Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 23,
  • pp. 6465-6473
  • (2020)

Experimental Demonstration of Nonlinear Frequency Division Multiplexing Transmission With Neural Network Receiver

Not Accessible

Your library or personal account may give you access

Abstract

Nonlinear frequency division multiplexing (NFDM) communication systems that are based on the nonlinear Fourier transform (NFT), have seen a rapid improvement in performance and transmission reach over just a few years. However, such an improvement is now being slowed down by fundamental challenges such as fiber loss and noise. As the NFT theory is defined over a lossless transmission fiber, a strong research focus has been dedicated to either improve the lossless assumption for practical fibers, by adapting the theory to approximately account for the fiber loss, or by devising encoding schemes that increase the robustness of the NFT to the fiber attenuation. However, the proposed solutions provide only minimal benefits to the system performance, especially for long fiber spans as in deployed links. Alternatively, a detection strategy based on replacing a conventional NFT receiver with a time-domain Neural network (NN)-based symbol decisor has been numerically proposed. Here, we extend such an idea by validating it experimentally. In order to apply the method in an experimental environment, the impact of phase noise, and receiver frequency offset needs to be addressed. We, therefore, propose a novel time-domain receiver architecture that combines a two-stage iterative carrier recovery with a NN-based symbol decisor. The carrier recovery, itself based on a NN for phase estimation, is numerically, and experimentally characterized. The proposed receiver has been evaluated for single-polarization two-eigenvalue transmission at 1 GBd. A two-fold increase in the transmission reach is enabled by the NN receiver ( $\approx$ 1600 km) compared to a conventional NFT receiver ( $\approx$ 560 km) for a practical link using 80-km spaced erbium-doped fiber amplifier (EDFAs).

PDF Article
More Like This
Robust neural network receiver for multiple-eigenvalue modulated nonlinear frequency division multiplexing system

Yue Wu, Lixia Xi, Xulun Zhang, Zibo Zheng, Jiacheng Wei, Shucheng Du, Wenbo Zhang, and Xiaoguang Zhang
Opt. Express 28(12) 18304-18316 (2020)

Two-stage artificial neural network-based burst-subcarrier joint equalization in nonlinear frequency division multiplexing systems

Xinyu Chen, Hao Ming, Chenjia Li, Guangqiang He, and Fan Zhang
Opt. Lett. 46(7) 1700-1703 (2021)

Probabilistic shaping and neural network-based optimization for a nonlinear frequency division multiplexing system

Jiacheng Wei, Lixia Xi, Xulun Zhang, Jiayun Deng, Shucheng Du, Xiaoguang Zhang, Wenbo Zhang, and Xiaosheng Xiao
Opt. Lett. 46(15) 3697-3700 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.