Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 14,
  • pp. 3670-3676
  • (2020)

Polarization Dependence of Optical Properties of Single-Mode Polymer Optical Waveguides Fabricated Under Different Processes at 1310/1550 nm

Open Access Open Access

Abstract

We experimentally investigate the polarization dependence of the optical properties of single-mode polymer optical waveguides. We compare two types of waveguides composed of the same polymer materials: step-index square-core waveguides fabricated using the direct curing method and graded-index (GI) circular-core waveguides fabricated using the Mosquito method. We demonstrate that the GI circular-core single-mode waveguides exhibit remarkably small dependence of optical loss on the polarization angle, which is less than 0.1 dB polarization dependent loss (PDL) at both 1310 and 1550 nm wavelengths. This steady polarization property is attributed to the material stress free to the composing polymers during the fabrication process of the Mosquito method and to parabolic GI profile formed in symmetric circular core.

PDF Article
More Like This
Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm

Kazuki Yasuhara, Feng Yu, and Takaaki Ishigure
Opt. Express 25(8) 8524-8533 (2017)

Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm

Xiao Xu, Lin Ma, Shoulin Jiang, and Zuyuan He
Opt. Express 25(21) 25689-25696 (2017)

Circular core single-mode 3-dimensional crossover polymer waveguides fabricated with the Mosquito method

Omar Faruk Rasel and Takaaki Ishigure
Opt. Express 27(22) 32465-32479 (2019)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved