Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 15,
  • pp. 4133-4141
  • (2020)

Evaluating Phase Errors in Phase-Sensitive Optical Time-Domain Reflectometry Based on I/Q Demodulation

Not Accessible

Your library or personal account may give you access

Abstract

The phase errors resulting from in-phase/quadrature (I/Q) demodulation in phase-sensitive optical time-domain reflectometry (ϕOTDR) are investigated theoretically, numerically, and experimentally for two phase recovery schemes: one employing Kramers–Kronig (KK)-based coherent detection, and a second one based on a direct-detection scheme using an imbalanced Mach–Zehnder interferometer, a 3 × 3 coupler and 3 photodetectors. Mathematical models for the estimation of the differential phase variance are proposed and experimentally validated for these two schemes. The probability density function of the phase variance verifies an uneven longitudinal distribution of the phase errors in the two cases. Results point out that KK-based ϕOTDR sensors have no special advantages in terms of noise performance compared to standard full I/Q coherent detection, so that large phase errors can be verified at fading locations, leading to severe phase unwrapping problems. On the contrary, the direct-detection scheme based on interferometer is highly dependent on the signal difference between photodetectors, showing higher robustness against fading even if its probability density function is wider than the KK-based case. Experimental results also show the advantages of selecting data points with high in-phase and quadrature amplitudes to achieve reliable vibration measurements, especially in KK-based ϕOTDR sensors.

PDF Article
More Like This
Direct detection based φOTDR using the Kramers-Kronig receiver

Xin Lu and Katerina Krebber
Opt. Express 28(24) 37058-37068 (2020)

Characterizing detection noise in phase-sensitive optical time domain reflectometry

Xin Lu and Katerina Krebber
Opt. Express 29(12) 18791-18806 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved