sensor for breath carbon dioxide measurement in healthcare,” Sens. Bio-Sens. Res., vol. 22, 2019, Art. no. .

Pospíšilová, M.

M. Pospíšilová, G. Kuncová, and J. Trögl, “Fiber-optic chemical sensors and fiber-optic bio-sensors,” Sensors, vol. 15, no. 10, pp. 25 208–25 259, 2015.

Poupart, G.

A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrometry, vol. 239, no. 2–3, pp. 227–233, 2004.

Rastogi, P. K.

Rodríguez, A.

A. Rodríguez, C. Zamarreño, I. Matías, F. Arregui, R. Cruz, and D. May-Arrioja, “A fiber optic ammonia sensor using a universal pH indicator,” Sensors, vol. 14, no. 3, pp. 4060–4073, 2014.

Roney, N.

N. Roney and F. Llados, “Toxicological profile for ammonia,” Agency for Toxic Substances and Disease Registry, Syracuse Research Corp., U.S. Dept. Health Human Services, Atlanta, GA, 2004.

Sama, S. R.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. R. Sama, and D. K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy,” J. Breath Res., vol. 5, no. 3, 2011, Art. no. (in English).

Schmid, A.

A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrometry, vol. 239, no. 2–3, pp. 227–233, 2004.

Sciacca, B.

B. Sciacca and T. M. Monro, “Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber,” Langmuir, vol. 30, no. 3, pp. 946–954, 2014.

Selyanchyn, R.

R. Selyanchyn, S. Korposh, W. Yasukochi, and S.-W. Lee, “A preliminary test for skin gas assessment using a porphyrin based evanescent wave optical fiber sensor,” Sensors Transducers, vol. 125, no. 2, pp. 54–67, 2011.

Shorter, J. H.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. R. Sama, and D. K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy,” J. Breath Res., vol. 5, no. 3, 2011, Art. no. (in English).

Shrivastava, A.

A. Shrivastava and V. B. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Scientists, vol. 2, no. 1, pp. 15–21, 2011.

Singh, B.

C. Charavaryamath and B. Singh, “Pulmonary effects of exposure to pig barnair,” J. Occupational Med. Toxicol., vol. 1, no. 1, 2006, Art. no. .

Smith, D.

S. Davies, P. Spanel, and D. Smith, “Quantitative analysis of ammonia on the breath of patients in end-stage renal failure,” Kidney Int., vol. 52, no. 1, pp. 223–228, 1997.

Spanel, P.

S. Davies, P. Spanel, and D. Smith, “Quantitative analysis of ammonia on the breath of patients in end-stage renal failure,” Kidney Int., vol. 52, no. 1, pp. 223–228, 1997.

Stanczyk, T.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

Stewart, G.

G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A, Pure Appl. Opt., vol. 5, no. 5, 2003, Art. no. .

Takagi, S.

S. Takagi, M. Eguchi, D. A. Tryk, and H. Inoue, “Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials,” J. Photochemi. Photobiol. C, Photochemistry Rev., vol. 7, no. 2, pp. 104–126, 2006.

Telser, S.

A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrometry, vol. 239, no. 2–3, pp. 227–233, 2004.

Thompson, R. B.

R. B. Thompson, “Fluorescence-based fiber-optic sensors,” in Topics in Fluorescence Spectroscopy: Principles, J. R. Lakowicz, Ed. Boston, MA, USA: Springer, 2002, pp. 345–365.

Tokay, B.

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1,” Sensors Actuators B, Chem., vol. 255, pp. 2483–2494, 2018.

Trögl, J.

M. Pospíšilová, G. Kuncová, and J. Trögl, “Fiber-optic chemical sensors and fiber-optic bio-sensors,” Sensors, vol. 15, no. 10, pp. 25 208–25 259, 2015.

Tryk, D. A.

S. Takagi, M. Eguchi, D. A. Tryk, and H. Inoue, “Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials,” J. Photochemi. Photobiol. C, Photochemistry Rev., vol. 7, no. 2, pp. 104–126, 2006.

Turner, C.

C. Lourenço and C. Turner, “Breath analysis in disease diagnosis: Methodological considerations and applications,” Metabolites, vol. 4, no. 2, pp. 465–498, 2014.

Uttamlal, M.

M. Uttamlal and D. R. Walt, “A fiber-optic carbon dioxide sensor for fermentation monitoring,” Bio/Technol., vol. 13, no. 6, pp. 597–601, 1995.

van Vliet, A. H.

J. G. Kusters, A. H. van Vliet, and E. J. Kuipers, “Pathogenesis of Helicobacter pylori infection,” Clin. Microbiol. Rev., vol. 19, no. 3, pp. 449–490, 2006.

Walt, D. R.

M. Uttamlal and D. R. Walt, “A fiber-optic carbon dioxide sensor for fermentation monitoring,” Bio/Technol., vol. 13, no. 6, pp. 597–601, 1995.

L. Li and D. R. Walt, “Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen,” Analytical Chem., vol. 67, no. 20, pp. 3746–3752, 1995.

Whitenett, G.

G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A, Pure Appl. Opt., vol. 5, no. 5, 2003, Art. no. .

Wysokinski, K.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

Yasukochi, W.

R. Selyanchyn, S. Korposh, W. Yasukochi, and S.-W. Lee, “A preliminary test for skin gas assessment using a porphyrin based evanescent wave optical fiber sensor,” Sensors Transducers, vol. 125, no. 2, pp. 54–67, 2011.

Zahniser, M. S.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. R. Sama, and D. K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy,” J. Breath Res., vol. 5, no. 3, 2011, Art. no. (in English).

Zamarreño, C.

A. Rodríguez, C. Zamarreño, I. Matías, F. Arregui, R. Cruz, and D. May-Arrioja, “A fiber optic ammonia sensor using a universal pH indicator,” Sensors, vol. 14, no. 3, pp. 4060–4073, 2014.

Amer. J. Veterinary Res. (1)

K. J. Donham, “Association of environmental air contaminants with disease and productivity in swine,” Amer. J. Veterinary Res., vol. 52, no. 10, pp. 1723–1730, 1991.

Analytical Chem. (1)

L. Li and D. R. Walt, “Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen,” Analytical Chem., vol. 67, no. 20, pp. 3746–3752, 1995.

Bio/Technol. (1)

M. Uttamlal and D. R. Walt, “A fiber-optic carbon dioxide sensor for fermentation monitoring,” Bio/Technol., vol. 13, no. 6, pp. 597–601, 1995.

Chronicles Young Scientists (1)

A. Shrivastava and V. B. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Scientists, vol. 2, no. 1, pp. 15–21, 2011.

Clin. Microbiol. Rev. (1)

J. G. Kusters, A. H. van Vliet, and E. J. Kuipers, “Pathogenesis of Helicobacter pylori infection,” Clin. Microbiol. Rev., vol. 19, no. 3, pp. 449–490, 2006.

Crit. Rev. Analytical Chem. (1)

W. Cao and Y. Duan, “Current status of methods and techniques for breath analysis,” Crit. Rev. Analytical Chem., vol. 37, no. 1, pp. 3–13, 2007.

Int. J. Mass Spectrometry (1)

A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, “Applications of breath gas analysis in medicine,” Int. J. Mass Spectrometry, vol. 239, no. 2–3, pp. 227–233, 2004.

J. Amer. Chem. Soc. (1)

K. Ariga, Y. Lvov, and T. Kunitake, “Assembling alternate dye−polyion molecular films by electrostatic layer-by-layer adsorption,” J. Amer. Chem. Soc., vol. 119, no. 9, pp. 2224–2231, 1997.

J. Breath Res. (1)

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. R. Sama, and D. K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy,” J. Breath Res., vol. 5, no. 3, 2011, Art. no. (in English).

J. Occupational Med. Toxicol. (1)

C. Charavaryamath and B. Singh, “Pulmonary effects of exposure to pig barnair,” J. Occupational Med. Toxicol., vol. 1, no. 1, 2006, Art. no. .

J. Opt. (1)

R. Correia, S. James, S. Lee, S. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt., vol. 20, no. 7, 2018, Art. no. .

J. Opt. A, Pure Appl. Opt. (1)

G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, and W. Johnstone, “Optical fibre instrumentation for environmental monitoring applications,” J. Opt. A, Pure Appl. Opt., vol. 5, no. 5, 2003, Art. no. .

J. Photochemi. Photobiol. C, Photochemistry Rev. (1)

S. Takagi, M. Eguchi, D. A. Tryk, and H. Inoue, “Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials,” J. Photochemi. Photobiol. C, Photochemistry Rev., vol. 7, no. 2, pp. 104–126, 2006.

Kidney Int. (1)

S. Davies, P. Spanel, and D. Smith, “Quantitative analysis of ammonia on the breath of patients in end-stage renal failure,” Kidney Int., vol. 52, no. 1, pp. 223–228, 1997.

Langmuir (1)

B. Sciacca and T. M. Monro, “Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber,” Langmuir, vol. 30, no. 3, pp. 946–954, 2014.

Metabolites (1)

C. Lourenço and C. Turner, “Breath analysis in disease diagnosis: Methodological considerations and applications,” Metabolites, vol. 4, no. 2, pp. 465–498, 2014.

Opt. Lett. (1)

Opt. Mater. Exp. (1)

A. L. Khalaf, “Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite,” Opt. Mater. Exp., vol. 7, no. 6, pp. 1858–1870, 2017.

Proceedings (1)

M. Maierhofer, S. M. Borisov, and T. Mayr, “Optical ammonia sensor for continuous bioprocess monitoring,” Proceedings, vol. 2, no. 13, 2018, Art. no. .

Sens. Bio-Sens. Res. (1)

L. Liu, F. Hao, S. P. Morgan, R. Correia, A. Norris, and S. Korposh, “A reflection-mode fibre-optic sensor for breath carbon dioxide measurement in healthcare,” Sens. Bio-Sens. Res., vol. 22, 2019, Art. no. .

Sensors (5)

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

A. Rodríguez, C. Zamarreño, I. Matías, F. Arregui, R. Cruz, and D. May-Arrioja, “A fiber optic ammonia sensor using a universal pH indicator,” Sensors, vol. 14, no. 3, pp. 4060–4073, 2014.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors, vol. 15, no. 12, pp. 31888–31903, 2015.

S. M. Mejia Quintero, L. C. Guedes Valente, M. S. de Paula Gomes, H. Gomes da Silva, B. Caroli de Souza, and S. R. K. Morikawa, “All-fiber CO2 sensor using hollow core PCF operating in the 2 μm region,” Sensors Basel, Switzerland, vol. 18, no. 12, 2018, Art. no. .

M. Pospíšilová, G. Kuncová, and J. Trögl, “Fiber-optic chemical sensors and fiber-optic bio-sensors,” Sensors, vol. 15, no. 10, pp. 25 208–25 259, 2015.

Sensors Actuators A, Phys. (1)

A. Kharaz and B. E. Jones, “A distributed optical-fibre sensing system for multi-point humidity measurement,” Sensors Actuators A, Phys., vol. 47, no. 1, pp. 491–493, 1995.

Sensors Actuators B, Chem. (4)

J. Hromadka, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensors Actuators B, Chem., vol. 244, pp. 217–225, 2017.

L. Liu, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sensors Actuators B, Chem., vol. 271, pp. 24–32, 2018.

J. Hromadka, B. Tokay, R. Correia, S. P. Morgan, and S. Korposh, “Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1,” Sensors Actuators B, Chem., vol. 255, pp. 2483–2494, 2018.

W. Cao and Y. Duan, “Optical fiber-based evanescent ammonia sensor,” Sensors Actuators B, Chem., vol. 110, no. 2, pp. 252–259, 2005.

Sensors Mater. (1)

S. Korposh, S. Kodaira, W. Batty, S. W. James, and S.-W. Lee, “Nanoassembled thin-film gas sensor II. An intrinsic highly sensitive fibre-optic sensor for ammonia detection,” Sensors Mater., vol. 21, no. 4, pp. 179–189, 2009.

Sensors Transducers (1)

R. Selyanchyn, S. Korposh, W. Yasukochi, and S.-W. Lee, “A preliminary test for skin gas assessment using a porphyrin based evanescent wave optical fiber sensor,” Sensors Transducers, vol. 125, no. 2, pp. 54–67, 2011.

Other (4)

C. He, S. Korposh, R. Correia, B. R. Hayes-Gill, and S. P. Morgan, “Optical fibre temperature sensor based on thermochromic liquid crystal,” Proc. SPIE, vol. 11199, 2019, Art. no. 1119908.

W. Knoche, Chemical Reactions of CO2 in Water, Berlin, Germany: Springer, 1980, pp. 3–11.

N. Roney and F. Llados, “Toxicological profile for ammonia,” Agency for Toxic Substances and Disease Registry, Syracuse Research Corp., U.S. Dept. Health Human Services, Atlanta, GA, 2004.

R. B. Thompson, “Fluorescence-based fiber-optic sensors,” in Topics in Fluorescence Spectroscopy: Principles, J. R. Lakowicz, Ed. Boston, MA, USA: Springer, 2002, pp. 345–365.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.