Abstract

The benefits and limitations inherent to the 2D post-processing of measurements from Brillouin optical time-domain analyzers are investigated from a fundamental point of view. In a preliminary step, the impact of curve fitting on the precision of the estimated Brillouin frequency shift is analyzed, enabling a fair comparison between the representative noise-reduction algorithms studied in this article. The performances in terms of signal-to-noise ratio, experimental uncertainty $\sigma _B$ on the Brillouin frequency shift and spatial resolution delivered by advanced image processing methods—such as wavelet transform and non-local means algorithms—are then compared with the impact of a 2D Gaussian filter. The major discrepancies observed when comparing the gain in signal-to-noise ratio to the $\sigma _B$ reduction are then determined by exploiting the separability of the Gaussian filter, which reveals that noise reduction is only effective along 1-D of the 2D array of measurements and originates from a digital reduction of the system analog bandwidth. The signal-to-noise ratio improvement obtained from filtering in the spectral dimension is only illusory, since its action is redundant with the curve fitting procedure to estimate the Brillouin frequency shift. Finally, the maximum $\sigma _B$ reduction achievable by digital post-processing is theoretically given, hence setting a fundamental limit to the improvement brought by data processing.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics. San Diego, CA, USA: Academic Press, 2008.
  2. G. P. Agrawal, Nonlinear Fiber Optics. San Diego, CA, USA: Academic Press, 2007.
  3. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett., vol. 2, no. 5, pp. 352–354,  1990.
  4. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated brillouin scattering in optical silica fibers,” Opt. Lett., vol. 15, no. 18, pp. 1038–1040, 1990. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-15-18-1038
  5. M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express, vol. 23, no. 23, pp. 29 514–29 532, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-23-29514
  6. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed brillouin fiber sensors,” IEEE Sensors J., vol. 9, no. 6, pp. 633–634,  2009.
  7. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a brillouin optical time-domain analysis system,” Opt. Express, vol. 21, no. 12, pp. 14 017–14 035, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-12-14017
  8. A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband brillouin optical time domain analysis,” Opt. Express, vol. 23, no. 8, pp. 10 341–10 352, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-8-10341
  9. A. Dominguez-Lopez, “Novel scanning method for distortion-free botda measurements,” Opt. Express, vol. 24, no. 10, pp. 10 188–10 204, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-10-10188
  10. F. Rodriguez-Barrios, “Distributed brillouin fiber sensor assisted by first-order raman amplification,” J. Lightw. Technol., vol. 28, no. 15, pp. 2162–2172,  2010.
  11. M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol., vol. 21, no. 9, 2010, Art. no. .
  12. S. L. Floch, F. Sauser, M. Llera, and E. Rochat, “Novel brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses,” J. Lightw. Technol., vol. 33, no. 12, pp. 2623–2627,  2015.
  13. Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in brillouin distributed fiber sensors,” Opt. Express, vol. 24, no. 1, pp. 586–597, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-1-586
  14. Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded brillouin optical time-domain analyzers,” Opt. Express, vol. 26, no. 13, pp. 16 505–16 523, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-13-16505
  15. M. A. Soto, J. A. Ramírez, and T. Luc, “Intensifying the response of distributed optical fibre sensors using 2d and 3d image restoration,” Nature Commun., vol. 7, 2016. [Online]. Available: https://www.nature.com/articles/ncomms10870
  16. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of brillouin distributed optical fiber sensors,” Opt. Express, vol. 21, no. 25, pp. 31 347–31 366, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-25-31347
  17. M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, “Analytical expression and experimental validation of the brillouin gain spectral broadening at any sensing spatial resolution,” vol. 10323, 2017. [Online]. Available: https://doi.org/10.1117/12.2267639
  18. A. W. Brown, M. DeMerchant, X. Bao, and T. W. Bremner, “Spatial resolution enhancement of a brillouin-distributed sensor using a novel signal processing method,” J. Lightw. Technol., vol. 17, no. 7, pp. 1179–1183,  1999.
  19. M. A. Farahani, E. Castillo-Guerra, and B. G. Colpitts, “Accurate estimation of brillouin frequency shift in brillouin optical time domain analysis sensors using cross correlation,” Opt. Lett., vol. 36, no. 21, pp. 4275–4277, 2011. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-36-21-4275
  20. S. M. Haneef, Z. Yang, L. Thévenaz, D. Venkitesh, and B. Srinivasan, “Performance analysis of frequency shift estimation techniques in brillouin distributed fiber sensors,” Opt. Express, vol. 26, no. 11, pp. 14 661–14 677, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-11-14661
  21. H. Wu, L. Wang, Z. Zhao, N. Guo, C. Shu, and C. Lu, “Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques,” Opt. Express, vol. 26, no. 5, pp. 5126–5139, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-5-5126
  22. S. Zaslawski, Z. Yang, M. A. Soto, and L. Thévenaz, “Impact of fitting and digital filtering on signal-to-noise ratio and brillouin frequency shift uncertainty of botda measurements,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Art. no. . [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=OFS-2018-ThE27
  23. S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674–693,  1989.
  24. A. Buades, B. Coll, and J. Morel, “A non-local algorithm for image denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit., 2005, vol. 2, pp. 60–65 vol. 2.
  25. S. L. Floch and F. Sauser, “New improvements for brillouin optical time-domain reflectometry,” in Proc. 25th Opt. Fiber Sensors Conf.,  2017, pp. 1–4.
  26. R. W. Schafer, “What is a savitzky-golay filter? [lecture notes],” IEEE Signal Process. Mag., vol. 28, no. 4, pp. 111–117,  2011.
  27. E. A. Lee and D. G. Messerschmitt, Digital Communication, Second Edition. Norwell, MA, USA: Kluwer Academic Publishers, 1994.
  28. C. A. Gobet, “Spectral distribution of a sampled 1st-order lowpass filtered white noise,” Electron. Lett., vol. 17, no. 19, pp. 720–721,  1981.
  29. S. G. Mallat, A Wavelet Tour of Signal Processing, 3rd Edition. San Diego, CA, USA: Academic Press, 2008.
  30. S. Wang, Z. Yang, M. A. Soto, and L. Thévenaz, “Optimizing the signal-to-noise ratio for direct-detection BOTDA,” in Proc. 7th Eur. Workshop Opt. Fibre Sensors, SPIE, 2019, vol. 11199, pp. 359–362. [Online]. Available: https://doi.org/10.1117/12.2540930

2018 (3)

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded brillouin optical time-domain analyzers,” Opt. Express, vol. 26, no. 13, pp. 16 505–16 523, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-13-16505

S. M. Haneef, Z. Yang, L. Thévenaz, D. Venkitesh, and B. Srinivasan, “Performance analysis of frequency shift estimation techniques in brillouin distributed fiber sensors,” Opt. Express, vol. 26, no. 11, pp. 14 661–14 677, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-11-14661

H. Wu, L. Wang, Z. Zhao, N. Guo, C. Shu, and C. Lu, “Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques,” Opt. Express, vol. 26, no. 5, pp. 5126–5139, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-5-5126

2017 (2)

M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, “Analytical expression and experimental validation of the brillouin gain spectral broadening at any sensing spatial resolution,” vol. 10323, 2017. [Online]. Available: https://doi.org/10.1117/12.2267639

S. L. Floch and F. Sauser, “New improvements for brillouin optical time-domain reflectometry,” in Proc. 25th Opt. Fiber Sensors Conf.,  2017, pp. 1–4.

2016 (3)

M. A. Soto, J. A. Ramírez, and T. Luc, “Intensifying the response of distributed optical fibre sensors using 2d and 3d image restoration,” Nature Commun., vol. 7, 2016. [Online]. Available: https://www.nature.com/articles/ncomms10870

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in brillouin distributed fiber sensors,” Opt. Express, vol. 24, no. 1, pp. 586–597, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-1-586

A. Dominguez-Lopez, “Novel scanning method for distortion-free botda measurements,” Opt. Express, vol. 24, no. 10, pp. 10 188–10 204, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-10-10188

2015 (3)

A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband brillouin optical time domain analysis,” Opt. Express, vol. 23, no. 8, pp. 10 341–10 352, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-8-10341

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express, vol. 23, no. 23, pp. 29 514–29 532, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-23-29514

S. L. Floch, F. Sauser, M. Llera, and E. Rochat, “Novel brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses,” J. Lightw. Technol., vol. 33, no. 12, pp. 2623–2627,  2015.

2013 (2)

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of brillouin distributed optical fiber sensors,” Opt. Express, vol. 21, no. 25, pp. 31 347–31 366, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-25-31347

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a brillouin optical time-domain analysis system,” Opt. Express, vol. 21, no. 12, pp. 14 017–14 035, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-12-14017

2011 (2)

2010 (2)

F. Rodriguez-Barrios, “Distributed brillouin fiber sensor assisted by first-order raman amplification,” J. Lightw. Technol., vol. 28, no. 15, pp. 2162–2172,  2010.

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol., vol. 21, no. 9, 2010, Art. no. .

2009 (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed brillouin fiber sensors,” IEEE Sensors J., vol. 9, no. 6, pp. 633–634,  2009.

1999 (1)

A. W. Brown, M. DeMerchant, X. Bao, and T. W. Bremner, “Spatial resolution enhancement of a brillouin-distributed sensor using a novel signal processing method,” J. Lightw. Technol., vol. 17, no. 7, pp. 1179–1183,  1999.

1990 (2)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett., vol. 2, no. 5, pp. 352–354,  1990.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated brillouin scattering in optical silica fibers,” Opt. Lett., vol. 15, no. 18, pp. 1038–1040, 1990. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-15-18-1038

1989 (1)

S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674–693,  1989.

1981 (1)

C. A. Gobet, “Spectral distribution of a sampled 1st-order lowpass filtered white noise,” Electron. Lett., vol. 17, no. 19, pp. 720–721,  1981.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics. San Diego, CA, USA: Academic Press, 2007.

Alem, M.

M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, “Analytical expression and experimental validation of the brillouin gain spectral broadening at any sensing spatial resolution,” vol. 10323, 2017. [Online]. Available: https://doi.org/10.1117/12.2267639

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express, vol. 23, no. 23, pp. 29 514–29 532, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-23-29514

Angulo-Vinuesa, X.

A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband brillouin optical time domain analysis,” Opt. Express, vol. 23, no. 8, pp. 10 341–10 352, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-8-10341

Bao, X.

A. W. Brown, M. DeMerchant, X. Bao, and T. W. Bremner, “Spatial resolution enhancement of a brillouin-distributed sensor using a novel signal processing method,” J. Lightw. Technol., vol. 17, no. 7, pp. 1179–1183,  1999.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed brillouin fiber sensors,” IEEE Sensors J., vol. 9, no. 6, pp. 633–634,  2009.

Bolognini, G.

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol., vol. 21, no. 9, 2010, Art. no. .

Boyd, R. W.

R. W. Boyd, Nonlinear Optics. San Diego, CA, USA: Academic Press, 2008.

Bremner, T. W.

A. W. Brown, M. DeMerchant, X. Bao, and T. W. Bremner, “Spatial resolution enhancement of a brillouin-distributed sensor using a novel signal processing method,” J. Lightw. Technol., vol. 17, no. 7, pp. 1179–1183,  1999.

Brown, A. W.

A. W. Brown, M. DeMerchant, X. Bao, and T. W. Bremner, “Spatial resolution enhancement of a brillouin-distributed sensor using a novel signal processing method,” J. Lightw. Technol., vol. 17, no. 7, pp. 1179–1183,  1999.

Buades, A.

A. Buades, B. Coll, and J. Morel, “A non-local algorithm for image denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit., 2005, vol. 2, pp. 60–65 vol. 2.

Castillo-Guerra, E.

Coll, B.

A. Buades, B. Coll, and J. Morel, “A non-local algorithm for image denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit., 2005, vol. 2, pp. 60–65 vol. 2.

Colpitts, B. G.

DeMerchant, M.

A. W. Brown, M. DeMerchant, X. Bao, and T. W. Bremner, “Spatial resolution enhancement of a brillouin-distributed sensor using a novel signal processing method,” J. Lightw. Technol., vol. 17, no. 7, pp. 1179–1183,  1999.

Dominguez-Lopez, A.

A. Dominguez-Lopez, “Novel scanning method for distortion-free botda measurements,” Opt. Express, vol. 24, no. 10, pp. 10 188–10 204, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-10-10188

A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband brillouin optical time domain analysis,” Opt. Express, vol. 23, no. 8, pp. 10 341–10 352, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-8-10341

Farahani, M. A.

Floch, S. L.

S. L. Floch and F. Sauser, “New improvements for brillouin optical time-domain reflectometry,” in Proc. 25th Opt. Fiber Sensors Conf.,  2017, pp. 1–4.

S. L. Floch, F. Sauser, M. Llera, and E. Rochat, “Novel brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses,” J. Lightw. Technol., vol. 33, no. 12, pp. 2623–2627,  2015.

Gobet, C. A.

C. A. Gobet, “Spectral distribution of a sampled 1st-order lowpass filtered white noise,” Electron. Lett., vol. 17, no. 19, pp. 720–721,  1981.

Gonzalez-Herraez, M.

A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband brillouin optical time domain analysis,” Opt. Express, vol. 23, no. 8, pp. 10 341–10 352, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-8-10341

Guo, N.

Haneef, S. M.

S. M. Haneef, Z. Yang, L. Thévenaz, D. Venkitesh, and B. Srinivasan, “Performance analysis of frequency shift estimation techniques in brillouin distributed fiber sensors,” Opt. Express, vol. 26, no. 11, pp. 14 661–14 677, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-11-14661

Horiguchi, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated brillouin scattering in optical silica fibers,” Opt. Lett., vol. 15, no. 18, pp. 1038–1040, 1990. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-15-18-1038

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett., vol. 2, no. 5, pp. 352–354,  1990.

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett., vol. 2, no. 5, pp. 352–354,  1990.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated brillouin scattering in optical silica fibers,” Opt. Lett., vol. 15, no. 18, pp. 1038–1040, 1990. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-15-18-1038

Lee, E. A.

E. A. Lee and D. G. Messerschmitt, Digital Communication, Second Edition. Norwell, MA, USA: Kluwer Academic Publishers, 1994.

Li, Z.

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded brillouin optical time-domain analyzers,” Opt. Express, vol. 26, no. 13, pp. 16 505–16 523, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-13-16505

Lin, J.

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a brillouin optical time-domain analysis system,” Opt. Express, vol. 21, no. 12, pp. 14 017–14 035, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-12-14017

Llera, M.

S. L. Floch, F. Sauser, M. Llera, and E. Rochat, “Novel brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses,” J. Lightw. Technol., vol. 33, no. 12, pp. 2623–2627,  2015.

Lopez-Gil, A.

A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband brillouin optical time domain analysis,” Opt. Express, vol. 23, no. 8, pp. 10 341–10 352, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-8-10341

Lu, C.

Luc, T.

M. A. Soto, J. A. Ramírez, and T. Luc, “Intensifying the response of distributed optical fibre sensors using 2d and 3d image restoration,” Nature Commun., vol. 7, 2016. [Online]. Available: https://www.nature.com/articles/ncomms10870

Mafang, S. F.

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a brillouin optical time-domain analysis system,” Opt. Express, vol. 21, no. 12, pp. 14 017–14 035, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-12-14017

Mallat, S. G.

S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674–693,  1989.

S. G. Mallat, A Wavelet Tour of Signal Processing, 3rd Edition. San Diego, CA, USA: Academic Press, 2008.

Martin-Lopez, S.

A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband brillouin optical time domain analysis,” Opt. Express, vol. 23, no. 8, pp. 10 341–10 352, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-8-10341

Messerschmitt, D. G.

E. A. Lee and D. G. Messerschmitt, Digital Communication, Second Edition. Norwell, MA, USA: Kluwer Academic Publishers, 1994.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed brillouin fiber sensors,” IEEE Sensors J., vol. 9, no. 6, pp. 633–634,  2009.

Morel, J.

A. Buades, B. Coll, and J. Morel, “A non-local algorithm for image denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit., 2005, vol. 2, pp. 60–65 vol. 2.

Pasquale, F. D.

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol., vol. 21, no. 9, 2010, Art. no. .

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and T. Luc, “Intensifying the response of distributed optical fibre sensors using 2d and 3d image restoration,” Nature Commun., vol. 7, 2016. [Online]. Available: https://www.nature.com/articles/ncomms10870

Rochat, E.

S. L. Floch, F. Sauser, M. Llera, and E. Rochat, “Novel brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses,” J. Lightw. Technol., vol. 33, no. 12, pp. 2623–2627,  2015.

Rodriguez-Barrios, F.

F. Rodriguez-Barrios, “Distributed brillouin fiber sensor assisted by first-order raman amplification,” J. Lightw. Technol., vol. 28, no. 15, pp. 2162–2172,  2010.

Sauser, F.

S. L. Floch and F. Sauser, “New improvements for brillouin optical time-domain reflectometry,” in Proc. 25th Opt. Fiber Sensors Conf.,  2017, pp. 1–4.

S. L. Floch, F. Sauser, M. Llera, and E. Rochat, “Novel brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses,” J. Lightw. Technol., vol. 33, no. 12, pp. 2623–2627,  2015.

Schafer, R. W.

R. W. Schafer, “What is a savitzky-golay filter? [lecture notes],” IEEE Signal Process. Mag., vol. 28, no. 4, pp. 111–117,  2011.

Shu, C.

Soto, M. A.

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded brillouin optical time-domain analyzers,” Opt. Express, vol. 26, no. 13, pp. 16 505–16 523, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-13-16505

M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, “Analytical expression and experimental validation of the brillouin gain spectral broadening at any sensing spatial resolution,” vol. 10323, 2017. [Online]. Available: https://doi.org/10.1117/12.2267639

M. A. Soto, J. A. Ramírez, and T. Luc, “Intensifying the response of distributed optical fibre sensors using 2d and 3d image restoration,” Nature Commun., vol. 7, 2016. [Online]. Available: https://www.nature.com/articles/ncomms10870

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in brillouin distributed fiber sensors,” Opt. Express, vol. 24, no. 1, pp. 586–597, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-1-586

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express, vol. 23, no. 23, pp. 29 514–29 532, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-23-29514

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of brillouin distributed optical fiber sensors,” Opt. Express, vol. 21, no. 25, pp. 31 347–31 366, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-25-31347

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol., vol. 21, no. 9, 2010, Art. no. .

S. Zaslawski, Z. Yang, M. A. Soto, and L. Thévenaz, “Impact of fitting and digital filtering on signal-to-noise ratio and brillouin frequency shift uncertainty of botda measurements,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Art. no. . [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=OFS-2018-ThE27

S. Wang, Z. Yang, M. A. Soto, and L. Thévenaz, “Optimizing the signal-to-noise ratio for direct-detection BOTDA,” in Proc. 7th Eur. Workshop Opt. Fibre Sensors, SPIE, 2019, vol. 11199, pp. 359–362. [Online]. Available: https://doi.org/10.1117/12.2540930

Srinivasan, B.

S. M. Haneef, Z. Yang, L. Thévenaz, D. Venkitesh, and B. Srinivasan, “Performance analysis of frequency shift estimation techniques in brillouin distributed fiber sensors,” Opt. Express, vol. 26, no. 11, pp. 14 661–14 677, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-11-14661

Tateda, M.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated brillouin scattering in optical silica fibers,” Opt. Lett., vol. 15, no. 18, pp. 1038–1040, 1990. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-15-18-1038

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett., vol. 2, no. 5, pp. 352–354,  1990.

Thévenaz, L.

S. M. Haneef, Z. Yang, L. Thévenaz, D. Venkitesh, and B. Srinivasan, “Performance analysis of frequency shift estimation techniques in brillouin distributed fiber sensors,” Opt. Express, vol. 26, no. 11, pp. 14 661–14 677, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-11-14661

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded brillouin optical time-domain analyzers,” Opt. Express, vol. 26, no. 13, pp. 16 505–16 523, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-13-16505

M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, “Analytical expression and experimental validation of the brillouin gain spectral broadening at any sensing spatial resolution,” vol. 10323, 2017. [Online]. Available: https://doi.org/10.1117/12.2267639

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in brillouin distributed fiber sensors,” Opt. Express, vol. 24, no. 1, pp. 586–597, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-1-586

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express, vol. 23, no. 23, pp. 29 514–29 532, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-23-29514

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a brillouin optical time-domain analysis system,” Opt. Express, vol. 21, no. 12, pp. 14 017–14 035, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-12-14017

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of brillouin distributed optical fiber sensors,” Opt. Express, vol. 21, no. 25, pp. 31 347–31 366, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-25-31347

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol., vol. 21, no. 9, 2010, Art. no. .

S. Zaslawski, Z. Yang, M. A. Soto, and L. Thévenaz, “Impact of fitting and digital filtering on signal-to-noise ratio and brillouin frequency shift uncertainty of botda measurements,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Art. no. . [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=OFS-2018-ThE27

S. Wang, Z. Yang, M. A. Soto, and L. Thévenaz, “Optimizing the signal-to-noise ratio for direct-detection BOTDA,” in Proc. 7th Eur. Workshop Opt. Fibre Sensors, SPIE, 2019, vol. 11199, pp. 359–362. [Online]. Available: https://doi.org/10.1117/12.2540930

Tur, M.

M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, “Analytical expression and experimental validation of the brillouin gain spectral broadening at any sensing spatial resolution,” vol. 10323, 2017. [Online]. Available: https://doi.org/10.1117/12.2267639

Venkitesh, D.

S. M. Haneef, Z. Yang, L. Thévenaz, D. Venkitesh, and B. Srinivasan, “Performance analysis of frequency shift estimation techniques in brillouin distributed fiber sensors,” Opt. Express, vol. 26, no. 11, pp. 14 661–14 677, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-11-14661

Wang, L.

Wang, S.

S. Wang, Z. Yang, M. A. Soto, and L. Thévenaz, “Optimizing the signal-to-noise ratio for direct-detection BOTDA,” in Proc. 7th Eur. Workshop Opt. Fibre Sensors, SPIE, 2019, vol. 11199, pp. 359–362. [Online]. Available: https://doi.org/10.1117/12.2540930

Wu, H.

Yang, Z.

S. M. Haneef, Z. Yang, L. Thévenaz, D. Venkitesh, and B. Srinivasan, “Performance analysis of frequency shift estimation techniques in brillouin distributed fiber sensors,” Opt. Express, vol. 26, no. 11, pp. 14 661–14 677, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-11-14661

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded brillouin optical time-domain analyzers,” Opt. Express, vol. 26, no. 13, pp. 16 505–16 523, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-13-16505

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in brillouin distributed fiber sensors,” Opt. Express, vol. 24, no. 1, pp. 586–597, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-1-586

S. Zaslawski, Z. Yang, M. A. Soto, and L. Thévenaz, “Impact of fitting and digital filtering on signal-to-noise ratio and brillouin frequency shift uncertainty of botda measurements,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Art. no. . [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=OFS-2018-ThE27

S. Wang, Z. Yang, M. A. Soto, and L. Thévenaz, “Optimizing the signal-to-noise ratio for direct-detection BOTDA,” in Proc. 7th Eur. Workshop Opt. Fibre Sensors, SPIE, 2019, vol. 11199, pp. 359–362. [Online]. Available: https://doi.org/10.1117/12.2540930

Zaslawski, S.

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded brillouin optical time-domain analyzers,” Opt. Express, vol. 26, no. 13, pp. 16 505–16 523, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-13-16505

S. Zaslawski, Z. Yang, M. A. Soto, and L. Thévenaz, “Impact of fitting and digital filtering on signal-to-noise ratio and brillouin frequency shift uncertainty of botda measurements,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Art. no. . [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=OFS-2018-ThE27

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed brillouin fiber sensors,” IEEE Sensors J., vol. 9, no. 6, pp. 633–634,  2009.

Zhao, Z.

Electron. Lett. (1)

C. A. Gobet, “Spectral distribution of a sampled 1st-order lowpass filtered white noise,” Electron. Lett., vol. 17, no. 19, pp. 720–721,  1981.

IEEE Photon. Technol. Lett. (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett., vol. 2, no. 5, pp. 352–354,  1990.

IEEE Sensors J. (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed brillouin fiber sensors,” IEEE Sensors J., vol. 9, no. 6, pp. 633–634,  2009.

IEEE Signal Process. Mag. (1)

R. W. Schafer, “What is a savitzky-golay filter? [lecture notes],” IEEE Signal Process. Mag., vol. 28, no. 4, pp. 111–117,  2011.

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674–693,  1989.

J. Lightw. Technol. (3)

F. Rodriguez-Barrios, “Distributed brillouin fiber sensor assisted by first-order raman amplification,” J. Lightw. Technol., vol. 28, no. 15, pp. 2162–2172,  2010.

S. L. Floch, F. Sauser, M. Llera, and E. Rochat, “Novel brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses,” J. Lightw. Technol., vol. 33, no. 12, pp. 2623–2627,  2015.

A. W. Brown, M. DeMerchant, X. Bao, and T. W. Bremner, “Spatial resolution enhancement of a brillouin-distributed sensor using a novel signal processing method,” J. Lightw. Technol., vol. 17, no. 7, pp. 1179–1183,  1999.

Meas. Sci. Technol. (1)

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol., vol. 21, no. 9, 2010, Art. no. .

Nature Commun. (1)

M. A. Soto, J. A. Ramírez, and T. Luc, “Intensifying the response of distributed optical fibre sensors using 2d and 3d image restoration,” Nature Commun., vol. 7, 2016. [Online]. Available: https://www.nature.com/articles/ncomms10870

Opt. Express (9)

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of brillouin distributed optical fiber sensors,” Opt. Express, vol. 21, no. 25, pp. 31 347–31 366, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-25-31347

Z. Yang, M. A. Soto, and L. Thévenaz, “Increasing robustness of bipolar pulse coding in brillouin distributed fiber sensors,” Opt. Express, vol. 24, no. 1, pp. 586–597, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-1-586

Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, “Design rules for optimizing unipolar coded brillouin optical time-domain analyzers,” Opt. Express, vol. 26, no. 13, pp. 16 505–16 523, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-13-16505

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a brillouin optical time-domain analysis system,” Opt. Express, vol. 21, no. 12, pp. 14 017–14 035, 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-12-14017

A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband brillouin optical time domain analysis,” Opt. Express, vol. 23, no. 8, pp. 10 341–10 352, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-8-10341

A. Dominguez-Lopez, “Novel scanning method for distortion-free botda measurements,” Opt. Express, vol. 24, no. 10, pp. 10 188–10 204, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-10-10188

S. M. Haneef, Z. Yang, L. Thévenaz, D. Venkitesh, and B. Srinivasan, “Performance analysis of frequency shift estimation techniques in brillouin distributed fiber sensors,” Opt. Express, vol. 26, no. 11, pp. 14 661–14 677, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-11-14661

H. Wu, L. Wang, Z. Zhao, N. Guo, C. Shu, and C. Lu, “Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques,” Opt. Express, vol. 26, no. 5, pp. 5126–5139, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-5-5126

M. Alem, M. A. Soto, and L. Thévenaz, “Analytical model and experimental verification of the critical power for modulation instability in optical fibers,” Opt. Express, vol. 23, no. 23, pp. 29 514–29 532, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-23-29514

Opt. Lett. (2)

Proc. 25th Opt. Fiber Sensors Conf. (1)

S. L. Floch and F. Sauser, “New improvements for brillouin optical time-domain reflectometry,” in Proc. 25th Opt. Fiber Sensors Conf.,  2017, pp. 1–4.

Other (8)

E. A. Lee and D. G. Messerschmitt, Digital Communication, Second Edition. Norwell, MA, USA: Kluwer Academic Publishers, 1994.

S. Zaslawski, Z. Yang, M. A. Soto, and L. Thévenaz, “Impact of fitting and digital filtering on signal-to-noise ratio and brillouin frequency shift uncertainty of botda measurements,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Art. no. . [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=OFS-2018-ThE27

A. Buades, B. Coll, and J. Morel, “A non-local algorithm for image denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit., 2005, vol. 2, pp. 60–65 vol. 2.

S. G. Mallat, A Wavelet Tour of Signal Processing, 3rd Edition. San Diego, CA, USA: Academic Press, 2008.

S. Wang, Z. Yang, M. A. Soto, and L. Thévenaz, “Optimizing the signal-to-noise ratio for direct-detection BOTDA,” in Proc. 7th Eur. Workshop Opt. Fibre Sensors, SPIE, 2019, vol. 11199, pp. 359–362. [Online]. Available: https://doi.org/10.1117/12.2540930

M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, “Analytical expression and experimental validation of the brillouin gain spectral broadening at any sensing spatial resolution,” vol. 10323, 2017. [Online]. Available: https://doi.org/10.1117/12.2267639

R. W. Boyd, Nonlinear Optics. San Diego, CA, USA: Academic Press, 2008.

G. P. Agrawal, Nonlinear Fiber Optics. San Diego, CA, USA: Academic Press, 2007.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.