D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, pp. 80–90, 2019.
P. Minzioni, “Roadmap on all-optical processing,” J. Opt., vol. 21, 2019, Art. no. .
B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.
D. Mishra and R. K. Sonkar, “Analysis of germanium-doped silicon vertical PN junction optical phase shifter,” J. Opt. Soc. Am. B, vol. 36, pp. 1348–1354, 2019.
L. McKay, “Brillouin-based phase shifter in a silicon waveguide,” Optica, vol. 6, pp. 907–913, 2019.
A. H. Safavi-Naeini, D. V. Thourhout, R. Baets, and R. V. Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics,” Optica, vol. 6, pp. 213–232, 2019.
A. Zarifi, “On-chip correlation-based Brillouin sensing: design, experiment, and simulation,” J. Opt. Soc. Am. B, vol. 36, pp. 146–152, 2019.
N. Zhang, X. Fu, J. Liu, and C. Shu, “Surpassing the tuning speed limit of slow-light-based tunable optical delay via four-wave mixing bragg scattering,” Opt. Lett., vol. 43, pp. 4212–4215, 2018.
A. Zarifi, “Highly localized distributed Brillouin scattering response in a photonic integrated circuit,” APL Photon., vol. 3, 2018, Art. no. .
A. Zarifi, “Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations,” Opt. Lett., vol. 43, pp. 3493–3496, 2018.
C. Porzi, “Photonic integrated microwave phase shifter up to the mm-wave band with fast response time in silicon-on-insulator technology,” J. Lightw. Technol., vol. 36, no. 19, pp. 4494–4500, 2018.
M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt., vol. 20, 2018, Art. no. .
Z. Guo and J. Ma, “Microwave photonic phase shifter with a full 360° tunable range based on polarization sensitive electro-optical phase modulator and polarization modulator,” Opt. Eng., vol. 57, 2018, Art. no. .
A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors, vol. 18, 2018, Art. no. .
Q. Cheng, A. Alomainy, and Y. Hao, “Near-field millimeter-wave phased array imaging with compressive sensing,” IEEE Access, vol. 5, pp. 18975–18986, 2017.
I. Aryanfar, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett., vol. 42, pp. 1313–1316, 2017.
Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica, vol. 4, pp. 418–423, 2017.
A. Choudhary, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Scientific Rep., vol. 7, 2017, Art. no. .
E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon., vol. 10, pp. 463–467, 2016.
M. Merklein,“Stimulated Brillouin scattering in photonic integrated circuits: Novel applications and devices,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2, pp. 336–346, 2016.
X. Liu, “Broadband tunable microwave photonic phase shifter with low RF power variation in a high-Q AlN microring,” Opt. Lett., vol. 41, pp. 3599–3602, 2016.
M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett., vol. 39, pp. 5854–5857, 2014.
M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, pp. 28810–28818, 2014.
W. Liu and J. Yao, “Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG,” Opt. Lett., vol. 39, pp. 922–924, 2014.
E. Chan, “Microwave photonic phase shifter based on a nonreciprocal optical phase shifter inside a Sagnac interferometer,” Opt. Commun., vol. 324, pp. 127–133, 2014.
E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678, 2012.
Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62, 2009.
A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210, 2006.
J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229, 2006.
S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 6, pp. 1003–1006, 1997.
D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.
R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129, 1987.
G. P. Agrawal, “Chapter 9 - Stimulated Brillouin scattering,” in Nonlinear Fiber Optics, G. P. Agrawal, Ed., Optics and Photonics.4th ed., San Diego, CA, USA: Academic Press, 2006, pp. 329–367.
Q. Cheng, A. Alomainy, and Y. Hao, “Near-field millimeter-wave phased array imaging with compressive sensing,” IEEE Access, vol. 5, pp. 18975–18986, 2017.
M. Attygalle and D. Stepanov, “Phase manipulation of RF signals using a fiber Bragg grating with step group delay profile,” in Proc. Adv. Photon. Congr., 2012, Paper BW2E.5.
M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.
B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.
R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129, 1987.
R. W. Boyd, Nonlinear Optics, 3rd ed., New York, NY, USA: Academic, 2008.
M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.
D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, pp. 80–90, 2019.
J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229, 2006.
E. Chan, “Microwave photonic phase shifter based on a nonreciprocal optical phase shifter inside a Sagnac interferometer,” Opt. Commun., vol. 324, pp. 127–133, 2014.
E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678, 2012.
Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62, 2009.
Q. Cheng, A. Alomainy, and Y. Hao, “Near-field millimeter-wave phased array imaging with compressive sensing,” IEEE Access, vol. 5, pp. 18975–18986, 2017.
M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, pp. 28810–28818, 2014.
Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica, vol. 4, pp. 418–423, 2017.
A. Choudhary, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Scientific Rep., vol. 7, 2017, Art. no. .
A. Choudhary, “Linearity and resolution of on-chip Brillouin filters for rf and optical communications,” in Proc. Opto-Electron. Commun. Conf. and Photon. Global Conf., 2017, pp. 1–2.
M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.
M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.
B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.
M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt., vol. 20, 2018, Art. no. .
Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica, vol. 4, pp. 418–423, 2017.
M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett., vol. 39, pp. 5854–5857, 2014.
M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, pp. 28810–28818, 2014.
B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon., vol. 5, pp. 536–587, 2013.
Z. Guo and J. Ma, “Microwave photonic phase shifter with a full 360° tunable range based on polarization sensitive electro-optical phase modulator and polarization modulator,” Opt. Eng., vol. 57, 2018, Art. no. .
D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.
R. C. Hansen, Phased Array Antennas. Hoboken, NJ, USA: Wiley, 1998.
Q. Cheng, A. Alomainy, and Y. Hao, “Near-field millimeter-wave phased array imaging with compressive sensing,” IEEE Access, vol. 5, pp. 18975–18986, 2017.
D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.
E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon., vol. 10, pp. 463–467, 2016.
S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 6, pp. 1003–1006, 1997.
A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210, 2006.
M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.
Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62, 2009.
A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors, vol. 18, 2018, Art. no. .
S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 6, pp. 1003–1006, 1997.
A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210, 2006.
M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, pp. 28810–28818, 2014.
Z. Guo and J. Ma, “Microwave photonic phase shifter with a full 360° tunable range based on polarization sensitive electro-optical phase modulator and polarization modulator,” Opt. Eng., vol. 57, 2018, Art. no. .
M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, pp. 28810–28818, 2014.
D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, pp. 80–90, 2019.
Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica, vol. 4, pp. 418–423, 2017.
M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett., vol. 39, pp. 5854–5857, 2014.
M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, pp. 28810–28818, 2014.
M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt., vol. 20, 2018, Art. no. .
M. Merklein,“Stimulated Brillouin scattering in photonic integrated circuits: Novel applications and devices,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2, pp. 336–346, 2016.
E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678, 2012.
P. Minzioni, “Roadmap on all-optical processing,” J. Opt., vol. 21, 2019, Art. no. .
A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors, vol. 18, 2018, Art. no. .
J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229, 2006.
M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, pp. 28810–28818, 2014.
M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett., vol. 39, pp. 5854–5857, 2014.
J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229, 2006.
C. Porzi, “Photonic integrated microwave phase shifter up to the mm-wave band with fast response time in silicon-on-insulator technology,” J. Lightw. Technol., vol. 36, no. 19, pp. 4494–4500, 2018.
B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.
B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon., vol. 5, pp. 536–587, 2013.
Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62, 2009.
B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.
E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon., vol. 10, pp. 463–467, 2016.
D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.
E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon., vol. 10, pp. 463–467, 2016.
R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129, 1987.
B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.
M. Attygalle and D. Stepanov, “Phase manipulation of RF signals using a fiber Bragg grating with step group delay profile,” in Proc. Adv. Photon. Congr., 2012, Paper BW2E.5.
M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt., vol. 20, 2018, Art. no. .
D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.
Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62, 2009.
M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.
S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 6, pp. 1003–1006, 1997.
D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, pp. 80–90, 2019.
W. Liu and J. Yao, “Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG,” Opt. Lett., vol. 39, pp. 922–924, 2014.
Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62, 2009.
A. Zarifi, “On-chip correlation-based Brillouin sensing: design, experiment, and simulation,” J. Opt. Soc. Am. B, vol. 36, pp. 146–152, 2019.
A. Zarifi, “Highly localized distributed Brillouin scattering response in a photonic integrated circuit,” APL Photon., vol. 3, 2018, Art. no. .
A. Zarifi, “Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations,” Opt. Lett., vol. 43, pp. 3493–3496, 2018.
E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678, 2012.
Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62, 2009.
A. Zarifi, “Highly localized distributed Brillouin scattering response in a photonic integrated circuit,” APL Photon., vol. 3, 2018, Art. no. .
Q. Cheng, A. Alomainy, and Y. Hao, “Near-field millimeter-wave phased array imaging with compressive sensing,” IEEE Access, vol. 5, pp. 18975–18986, 2017.
R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129, 1987.
M. Merklein,“Stimulated Brillouin scattering in photonic integrated circuits: Novel applications and devices,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2, pp. 336–346, 2016.
A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210, 2006.
Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62, 2009.
S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 6, pp. 1003–1006, 1997.
E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678, 2012.
J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229, 2006.
C. Porzi, “Photonic integrated microwave phase shifter up to the mm-wave band with fast response time in silicon-on-insulator technology,” J. Lightw. Technol., vol. 36, no. 19, pp. 4494–4500, 2018.
P. Minzioni, “Roadmap on all-optical processing,” J. Opt., vol. 21, 2019, Art. no. .
M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt., vol. 20, 2018, Art. no. .
D. Mishra and R. K. Sonkar, “Analysis of germanium-doped silicon vertical PN junction optical phase shifter,” J. Opt. Soc. Am. B, vol. 36, pp. 1348–1354, 2019.
A. Zarifi, “On-chip correlation-based Brillouin sensing: design, experiment, and simulation,” J. Opt. Soc. Am. B, vol. 36, pp. 146–152, 2019.
B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.
D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, pp. 80–90, 2019.
E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon., vol. 10, pp. 463–467, 2016.
E. Chan, “Microwave photonic phase shifter based on a nonreciprocal optical phase shifter inside a Sagnac interferometer,” Opt. Commun., vol. 324, pp. 127–133, 2014.
Z. Guo and J. Ma, “Microwave photonic phase shifter with a full 360° tunable range based on polarization sensitive electro-optical phase modulator and polarization modulator,” Opt. Eng., vol. 57, 2018, Art. no. .
M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, pp. 28810–28818, 2014.
M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett., vol. 39, pp. 5854–5857, 2014.
N. Zhang, X. Fu, J. Liu, and C. Shu, “Surpassing the tuning speed limit of slow-light-based tunable optical delay via four-wave mixing bragg scattering,” Opt. Lett., vol. 43, pp. 4212–4215, 2018.
I. Aryanfar, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett., vol. 42, pp. 1313–1316, 2017.
M. B. Ayun, A. Schwarzbaum, S. Rosenberg, M. Pinchas, and S. Sternklar, “Photonic radio frequency phase-shift amplification by radio frequency interferometry,” Opt. Lett., vol. 40, pp. 4863–4866, 2015.
W. Liu and J. Yao, “Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG,” Opt. Lett., vol. 39, pp. 922–924, 2014.
X. Liu, “Broadband tunable microwave photonic phase shifter with low RF power variation in a high-Q AlN microring,” Opt. Lett., vol. 41, pp. 3599–3602, 2016.
A. Zarifi, “Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations,” Opt. Lett., vol. 43, pp. 3493–3496, 2018.
D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.
A. H. Safavi-Naeini, D. V. Thourhout, R. Baets, and R. V. Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics,” Optica, vol. 6, pp. 213–232, 2019.
L. McKay, “Brillouin-based phase shifter in a silicon waveguide,” Optica, vol. 6, pp. 907–913, 2019.
Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica, vol. 4, pp. 418–423, 2017.
A. Choudhary, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Scientific Rep., vol. 7, 2017, Art. no. .
A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors, vol. 18, 2018, Art. no. .
R. C. Hansen, Phased Array Antennas. Hoboken, NJ, USA: Wiley, 1998.
M. Attygalle and D. Stepanov, “Phase manipulation of RF signals using a fiber Bragg grating with step group delay profile,” in Proc. Adv. Photon. Congr., 2012, Paper BW2E.5.
M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.
R. W. Boyd, Nonlinear Optics, 3rd ed., New York, NY, USA: Academic, 2008.
A. Choudhary, “Linearity and resolution of on-chip Brillouin filters for rf and optical communications,” in Proc. Opto-Electron. Commun. Conf. and Photon. Global Conf., 2017, pp. 1–2.
G. P. Agrawal, “Chapter 9 - Stimulated Brillouin scattering,” in Nonlinear Fiber Optics, G. P. Agrawal, Ed., Optics and Photonics.4th ed., San Diego, CA, USA: Academic Press, 2006, pp. 329–367.