Abstract

In this paper we focus on analyzing the accuracy of time transfer in bidirectional fiber optic links. It has been pointed out that one of the main uncertainty contributions in such links is related to insufficient stabilization of the lasers’ wavelengths and to the asymmetry of propagation caused by the fiber's chromatic dispersion. To reduce these contributions, we propose a scheme where the difference (offset) of the wavelengths of forward and backward lasers is stabilized and where optical interleavers are used as diplexers. This allows implementing a λ-swapping technique to assess dispersion-related link asymmetry during the link calibration. For the investigation of these approaches and the measurement of the associated stability we utilize a frequency-synchronized offset laser module (FSOLM) to realize an offset of 25 GHz. In this paper, we show that with the proposed λ-swapping technique the uncertainty associated with the propagation asymmetry due to fiber chromatic dispersion can be reduced to values below 2.5 ps for links up to 1000 km long, making it insignificant compared to other uncertainty contributions. A laboratory proof-of-concept experiment, in which distances up to 540 km were tested, showed good agreement between the measured and the anticipated propagation delay of investigated links.

PDF Article

References

  • View by:

  1. H. Esteban, J. Palacio, F. J. Galindo, T. Feldmann, A. Bauch, and D. Piester, “Improved GPS-based time link calibration involving ROA and PTB,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 57, no. 3, pp. 714–720,  2010.
  2. D. Valat and J. Delporte, “Absolute calibration of timing receiver chains at the nanosecond uncertainty level for GNSS time scales monitoring,” Metrologia, vol. 57, 2020, Art. no. .
  3. Z. Jiang, “Improving two-way satellite time and frequency transfer with redundant links for UTC generation,” Metrologia, vol. 56, 2019, Art. no. .
  4. M. Rost, “Time transfer through optical fibers over a distance of 73 km with an uncertainty below 100 ps,” Metrologia, vol. 49, pp. 772–778, 2012.
  5. Ł. Sliwczynski, “Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km,” Metrologia, vol. 50, pp. 133–145, 2013.
  6. J. Gersl, P. Delva, and P. Wolf, “Relativistic corrections for time and frequency transfer in optical fibers,” Metrologia, vol. 52, pp. 552–564, 2015.
  7. P. Krehlik, L. Sliwczyski, L. Buczek, J. Kolodziej, and M. Lipinski, “ELSTAB- fiber optic time and frequency distribution technology - A general characterization and fundamental limits,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 63, no. 7, pp. 993–1004,  2016.
  8. M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White rabbit: A PTP application for robust sub-nanosecond synchronization,” in Proc. 2011 IEEE Int. Symp. Preci. Cloc. Synchroniz. Meas., Contr. Commun., Munich, Germany, 2011, pp. 25–30.
  9. E. Dierikx, “White rabbit precision time protocol on long-distance fiber links,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 63, no. 7, pp. 945–952,  2016.
  10. T. Mehlstäubler, G. Grosche, Ch. Lisdat, P. Schmidt, and H. Denker, “Atomic clocks for Geodesy,” Rep. Prog. Phys., vol 81, 2018, Art. no. .
  11. Z. Jiang, A. Czubla, J. Nawrocki, W. Lewandowski, and E. F. Arias, “Comparing a GPS time link calibration with an optical fibre self-calibration with 200 ps accuracy,” Metrologia, vol. 52, pp. 384–391, 2015.
  12. J. Kodet, “Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability,” Metrologia, vol. 53, 2016, Art. no. .
  13. Ł. Śliwczyński, “Calibrated optical time transfer of UTC(k) for supervision of telecom networks,” Metrologia, vol. 56, 2019, Art. no. .
  14. Ł. Śliwczyński, “Fiber-based UTC dissemination supporting 5G telecommunications networks,” IEEE Commun. Mag., vol. 58, no. 4, pp. 67–73,  2020.
  15. J. Gutierrez-Rivas, J. Lopez-Jimenez, E. Ros, and J. Diaz, “White rabbit HSR: A seamless subnanosecond redundant timing system with low-latency data capabilities for the smart grid,” IEEE Trans. on Ind. Inform., vol. 14, no. 8, pp 3486–3494,  2018.
  16. J. Lopez-Jimenez, F. Torres-Gonzales, J. Gutierrez-Rivas, M. Rodriguez-Gonzales, and J. Diaz, “A fully programmable White-Rabbit node for the SKA telescope PPS distribution system,” IEEE Trans Instrum. Meas., vol. 68, no. 2, pp. 632–641,  2019.
  17. S. Schediwy, “The mid-frequency square kilometre array phase synchronisation system,” Publisher. Astronomical. Soc. Australia., vol. 36, 2019, Paper e007.
  18. C. de la Morena, “Fully digital and White Rabbit-synchronized low-level RF system for LIPAc,” IEEE Trans. Nucl. Sci., vol, 65, no. 1, pp. 514–522,  2018.
  19. NPLTime, National Physical Laboratory, U.K. [Online]. Available: https://www.npl.co.uk/npltime
  20. J. López-Jiménez, J. Gutiérrez-Rivas, E. Marín-López, M. Rodríguez-Álvarez, and J. Díaz, “Time as a service based on White Rabbit for finance applications,” IEEE Commun. Mag., vol. 58, no. 4, pp. 60–66, 2020.
  21. C. Gao, “Fiber-based multiple-access ultrastable frequency dissemination,” Opt. Lett., vol. 37, pp 4690–4692, 2012.
  22. S. M. F. Raupach and G. Grosche, “Chirped frequency transfer: A tool for synchronization and time transfer,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 61, no. 6, pp. 920–929,  2014.
  23. O. Lopez, “Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network,” Appl. Phys. B, vol. 110, no. 1, pp. 3–6, 2013.
  24. P. Krehlik, H. Schnatz, and Ł. Śliwczyński, “A hybrid solution for simultaneous transfer of ultrastable optical frequency, RF frequency and UTC time-tags over optical fiber,” IEEE Trans. Ultrason. Ferroel. Freq. Contr., vol. 64, no. 12, pp. 1884–1890,  2017.
  25. Ł. Śliwczyński, P. Krehlik, and M. Lipiński, “Optical fibers in time and frequency transfer,”Meas. Sci. Technol., vol. 21, 2010, Art. no. .
  26. G. Wu, L. Hu, H. Zhang, and J. Chen, “High-precision two-way optic-fiber time transfer using an improved time code,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. .
  27. H. Zhang, G. Wu, L. Hu, X. Li, and J. Chen, “High-precision time transfer over 2000-km fiber link,” IEEE Photon. J., vol. 7, no. 6,  2015, Art. no. .
  28. P. Wan and J. Conradi, “Impact of double Rayleigh backscatter noise on digital and analog fiber systems,” J. Lightw. Technol., vol. 14, no. 3, pp. 288–297,  1996.
  29. Infiniium S-series Oscilloscopes Data Sheet, Keysight, 2019. [Online]. Available: https://www.keysight.com
  30. R. Szplet, Z. Jachna, P. Kwiatkowski, and K. Różyc, “A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .
  31. R. Szplet, R. Szymanowski, and D. Sondej, “Measurement uncertainty of precise interpolating time counters,” IEEE Trans. Instr. Meas., vol. 68, no. 11, pp. 4348–4356,  2019.
  32. Athermal Fabry-Perot Wavelength Locker, Optoplex Corporation. [Online]. Available: https://www.optoplex.com
  33. F. Guillou-Camargo, “First industrial-grade coherent fiber link for optical freqency standard dissemination,” Appl. Opt., vol. 57, pp. 7203–7210, 2018.
  34. “Spectral grids for WDM applications: DWDM frequency grid,” ITU-T Recommendation G.694.1, 2012. [Online]. Available: https://www.itu.int
  35. Integrable Tunable Laser Assembly Multi Source Agreement, Document OIF-ITLA_MSA-01.3, Optical Internetworking Forum, 2015. [Online]. Available: https://www.oiforum.com
  36. K. Aikawa, “High performance dispersion and dispersion slope compensating fiber modules for non-zero dispersion shifted fibers,” Fujikura Technical Review no. 32, pp. 5–10, 2003.

2020 (3)

J. López-Jiménez, J. Gutiérrez-Rivas, E. Marín-López, M. Rodríguez-Álvarez, and J. Díaz, “Time as a service based on White Rabbit for finance applications,” IEEE Commun. Mag., vol. 58, no. 4, pp. 60–66, 2020.

Ł. Śliwczyński, “Fiber-based UTC dissemination supporting 5G telecommunications networks,” IEEE Commun. Mag., vol. 58, no. 4, pp. 67–73,  2020.

D. Valat and J. Delporte, “Absolute calibration of timing receiver chains at the nanosecond uncertainty level for GNSS time scales monitoring,” Metrologia, vol. 57, 2020, Art. no. .

2019 (6)

S. Schediwy, “The mid-frequency square kilometre array phase synchronisation system,” Publisher. Astronomical. Soc. Australia., vol. 36, 2019, Paper e007.

Infiniium S-series Oscilloscopes Data Sheet, Keysight, 2019. [Online]. Available: https://www.keysight.com

Z. Jiang, “Improving two-way satellite time and frequency transfer with redundant links for UTC generation,” Metrologia, vol. 56, 2019, Art. no. .

J. Lopez-Jimenez, F. Torres-Gonzales, J. Gutierrez-Rivas, M. Rodriguez-Gonzales, and J. Diaz, “A fully programmable White-Rabbit node for the SKA telescope PPS distribution system,” IEEE Trans Instrum. Meas., vol. 68, no. 2, pp. 632–641,  2019.

Ł. Śliwczyński, “Calibrated optical time transfer of UTC(k) for supervision of telecom networks,” Metrologia, vol. 56, 2019, Art. no. .

R. Szplet, R. Szymanowski, and D. Sondej, “Measurement uncertainty of precise interpolating time counters,” IEEE Trans. Instr. Meas., vol. 68, no. 11, pp. 4348–4356,  2019.

2018 (4)

T. Mehlstäubler, G. Grosche, Ch. Lisdat, P. Schmidt, and H. Denker, “Atomic clocks for Geodesy,” Rep. Prog. Phys., vol 81, 2018, Art. no. .

C. de la Morena, “Fully digital and White Rabbit-synchronized low-level RF system for LIPAc,” IEEE Trans. Nucl. Sci., vol, 65, no. 1, pp. 514–522,  2018.

F. Guillou-Camargo, “First industrial-grade coherent fiber link for optical freqency standard dissemination,” Appl. Opt., vol. 57, pp. 7203–7210, 2018.

J. Gutierrez-Rivas, J. Lopez-Jimenez, E. Ros, and J. Diaz, “White rabbit HSR: A seamless subnanosecond redundant timing system with low-latency data capabilities for the smart grid,” IEEE Trans. on Ind. Inform., vol. 14, no. 8, pp 3486–3494,  2018.

2017 (1)

P. Krehlik, H. Schnatz, and Ł. Śliwczyński, “A hybrid solution for simultaneous transfer of ultrastable optical frequency, RF frequency and UTC time-tags over optical fiber,” IEEE Trans. Ultrason. Ferroel. Freq. Contr., vol. 64, no. 12, pp. 1884–1890,  2017.

2016 (3)

E. Dierikx, “White rabbit precision time protocol on long-distance fiber links,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 63, no. 7, pp. 945–952,  2016.

P. Krehlik, L. Sliwczyski, L. Buczek, J. Kolodziej, and M. Lipinski, “ELSTAB- fiber optic time and frequency distribution technology - A general characterization and fundamental limits,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 63, no. 7, pp. 993–1004,  2016.

J. Kodet, “Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability,” Metrologia, vol. 53, 2016, Art. no. .

2015 (3)

H. Zhang, G. Wu, L. Hu, X. Li, and J. Chen, “High-precision time transfer over 2000-km fiber link,” IEEE Photon. J., vol. 7, no. 6,  2015, Art. no. .

J. Gersl, P. Delva, and P. Wolf, “Relativistic corrections for time and frequency transfer in optical fibers,” Metrologia, vol. 52, pp. 552–564, 2015.

Z. Jiang, A. Czubla, J. Nawrocki, W. Lewandowski, and E. F. Arias, “Comparing a GPS time link calibration with an optical fibre self-calibration with 200 ps accuracy,” Metrologia, vol. 52, pp. 384–391, 2015.

2014 (1)

S. M. F. Raupach and G. Grosche, “Chirped frequency transfer: A tool for synchronization and time transfer,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 61, no. 6, pp. 920–929,  2014.

2013 (3)

O. Lopez, “Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network,” Appl. Phys. B, vol. 110, no. 1, pp. 3–6, 2013.

R. Szplet, Z. Jachna, P. Kwiatkowski, and K. Różyc, “A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

Ł. Sliwczynski, “Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km,” Metrologia, vol. 50, pp. 133–145, 2013.

2012 (2)

C. Gao, “Fiber-based multiple-access ultrastable frequency dissemination,” Opt. Lett., vol. 37, pp 4690–4692, 2012.

M. Rost, “Time transfer through optical fibers over a distance of 73 km with an uncertainty below 100 ps,” Metrologia, vol. 49, pp. 772–778, 2012.

2010 (2)

Ł. Śliwczyński, P. Krehlik, and M. Lipiński, “Optical fibers in time and frequency transfer,”Meas. Sci. Technol., vol. 21, 2010, Art. no. .

H. Esteban, J. Palacio, F. J. Galindo, T. Feldmann, A. Bauch, and D. Piester, “Improved GPS-based time link calibration involving ROA and PTB,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 57, no. 3, pp. 714–720,  2010.

2003 (1)

K. Aikawa, “High performance dispersion and dispersion slope compensating fiber modules for non-zero dispersion shifted fibers,” Fujikura Technical Review no. 32, pp. 5–10, 2003.

1996 (1)

P. Wan and J. Conradi, “Impact of double Rayleigh backscatter noise on digital and analog fiber systems,” J. Lightw. Technol., vol. 14, no. 3, pp. 288–297,  1996.

Aikawa, K.

K. Aikawa, “High performance dispersion and dispersion slope compensating fiber modules for non-zero dispersion shifted fibers,” Fujikura Technical Review no. 32, pp. 5–10, 2003.

Alvarez, P.

M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White rabbit: A PTP application for robust sub-nanosecond synchronization,” in Proc. 2011 IEEE Int. Symp. Preci. Cloc. Synchroniz. Meas., Contr. Commun., Munich, Germany, 2011, pp. 25–30.

Arias, E. F.

Z. Jiang, A. Czubla, J. Nawrocki, W. Lewandowski, and E. F. Arias, “Comparing a GPS time link calibration with an optical fibre self-calibration with 200 ps accuracy,” Metrologia, vol. 52, pp. 384–391, 2015.

Bauch, A.

H. Esteban, J. Palacio, F. J. Galindo, T. Feldmann, A. Bauch, and D. Piester, “Improved GPS-based time link calibration involving ROA and PTB,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 57, no. 3, pp. 714–720,  2010.

Buczek, L.

P. Krehlik, L. Sliwczyski, L. Buczek, J. Kolodziej, and M. Lipinski, “ELSTAB- fiber optic time and frequency distribution technology - A general characterization and fundamental limits,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 63, no. 7, pp. 993–1004,  2016.

Chen, J.

H. Zhang, G. Wu, L. Hu, X. Li, and J. Chen, “High-precision time transfer over 2000-km fiber link,” IEEE Photon. J., vol. 7, no. 6,  2015, Art. no. .

G. Wu, L. Hu, H. Zhang, and J. Chen, “High-precision two-way optic-fiber time transfer using an improved time code,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. .

Conradi, J.

P. Wan and J. Conradi, “Impact of double Rayleigh backscatter noise on digital and analog fiber systems,” J. Lightw. Technol., vol. 14, no. 3, pp. 288–297,  1996.

Czubla, A.

Z. Jiang, A. Czubla, J. Nawrocki, W. Lewandowski, and E. F. Arias, “Comparing a GPS time link calibration with an optical fibre self-calibration with 200 ps accuracy,” Metrologia, vol. 52, pp. 384–391, 2015.

de la Morena, C.

C. de la Morena, “Fully digital and White Rabbit-synchronized low-level RF system for LIPAc,” IEEE Trans. Nucl. Sci., vol, 65, no. 1, pp. 514–522,  2018.

Delporte, J.

D. Valat and J. Delporte, “Absolute calibration of timing receiver chains at the nanosecond uncertainty level for GNSS time scales monitoring,” Metrologia, vol. 57, 2020, Art. no. .

Delva, P.

J. Gersl, P. Delva, and P. Wolf, “Relativistic corrections for time and frequency transfer in optical fibers,” Metrologia, vol. 52, pp. 552–564, 2015.

Denker, H.

T. Mehlstäubler, G. Grosche, Ch. Lisdat, P. Schmidt, and H. Denker, “Atomic clocks for Geodesy,” Rep. Prog. Phys., vol 81, 2018, Art. no. .

Diaz, J.

J. Lopez-Jimenez, F. Torres-Gonzales, J. Gutierrez-Rivas, M. Rodriguez-Gonzales, and J. Diaz, “A fully programmable White-Rabbit node for the SKA telescope PPS distribution system,” IEEE Trans Instrum. Meas., vol. 68, no. 2, pp. 632–641,  2019.

J. Gutierrez-Rivas, J. Lopez-Jimenez, E. Ros, and J. Diaz, “White rabbit HSR: A seamless subnanosecond redundant timing system with low-latency data capabilities for the smart grid,” IEEE Trans. on Ind. Inform., vol. 14, no. 8, pp 3486–3494,  2018.

Díaz, J.

J. López-Jiménez, J. Gutiérrez-Rivas, E. Marín-López, M. Rodríguez-Álvarez, and J. Díaz, “Time as a service based on White Rabbit for finance applications,” IEEE Commun. Mag., vol. 58, no. 4, pp. 60–66, 2020.

Dierikx, E.

E. Dierikx, “White rabbit precision time protocol on long-distance fiber links,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 63, no. 7, pp. 945–952,  2016.

Esteban, H.

H. Esteban, J. Palacio, F. J. Galindo, T. Feldmann, A. Bauch, and D. Piester, “Improved GPS-based time link calibration involving ROA and PTB,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 57, no. 3, pp. 714–720,  2010.

Feldmann, T.

H. Esteban, J. Palacio, F. J. Galindo, T. Feldmann, A. Bauch, and D. Piester, “Improved GPS-based time link calibration involving ROA and PTB,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 57, no. 3, pp. 714–720,  2010.

Galindo, F. J.

H. Esteban, J. Palacio, F. J. Galindo, T. Feldmann, A. Bauch, and D. Piester, “Improved GPS-based time link calibration involving ROA and PTB,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 57, no. 3, pp. 714–720,  2010.

Gao, C.

Gersl, J.

J. Gersl, P. Delva, and P. Wolf, “Relativistic corrections for time and frequency transfer in optical fibers,” Metrologia, vol. 52, pp. 552–564, 2015.

Grosche, G.

T. Mehlstäubler, G. Grosche, Ch. Lisdat, P. Schmidt, and H. Denker, “Atomic clocks for Geodesy,” Rep. Prog. Phys., vol 81, 2018, Art. no. .

S. M. F. Raupach and G. Grosche, “Chirped frequency transfer: A tool for synchronization and time transfer,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 61, no. 6, pp. 920–929,  2014.

Guillou-Camargo, F.

Gutierrez-Rivas, J.

J. Lopez-Jimenez, F. Torres-Gonzales, J. Gutierrez-Rivas, M. Rodriguez-Gonzales, and J. Diaz, “A fully programmable White-Rabbit node for the SKA telescope PPS distribution system,” IEEE Trans Instrum. Meas., vol. 68, no. 2, pp. 632–641,  2019.

J. Gutierrez-Rivas, J. Lopez-Jimenez, E. Ros, and J. Diaz, “White rabbit HSR: A seamless subnanosecond redundant timing system with low-latency data capabilities for the smart grid,” IEEE Trans. on Ind. Inform., vol. 14, no. 8, pp 3486–3494,  2018.

Gutiérrez-Rivas, J.

J. López-Jiménez, J. Gutiérrez-Rivas, E. Marín-López, M. Rodríguez-Álvarez, and J. Díaz, “Time as a service based on White Rabbit for finance applications,” IEEE Commun. Mag., vol. 58, no. 4, pp. 60–66, 2020.

Hu, L.

H. Zhang, G. Wu, L. Hu, X. Li, and J. Chen, “High-precision time transfer over 2000-km fiber link,” IEEE Photon. J., vol. 7, no. 6,  2015, Art. no. .

G. Wu, L. Hu, H. Zhang, and J. Chen, “High-precision two-way optic-fiber time transfer using an improved time code,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. .

Jachna, Z.

R. Szplet, Z. Jachna, P. Kwiatkowski, and K. Różyc, “A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

Jiang, Z.

Z. Jiang, “Improving two-way satellite time and frequency transfer with redundant links for UTC generation,” Metrologia, vol. 56, 2019, Art. no. .

Z. Jiang, A. Czubla, J. Nawrocki, W. Lewandowski, and E. F. Arias, “Comparing a GPS time link calibration with an optical fibre self-calibration with 200 ps accuracy,” Metrologia, vol. 52, pp. 384–391, 2015.

Kodet, J.

J. Kodet, “Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability,” Metrologia, vol. 53, 2016, Art. no. .

Kolodziej, J.

P. Krehlik, L. Sliwczyski, L. Buczek, J. Kolodziej, and M. Lipinski, “ELSTAB- fiber optic time and frequency distribution technology - A general characterization and fundamental limits,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 63, no. 7, pp. 993–1004,  2016.

Krehlik, P.

P. Krehlik, H. Schnatz, and Ł. Śliwczyński, “A hybrid solution for simultaneous transfer of ultrastable optical frequency, RF frequency and UTC time-tags over optical fiber,” IEEE Trans. Ultrason. Ferroel. Freq. Contr., vol. 64, no. 12, pp. 1884–1890,  2017.

P. Krehlik, L. Sliwczyski, L. Buczek, J. Kolodziej, and M. Lipinski, “ELSTAB- fiber optic time and frequency distribution technology - A general characterization and fundamental limits,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 63, no. 7, pp. 993–1004,  2016.

Ł. Śliwczyński, P. Krehlik, and M. Lipiński, “Optical fibers in time and frequency transfer,”Meas. Sci. Technol., vol. 21, 2010, Art. no. .

Kwiatkowski, P.

R. Szplet, Z. Jachna, P. Kwiatkowski, and K. Różyc, “A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

Lewandowski, W.

Z. Jiang, A. Czubla, J. Nawrocki, W. Lewandowski, and E. F. Arias, “Comparing a GPS time link calibration with an optical fibre self-calibration with 200 ps accuracy,” Metrologia, vol. 52, pp. 384–391, 2015.

Li, X.

H. Zhang, G. Wu, L. Hu, X. Li, and J. Chen, “High-precision time transfer over 2000-km fiber link,” IEEE Photon. J., vol. 7, no. 6,  2015, Art. no. .

Lipinski, M.

P. Krehlik, L. Sliwczyski, L. Buczek, J. Kolodziej, and M. Lipinski, “ELSTAB- fiber optic time and frequency distribution technology - A general characterization and fundamental limits,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 63, no. 7, pp. 993–1004,  2016.

Ł. Śliwczyński, P. Krehlik, and M. Lipiński, “Optical fibers in time and frequency transfer,”Meas. Sci. Technol., vol. 21, 2010, Art. no. .

M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White rabbit: A PTP application for robust sub-nanosecond synchronization,” in Proc. 2011 IEEE Int. Symp. Preci. Cloc. Synchroniz. Meas., Contr. Commun., Munich, Germany, 2011, pp. 25–30.

Lisdat, Ch.

T. Mehlstäubler, G. Grosche, Ch. Lisdat, P. Schmidt, and H. Denker, “Atomic clocks for Geodesy,” Rep. Prog. Phys., vol 81, 2018, Art. no. .

Lopez, O.

O. Lopez, “Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network,” Appl. Phys. B, vol. 110, no. 1, pp. 3–6, 2013.

Lopez-Jimenez,

J. Gutierrez-Rivas, J. Lopez-Jimenez, E. Ros, and J. Diaz, “White rabbit HSR: A seamless subnanosecond redundant timing system with low-latency data capabilities for the smart grid,” IEEE Trans. on Ind. Inform., vol. 14, no. 8, pp 3486–3494,  2018.

Lopez-Jimenez, J.

J. Lopez-Jimenez, F. Torres-Gonzales, J. Gutierrez-Rivas, M. Rodriguez-Gonzales, and J. Diaz, “A fully programmable White-Rabbit node for the SKA telescope PPS distribution system,” IEEE Trans Instrum. Meas., vol. 68, no. 2, pp. 632–641,  2019.

López-Jiménez, J.

J. López-Jiménez, J. Gutiérrez-Rivas, E. Marín-López, M. Rodríguez-Álvarez, and J. Díaz, “Time as a service based on White Rabbit for finance applications,” IEEE Commun. Mag., vol. 58, no. 4, pp. 60–66, 2020.

Marín-López, E.

J. López-Jiménez, J. Gutiérrez-Rivas, E. Marín-López, M. Rodríguez-Álvarez, and J. Díaz, “Time as a service based on White Rabbit for finance applications,” IEEE Commun. Mag., vol. 58, no. 4, pp. 60–66, 2020.

Mehlstäubler, T.

T. Mehlstäubler, G. Grosche, Ch. Lisdat, P. Schmidt, and H. Denker, “Atomic clocks for Geodesy,” Rep. Prog. Phys., vol 81, 2018, Art. no. .

Nawrocki, J.

Z. Jiang, A. Czubla, J. Nawrocki, W. Lewandowski, and E. F. Arias, “Comparing a GPS time link calibration with an optical fibre self-calibration with 200 ps accuracy,” Metrologia, vol. 52, pp. 384–391, 2015.

Palacio, J.

H. Esteban, J. Palacio, F. J. Galindo, T. Feldmann, A. Bauch, and D. Piester, “Improved GPS-based time link calibration involving ROA and PTB,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 57, no. 3, pp. 714–720,  2010.

Piester, D.

H. Esteban, J. Palacio, F. J. Galindo, T. Feldmann, A. Bauch, and D. Piester, “Improved GPS-based time link calibration involving ROA and PTB,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 57, no. 3, pp. 714–720,  2010.

Raupach, S. M. F.

S. M. F. Raupach and G. Grosche, “Chirped frequency transfer: A tool for synchronization and time transfer,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 61, no. 6, pp. 920–929,  2014.

Rodríguez-Álvarez, M.

J. López-Jiménez, J. Gutiérrez-Rivas, E. Marín-López, M. Rodríguez-Álvarez, and J. Díaz, “Time as a service based on White Rabbit for finance applications,” IEEE Commun. Mag., vol. 58, no. 4, pp. 60–66, 2020.

Rodriguez-Gonzales, M.

J. Lopez-Jimenez, F. Torres-Gonzales, J. Gutierrez-Rivas, M. Rodriguez-Gonzales, and J. Diaz, “A fully programmable White-Rabbit node for the SKA telescope PPS distribution system,” IEEE Trans Instrum. Meas., vol. 68, no. 2, pp. 632–641,  2019.

Ros, E.

J. Gutierrez-Rivas, J. Lopez-Jimenez, E. Ros, and J. Diaz, “White rabbit HSR: A seamless subnanosecond redundant timing system with low-latency data capabilities for the smart grid,” IEEE Trans. on Ind. Inform., vol. 14, no. 8, pp 3486–3494,  2018.

Rost, M.

M. Rost, “Time transfer through optical fibers over a distance of 73 km with an uncertainty below 100 ps,” Metrologia, vol. 49, pp. 772–778, 2012.

Rózyc, K.

R. Szplet, Z. Jachna, P. Kwiatkowski, and K. Różyc, “A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

Schediwy, S.

S. Schediwy, “The mid-frequency square kilometre array phase synchronisation system,” Publisher. Astronomical. Soc. Australia., vol. 36, 2019, Paper e007.

Schmidt, P.

T. Mehlstäubler, G. Grosche, Ch. Lisdat, P. Schmidt, and H. Denker, “Atomic clocks for Geodesy,” Rep. Prog. Phys., vol 81, 2018, Art. no. .

Schnatz, H.

P. Krehlik, H. Schnatz, and Ł. Śliwczyński, “A hybrid solution for simultaneous transfer of ultrastable optical frequency, RF frequency and UTC time-tags over optical fiber,” IEEE Trans. Ultrason. Ferroel. Freq. Contr., vol. 64, no. 12, pp. 1884–1890,  2017.

Serrano, J.

M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White rabbit: A PTP application for robust sub-nanosecond synchronization,” in Proc. 2011 IEEE Int. Symp. Preci. Cloc. Synchroniz. Meas., Contr. Commun., Munich, Germany, 2011, pp. 25–30.

Sliwczynski, L.

Ł. Śliwczyński, “Fiber-based UTC dissemination supporting 5G telecommunications networks,” IEEE Commun. Mag., vol. 58, no. 4, pp. 67–73,  2020.

Ł. Śliwczyński, “Calibrated optical time transfer of UTC(k) for supervision of telecom networks,” Metrologia, vol. 56, 2019, Art. no. .

P. Krehlik, H. Schnatz, and Ł. Śliwczyński, “A hybrid solution for simultaneous transfer of ultrastable optical frequency, RF frequency and UTC time-tags over optical fiber,” IEEE Trans. Ultrason. Ferroel. Freq. Contr., vol. 64, no. 12, pp. 1884–1890,  2017.

Ł. Sliwczynski, “Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km,” Metrologia, vol. 50, pp. 133–145, 2013.

Ł. Śliwczyński, P. Krehlik, and M. Lipiński, “Optical fibers in time and frequency transfer,”Meas. Sci. Technol., vol. 21, 2010, Art. no. .

Sliwczyski, L.

P. Krehlik, L. Sliwczyski, L. Buczek, J. Kolodziej, and M. Lipinski, “ELSTAB- fiber optic time and frequency distribution technology - A general characterization and fundamental limits,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 63, no. 7, pp. 993–1004,  2016.

Sondej, D.

R. Szplet, R. Szymanowski, and D. Sondej, “Measurement uncertainty of precise interpolating time counters,” IEEE Trans. Instr. Meas., vol. 68, no. 11, pp. 4348–4356,  2019.

Szplet, R.

R. Szplet, R. Szymanowski, and D. Sondej, “Measurement uncertainty of precise interpolating time counters,” IEEE Trans. Instr. Meas., vol. 68, no. 11, pp. 4348–4356,  2019.

R. Szplet, Z. Jachna, P. Kwiatkowski, and K. Różyc, “A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

Szymanowski, R.

R. Szplet, R. Szymanowski, and D. Sondej, “Measurement uncertainty of precise interpolating time counters,” IEEE Trans. Instr. Meas., vol. 68, no. 11, pp. 4348–4356,  2019.

Torres-Gonzales, F.

J. Lopez-Jimenez, F. Torres-Gonzales, J. Gutierrez-Rivas, M. Rodriguez-Gonzales, and J. Diaz, “A fully programmable White-Rabbit node for the SKA telescope PPS distribution system,” IEEE Trans Instrum. Meas., vol. 68, no. 2, pp. 632–641,  2019.

Valat, D.

D. Valat and J. Delporte, “Absolute calibration of timing receiver chains at the nanosecond uncertainty level for GNSS time scales monitoring,” Metrologia, vol. 57, 2020, Art. no. .

Wan, P.

P. Wan and J. Conradi, “Impact of double Rayleigh backscatter noise on digital and analog fiber systems,” J. Lightw. Technol., vol. 14, no. 3, pp. 288–297,  1996.

Wlostowski, T.

M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White rabbit: A PTP application for robust sub-nanosecond synchronization,” in Proc. 2011 IEEE Int. Symp. Preci. Cloc. Synchroniz. Meas., Contr. Commun., Munich, Germany, 2011, pp. 25–30.

Wolf, P.

J. Gersl, P. Delva, and P. Wolf, “Relativistic corrections for time and frequency transfer in optical fibers,” Metrologia, vol. 52, pp. 552–564, 2015.

Wu, G.

H. Zhang, G. Wu, L. Hu, X. Li, and J. Chen, “High-precision time transfer over 2000-km fiber link,” IEEE Photon. J., vol. 7, no. 6,  2015, Art. no. .

G. Wu, L. Hu, H. Zhang, and J. Chen, “High-precision two-way optic-fiber time transfer using an improved time code,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. .

Zhang, H.

H. Zhang, G. Wu, L. Hu, X. Li, and J. Chen, “High-precision time transfer over 2000-km fiber link,” IEEE Photon. J., vol. 7, no. 6,  2015, Art. no. .

G. Wu, L. Hu, H. Zhang, and J. Chen, “High-precision two-way optic-fiber time transfer using an improved time code,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. .

Appl. Opt. (1)

Appl. Phys. B (1)

O. Lopez, “Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network,” Appl. Phys. B, vol. 110, no. 1, pp. 3–6, 2013.

IEEE Commun. Mag. (2)

J. López-Jiménez, J. Gutiérrez-Rivas, E. Marín-López, M. Rodríguez-Álvarez, and J. Díaz, “Time as a service based on White Rabbit for finance applications,” IEEE Commun. Mag., vol. 58, no. 4, pp. 60–66, 2020.

Ł. Śliwczyński, “Fiber-based UTC dissemination supporting 5G telecommunications networks,” IEEE Commun. Mag., vol. 58, no. 4, pp. 67–73,  2020.

IEEE Photon. J. (1)

H. Zhang, G. Wu, L. Hu, X. Li, and J. Chen, “High-precision time transfer over 2000-km fiber link,” IEEE Photon. J., vol. 7, no. 6,  2015, Art. no. .

IEEE Trans Instrum. Meas. (1)

J. Lopez-Jimenez, F. Torres-Gonzales, J. Gutierrez-Rivas, M. Rodriguez-Gonzales, and J. Diaz, “A fully programmable White-Rabbit node for the SKA telescope PPS distribution system,” IEEE Trans Instrum. Meas., vol. 68, no. 2, pp. 632–641,  2019.

IEEE Trans. Instr. Meas. (1)

R. Szplet, R. Szymanowski, and D. Sondej, “Measurement uncertainty of precise interpolating time counters,” IEEE Trans. Instr. Meas., vol. 68, no. 11, pp. 4348–4356,  2019.

IEEE Trans. Nucl. Sci. (1)

C. de la Morena, “Fully digital and White Rabbit-synchronized low-level RF system for LIPAc,” IEEE Trans. Nucl. Sci., vol, 65, no. 1, pp. 514–522,  2018.

IEEE Trans. on Ind. Inform. (1)

J. Gutierrez-Rivas, J. Lopez-Jimenez, E. Ros, and J. Diaz, “White rabbit HSR: A seamless subnanosecond redundant timing system with low-latency data capabilities for the smart grid,” IEEE Trans. on Ind. Inform., vol. 14, no. 8, pp 3486–3494,  2018.

IEEE Trans. Ultrason. Ferroel. Freq. Contr. (1)

P. Krehlik, H. Schnatz, and Ł. Śliwczyński, “A hybrid solution for simultaneous transfer of ultrastable optical frequency, RF frequency and UTC time-tags over optical fiber,” IEEE Trans. Ultrason. Ferroel. Freq. Contr., vol. 64, no. 12, pp. 1884–1890,  2017.

IEEE Trans. Ultrason. Ferroelect. Freq. Control (2)

H. Esteban, J. Palacio, F. J. Galindo, T. Feldmann, A. Bauch, and D. Piester, “Improved GPS-based time link calibration involving ROA and PTB,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 57, no. 3, pp. 714–720,  2010.

P. Krehlik, L. Sliwczyski, L. Buczek, J. Kolodziej, and M. Lipinski, “ELSTAB- fiber optic time and frequency distribution technology - A general characterization and fundamental limits,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 63, no. 7, pp. 993–1004,  2016.

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

E. Dierikx, “White rabbit precision time protocol on long-distance fiber links,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 63, no. 7, pp. 945–952,  2016.

IEEE Trans. Ultrason., Ferroelect., Freq. Control (1)

S. M. F. Raupach and G. Grosche, “Chirped frequency transfer: A tool for synchronization and time transfer,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 61, no. 6, pp. 920–929,  2014.

J. Lightw. Technol. (1)

P. Wan and J. Conradi, “Impact of double Rayleigh backscatter noise on digital and analog fiber systems,” J. Lightw. Technol., vol. 14, no. 3, pp. 288–297,  1996.

Meas. Sci. Technol. (2)

Ł. Śliwczyński, P. Krehlik, and M. Lipiński, “Optical fibers in time and frequency transfer,”Meas. Sci. Technol., vol. 21, 2010, Art. no. .

R. Szplet, Z. Jachna, P. Kwiatkowski, and K. Różyc, “A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines,” Meas. Sci. Technol., vol. 24, 2013, Art. no. .

Metrologia (8)

D. Valat and J. Delporte, “Absolute calibration of timing receiver chains at the nanosecond uncertainty level for GNSS time scales monitoring,” Metrologia, vol. 57, 2020, Art. no. .

Z. Jiang, “Improving two-way satellite time and frequency transfer with redundant links for UTC generation,” Metrologia, vol. 56, 2019, Art. no. .

M. Rost, “Time transfer through optical fibers over a distance of 73 km with an uncertainty below 100 ps,” Metrologia, vol. 49, pp. 772–778, 2012.

Ł. Sliwczynski, “Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km,” Metrologia, vol. 50, pp. 133–145, 2013.

J. Gersl, P. Delva, and P. Wolf, “Relativistic corrections for time and frequency transfer in optical fibers,” Metrologia, vol. 52, pp. 552–564, 2015.

Z. Jiang, A. Czubla, J. Nawrocki, W. Lewandowski, and E. F. Arias, “Comparing a GPS time link calibration with an optical fibre self-calibration with 200 ps accuracy,” Metrologia, vol. 52, pp. 384–391, 2015.

J. Kodet, “Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability,” Metrologia, vol. 53, 2016, Art. no. .

Ł. Śliwczyński, “Calibrated optical time transfer of UTC(k) for supervision of telecom networks,” Metrologia, vol. 56, 2019, Art. no. .

Opt. Lett. (1)

Publisher. Astronomical. Soc. Australia. (1)

S. Schediwy, “The mid-frequency square kilometre array phase synchronisation system,” Publisher. Astronomical. Soc. Australia., vol. 36, 2019, Paper e007.

Rep. Prog. Phys. (1)

T. Mehlstäubler, G. Grosche, Ch. Lisdat, P. Schmidt, and H. Denker, “Atomic clocks for Geodesy,” Rep. Prog. Phys., vol 81, 2018, Art. no. .

Rev. Sci. Instrum. (1)

G. Wu, L. Hu, H. Zhang, and J. Chen, “High-precision two-way optic-fiber time transfer using an improved time code,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. .

Other (7)

Infiniium S-series Oscilloscopes Data Sheet, Keysight, 2019. [Online]. Available: https://www.keysight.com

Athermal Fabry-Perot Wavelength Locker, Optoplex Corporation. [Online]. Available: https://www.optoplex.com

“Spectral grids for WDM applications: DWDM frequency grid,” ITU-T Recommendation G.694.1, 2012. [Online]. Available: https://www.itu.int

Integrable Tunable Laser Assembly Multi Source Agreement, Document OIF-ITLA_MSA-01.3, Optical Internetworking Forum, 2015. [Online]. Available: https://www.oiforum.com

K. Aikawa, “High performance dispersion and dispersion slope compensating fiber modules for non-zero dispersion shifted fibers,” Fujikura Technical Review no. 32, pp. 5–10, 2003.

M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White rabbit: A PTP application for robust sub-nanosecond synchronization,” in Proc. 2011 IEEE Int. Symp. Preci. Cloc. Synchroniz. Meas., Contr. Commun., Munich, Germany, 2011, pp. 25–30.

NPLTime, National Physical Laboratory, U.K. [Online]. Available: https://www.npl.co.uk/npltime

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.