Abstract

Critical coupling control is an important concept used in integrated photonics to obtain functionalities such as single and coupled resonator optical filters and wavelength multiplexers. Realization of critical coupling depends strongly on device fabrication, and reproducibility is therefore an ongoing challenge. Post-fabrication trimming offers a solution for achieving optimal performance for individual devices. Ion implantation into silicon causes crystalline lattice damage which results in an increase of the material's refractive index and therefore creates a platform for realization of various optical devices. In recent years, we have presented results on the development of erasable gratings, optical filters and Mach–Zehnder interferometers using ion implantation of germanium into silicon. Here, we report the design, fabrication and testing of silicon-on-insulator racetrack resonators, trimmed by localised annealing of germanium ion implanted silicon using continuous and pulsed wave laser sources. The results demonstrate the ability to permanently tune the critical coupling condition of racetrack resonators. Compared to the pulsed lasers used for annealing, continuous wave lasers revealed much higher extinction ratio due to improved material quality after silicon recrystallization.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Topley, L. O'Faolain, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “Planar surface implanted diffractive grating couplers in SOI,” Opt. Express, vol. 22, pp. 1077–1084, 2014.
  2. R. Topley, “Locally erasable couplers for optical device testing in silicon on insulator,” J. Lightw. Technol., vol. 32, no. 12, pp. 2248–2253, 2014.
  3. M. M. Milosevic, “Athermal waveguides for optical communication wavelengths,” Opt. Lett., vol. 36, no. 23, pp. 4659–4651, 2011.
  4. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon., vol. 4, pp. 518–526, 2010.
  5. K. Padmaraj and K. Bergman, “Resolving thermal challenges for silicon microring resonator devices,” Nanophotonics, vol. 3, no. 4-5, pp. 269–281, 2014.
  6. L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica, vol. 3, no. 2, pp. 159–166, 2016.
  7. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express, vol. 16, pp. 3738–3743, 2008.
  8. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett., vol. 37, pp. 3114–3116, 2012.
  9. S. Spector, J. M. Knecht, and P. W. Juodawlkis, “Localised in situ cladding annealing for post-fabrication trimming of silicon photonic integrated circuits,” Opt. Express, vol. 24, no. 6, pp. 5996–6003, 2016.
  10. D. E. Hagan, B. Torres-Kulik, and A. P. Knights, “Post-fabrication trimming of silicon ring resonators via integrated annealing,” IEEE Photon. Techol. Lett., vol. 31, no. 16, pp. 1373–1376, 2019.
  11. X. Chen, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE, vol. 106, no. 12, pp. 2101–2116, 2018.
  12. J. J. Ackert, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express, vol. 19, no. 13, pp. 11970–11976, 2011.
  13. M. M. Milosevic, “Ion implantation in silicon for trimming the operating wavelength of ring resonators,” IEEE J Sel. Topics Quantum Electron., vol. 24, no. 4, 2018, Art. no. .
  14. X. Chen, “Post-fabrication phase trimming of mach-zehnder interferometers by laser annealing of germanium implanted waveguides,” Photon. Res., vol. 5, no. 6, pp. 578–582, 2017.
  15. B. Chen, “Real-time monitoring and gradient feedback enable accurate trimming of ion-implanted silicon photonic devices,” Opt. Express, vol. 26, no. 19, pp. 24953–24963, 2018.
  16. X. Chen, “Towards an optical FPGA - Programmable silicon photonic circuits,” 2018, arXiv:1807.01656.
  17. W. Bogaerts, “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012.
  18. [Online]. Available: www.lumerical.com, Accessed: Jan. 27, 2020.
  19. N. Healy, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater., vol. 13, pp. 1122–1127, 2014.
  20. A. Li, T. V. Vaerenbergh, P. D. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: A quantitative analysis,” Laser Photon. Rev., vol. 10, no. 3, pp. 420–431, 2016.

2019 (1)

D. E. Hagan, B. Torres-Kulik, and A. P. Knights, “Post-fabrication trimming of silicon ring resonators via integrated annealing,” IEEE Photon. Techol. Lett., vol. 31, no. 16, pp. 1373–1376, 2019.

2018 (4)

X. Chen, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE, vol. 106, no. 12, pp. 2101–2116, 2018.

M. M. Milosevic, “Ion implantation in silicon for trimming the operating wavelength of ring resonators,” IEEE J Sel. Topics Quantum Electron., vol. 24, no. 4, 2018, Art. no. .

B. Chen, “Real-time monitoring and gradient feedback enable accurate trimming of ion-implanted silicon photonic devices,” Opt. Express, vol. 26, no. 19, pp. 24953–24963, 2018.

X. Chen, “Towards an optical FPGA - Programmable silicon photonic circuits,” 2018, arXiv:1807.01656.

2017 (1)

2016 (3)

2014 (4)

K. Padmaraj and K. Bergman, “Resolving thermal challenges for silicon microring resonator devices,” Nanophotonics, vol. 3, no. 4-5, pp. 269–281, 2014.

R. Topley, L. O'Faolain, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “Planar surface implanted diffractive grating couplers in SOI,” Opt. Express, vol. 22, pp. 1077–1084, 2014.

R. Topley, “Locally erasable couplers for optical device testing in silicon on insulator,” J. Lightw. Technol., vol. 32, no. 12, pp. 2248–2253, 2014.

N. Healy, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater., vol. 13, pp. 1122–1127, 2014.

2012 (2)

2011 (2)

M. M. Milosevic, “Athermal waveguides for optical communication wavelengths,” Opt. Lett., vol. 36, no. 23, pp. 4659–4651, 2011.

J. J. Ackert, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express, vol. 19, no. 13, pp. 11970–11976, 2011.

2010 (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon., vol. 4, pp. 518–526, 2010.

2008 (1)

Ackert, J. J.

J. J. Ackert, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express, vol. 19, no. 13, pp. 11970–11976, 2011.

Baets, R.

Bergman, K.

K. Padmaraj and K. Bergman, “Resolving thermal challenges for silicon microring resonator devices,” Nanophotonics, vol. 3, no. 4-5, pp. 269–281, 2014.

Bienstman, P.

A. Li, T. V. Vaerenbergh, P. D. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: A quantitative analysis,” Laser Photon. Rev., vol. 10, no. 3, pp. 420–431, 2016.

Bogaerts, W.

A. Li, T. V. Vaerenbergh, P. D. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: A quantitative analysis,” Laser Photon. Rev., vol. 10, no. 3, pp. 420–431, 2016.

W. Bogaerts, “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012.

Chen, B.

Chen, X.

X. Chen, “Towards an optical FPGA - Programmable silicon photonic circuits,” 2018, arXiv:1807.01656.

X. Chen, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE, vol. 106, no. 12, pp. 2101–2116, 2018.

X. Chen, “Post-fabrication phase trimming of mach-zehnder interferometers by laser annealing of germanium implanted waveguides,” Photon. Res., vol. 5, no. 6, pp. 578–582, 2017.

Dai, D.

Eich, M.

Gardes, F. Y.

R. Topley, L. O'Faolain, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “Planar surface implanted diffractive grating couplers in SOI,” Opt. Express, vol. 22, pp. 1077–1084, 2014.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon., vol. 4, pp. 518–526, 2010.

Hagan, D. E.

D. E. Hagan, B. Torres-Kulik, and A. P. Knights, “Post-fabrication trimming of silicon ring resonators via integrated annealing,” IEEE Photon. Techol. Lett., vol. 31, no. 16, pp. 1373–1376, 2019.

He, S.

Healy, N.

N. Healy, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater., vol. 13, pp. 1122–1127, 2014.

Heyn, P. D.

A. Li, T. V. Vaerenbergh, P. D. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: A quantitative analysis,” Laser Photon. Rev., vol. 10, no. 3, pp. 420–431, 2016.

Jen, A. K.-Y.

Juodawlkis, P. W.

Knecht, J. M.

Knights, A. P.

D. E. Hagan, B. Torres-Kulik, and A. P. Knights, “Post-fabrication trimming of silicon ring resonators via integrated annealing,” IEEE Photon. Techol. Lett., vol. 31, no. 16, pp. 1373–1376, 2019.

Li, A.

A. Li, T. V. Vaerenbergh, P. D. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: A quantitative analysis,” Laser Photon. Rev., vol. 10, no. 3, pp. 420–431, 2016.

Luo, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon., vol. 4, pp. 518–526, 2010.

Mashanovich, G. Z.

Milosevic, M. M.

M. M. Milosevic, “Ion implantation in silicon for trimming the operating wavelength of ring resonators,” IEEE J Sel. Topics Quantum Electron., vol. 24, no. 4, 2018, Art. no. .

M. M. Milosevic, “Athermal waveguides for optical communication wavelengths,” Opt. Lett., vol. 36, no. 23, pp. 4659–4651, 2011.

O'Faolain, L.

Padmaraj, K.

K. Padmaraj and K. Bergman, “Resolving thermal challenges for silicon microring resonator devices,” Nanophotonics, vol. 3, no. 4-5, pp. 269–281, 2014.

Petrov, A. Y.

Prorok, S.

Reed, G. T.

R. Topley, L. O'Faolain, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “Planar surface implanted diffractive grating couplers in SOI,” Opt. Express, vol. 22, pp. 1077–1084, 2014.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon., vol. 4, pp. 518–526, 2010.

Schrauwen, J.

Shi, Y.

Spector, S.

Thomson, D. J.

R. Topley, L. O'Faolain, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “Planar surface implanted diffractive grating couplers in SOI,” Opt. Express, vol. 22, pp. 1077–1084, 2014.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon., vol. 4, pp. 518–526, 2010.

Topley, R.

R. Topley, L. O'Faolain, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “Planar surface implanted diffractive grating couplers in SOI,” Opt. Express, vol. 22, pp. 1077–1084, 2014.

R. Topley, “Locally erasable couplers for optical device testing in silicon on insulator,” J. Lightw. Technol., vol. 32, no. 12, pp. 2248–2253, 2014.

Torres-Kulik, B.

D. E. Hagan, B. Torres-Kulik, and A. P. Knights, “Post-fabrication trimming of silicon ring resonators via integrated annealing,” IEEE Photon. Techol. Lett., vol. 31, no. 16, pp. 1373–1376, 2019.

Vaerenbergh, T. V.

A. Li, T. V. Vaerenbergh, P. D. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: A quantitative analysis,” Laser Photon. Rev., vol. 10, no. 3, pp. 420–431, 2016.

Van Thourhout, D.

Yin, Y.

Yu, L.

IEEE J Sel. Topics Quantum Electron. (1)

M. M. Milosevic, “Ion implantation in silicon for trimming the operating wavelength of ring resonators,” IEEE J Sel. Topics Quantum Electron., vol. 24, no. 4, 2018, Art. no. .

IEEE Photon. Techol. Lett. (1)

D. E. Hagan, B. Torres-Kulik, and A. P. Knights, “Post-fabrication trimming of silicon ring resonators via integrated annealing,” IEEE Photon. Techol. Lett., vol. 31, no. 16, pp. 1373–1376, 2019.

J. Lightw. Technol. (1)

R. Topley, “Locally erasable couplers for optical device testing in silicon on insulator,” J. Lightw. Technol., vol. 32, no. 12, pp. 2248–2253, 2014.

Laser Photon. Rev. (2)

A. Li, T. V. Vaerenbergh, P. D. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: A quantitative analysis,” Laser Photon. Rev., vol. 10, no. 3, pp. 420–431, 2016.

W. Bogaerts, “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012.

Nanophotonics (1)

K. Padmaraj and K. Bergman, “Resolving thermal challenges for silicon microring resonator devices,” Nanophotonics, vol. 3, no. 4-5, pp. 269–281, 2014.

Nat. Mater. (1)

N. Healy, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater., vol. 13, pp. 1122–1127, 2014.

Nat. Photon. (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon., vol. 4, pp. 518–526, 2010.

Opt. Express (5)

Opt. Lett. (2)

Optica (1)

Photon. Res. (1)

Proc. IEEE (1)

X. Chen, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE, vol. 106, no. 12, pp. 2101–2116, 2018.

Other (2)

X. Chen, “Towards an optical FPGA - Programmable silicon photonic circuits,” 2018, arXiv:1807.01656.

[Online]. Available: www.lumerical.com, Accessed: Jan. 27, 2020.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.