Abstract

Microwave photonic phase shifters based on stimulated Brillouin scattering (SBS) offer tunable and broadband, optically controllable phase shifts. However, achieving a 360° phase shift requires a large amount of SBS gain which often exceeds the available gain and power handling capability of an integrated waveguide. A Radio Frequency (RF) interference technique has recently been utilized in an integrated silicon platform, which uses forward Brillouin scattering in a suspended waveguide to compensate for the lack of available Brillouin gain in standard silicon on insulator platforms. This interference scheme amplifies the phase shift at the expense of link performance. Here, we demonstrate and analytically model a 360° ultra-broadband phase shifter using backward SBS in both fiber and on-chip by combining SBS and RF interference. The phase enhancement scheme greatly reduces the required Brillouin gain and thus the required optical power. Additionally, the backward architecture reduces filter requirements as the residual pump reflections are simpler to remove compared to the pump in the forward Brillouin scattering case, where the pump co-propagates with the signal. The model provides a deeper insight into the properties of the interferometric phase enhancement scheme and predicts the potential trade-offs of an optimized system, showing reduced link loss at higher levels of Brillouin gain. The model also predicts the sensitivity to variations of the interferometric components. Using this technique, we have demonstrated a broadband phase shift over an ultra-broad bandwidth of 0.1 – 65 GHz, limited only by the bandwidth of the available components. Also, we demonstrate a phase enhancement factor of 10 over a bandwidth of 18 GHz in an integrated chalcogenide waveguide.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, pp. 80–90, 2019.
  2. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229,  2006.
  3. R. C. Hansen, Phased Array Antennas. Hoboken, NJ, USA: Wiley, 1998.
  4. A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors, vol. 18, 2018, Art. no. .
  5. Q. Cheng, A. Alomainy, and Y. Hao, “Near-field millimeter-wave phased array imaging with compressive sensing,” IEEE Access, vol. 5, pp. 18975–18986, 2017.
  6. W. Liu and J. Yao, “Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG,” Opt. Lett., vol. 39, pp. 922–924, 2014.
  7. M. Attygalle and D. Stepanov, “Phase manipulation of RF signals using a fiber Bragg grating with step group delay profile,” in Proc. Adv. Photon. Congr., 2012, Paper BW2E.5.
  8. S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 6, pp. 1003–1006,  1997.
  9. E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678,  2012.
  10. Z. Guo and J. Ma, “Microwave photonic phase shifter with a full 360° tunable range based on polarization sensitive electro-optical phase modulator and polarization modulator,” Opt. Eng., vol. 57, 2018, Art. no. .
  11. E. Chan, “Microwave photonic phase shifter based on a nonreciprocal optical phase shifter inside a Sagnac interferometer,” Opt. Commun., vol. 324, pp. 127–133, 2014.
  12. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210,  2006.
  13. P. Minzioni, “Roadmap on all-optical processing,” J. Opt., vol. 21, 2019, Art. no. .
  14. M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.
  15. Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62,  2009.
  16. X. Liu, “Broadband tunable microwave photonic phase shifter with low RF power variation in a high-Q AlN microring,” Opt. Lett., vol. 41, pp. 3599–3602, 2016.
  17. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129,  1987.
  18. D. Mishra and R. K. Sonkar, “Analysis of germanium-doped silicon vertical PN junction optical phase shifter,” J. Opt. Soc. Am. B, vol. 36, pp. 1348–1354, 2019.
  19. C. Porzi, “Photonic integrated microwave phase shifter up to the mm-wave band with fast response time in silicon-on-insulator technology,” J. Lightw. Technol., vol. 36, no. 19, pp. 4494–4500,  2018.
  20. B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.
  21. R. W. Boyd, Nonlinear Optics, 3rd ed., New York, NY, USA: Academic, 2008.
  22. M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt., vol. 20, 2018, Art. no. .
  23. M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett., vol. 39, pp. 5854–5857, 2014.
  24. M. Pagani, D. Marpaung, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express, vol. 22, pp. 28810–28818, 2014.
  25. L. McKay, “Brillouin-based phase shifter in a silicon waveguide,” Optica, vol. 6, pp. 907–913, 2019.
  26. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon., vol. 10, pp. 463–467, 2016.
  27. A. H. Safavi-Naeini, D. V. Thourhout, R. Baets, and R. V. Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics,” Optica, vol. 6, pp. 213–232, 2019.
  28. M. Merklein,“Stimulated Brillouin scattering in photonic integrated circuits: Novel applications and devices,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2, pp. 336–346, 2016.
  29. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.
  30. G. P. Agrawal, “Chapter 9 - Stimulated Brillouin scattering,” in Nonlinear Fiber Optics, G. P. Agrawal, Ed., Optics and Photonics.4th ed., San Diego, CA, USA: Academic Press, 2006, pp. 329–367.
  31. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon., vol. 5, pp. 536–587, 2013.
  32. A. Choudhary, “Linearity and resolution of on-chip Brillouin filters for rf and optical communications,” in Proc. Opto-Electron. Commun. Conf. and Photon. Global Conf., 2017, pp. 1–2.
  33. I. Aryanfar, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett., vol. 42, pp. 1313–1316, 2017.
  34. M. B. Ayun, A. Schwarzbaum, S. Rosenberg, M. Pinchas, and S. Sternklar, “Photonic radio frequency phase-shift amplification by radio frequency interferometry,” Opt. Lett., vol. 40, pp. 4863–4866, 2015.
  35. Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica, vol. 4, pp. 418–423, 2017.
  36. A. Choudhary, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Scientific Rep., vol. 7, 2017, Art. no. .
  37. N. Zhang, X. Fu, J. Liu, and C. Shu, “Surpassing the tuning speed limit of slow-light-based tunable optical delay via four-wave mixing bragg scattering,” Opt. Lett., vol. 43, pp. 4212–4215, 2018.
  38. A. Zarifi, “Highly localized distributed Brillouin scattering response in a photonic integrated circuit,” APL Photon., vol. 3, 2018, Art. no. .
  39. A. Zarifi, “Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations,” Opt. Lett., vol. 43, pp. 3493–3496, 2018.
  40. A. Zarifi, “On-chip correlation-based Brillouin sensing: design, experiment, and simulation,” J. Opt. Soc. Am. B, vol. 36, pp. 146–152, 2019.

2019 (7)

2018 (7)

N. Zhang, X. Fu, J. Liu, and C. Shu, “Surpassing the tuning speed limit of slow-light-based tunable optical delay via four-wave mixing bragg scattering,” Opt. Lett., vol. 43, pp. 4212–4215, 2018.

A. Zarifi, “Highly localized distributed Brillouin scattering response in a photonic integrated circuit,” APL Photon., vol. 3, 2018, Art. no. .

A. Zarifi, “Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations,” Opt. Lett., vol. 43, pp. 3493–3496, 2018.

C. Porzi, “Photonic integrated microwave phase shifter up to the mm-wave band with fast response time in silicon-on-insulator technology,” J. Lightw. Technol., vol. 36, no. 19, pp. 4494–4500,  2018.

M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt., vol. 20, 2018, Art. no. .

Z. Guo and J. Ma, “Microwave photonic phase shifter with a full 360° tunable range based on polarization sensitive electro-optical phase modulator and polarization modulator,” Opt. Eng., vol. 57, 2018, Art. no. .

A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors, vol. 18, 2018, Art. no. .

2017 (4)

Q. Cheng, A. Alomainy, and Y. Hao, “Near-field millimeter-wave phased array imaging with compressive sensing,” IEEE Access, vol. 5, pp. 18975–18986, 2017.

I. Aryanfar, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett., vol. 42, pp. 1313–1316, 2017.

Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica, vol. 4, pp. 418–423, 2017.

A. Choudhary, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Scientific Rep., vol. 7, 2017, Art. no. .

2016 (3)

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon., vol. 10, pp. 463–467, 2016.

M. Merklein,“Stimulated Brillouin scattering in photonic integrated circuits: Novel applications and devices,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2, pp. 336–346, 2016.

X. Liu, “Broadband tunable microwave photonic phase shifter with low RF power variation in a high-Q AlN microring,” Opt. Lett., vol. 41, pp. 3599–3602, 2016.

2015 (1)

2014 (4)

2013 (1)

2012 (1)

E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678,  2012.

2009 (1)

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62,  2009.

2006 (2)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210,  2006.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229,  2006.

1997 (1)

S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 6, pp. 1003–1006,  1997.

1992 (1)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129,  1987.

Agrawal, G. P.

G. P. Agrawal, “Chapter 9 - Stimulated Brillouin scattering,” in Nonlinear Fiber Optics, G. P. Agrawal, Ed., Optics and Photonics.4th ed., San Diego, CA, USA: Academic Press, 2006, pp. 329–367.

Alomainy, A.

Q. Cheng, A. Alomainy, and Y. Hao, “Near-field millimeter-wave phased array imaging with compressive sensing,” IEEE Access, vol. 5, pp. 18975–18986, 2017.

Aryanfar, I.

Attygalle, M.

M. Attygalle and D. Stepanov, “Phase manipulation of RF signals using a fiber Bragg grating with step group delay profile,” in Proc. Adv. Photon. Congr., 2012, Paper BW2E.5.

Ayun, M. B.

Azana, J.

M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.

Baets, R.

Bahl, G.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129,  1987.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed., New York, NY, USA: Academic, 2008.

Burla, M.

M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.

Capmany, J.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, pp. 80–90, 2019.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229,  2006.

Chan, E.

E. Chan, “Microwave photonic phase shifter based on a nonreciprocal optical phase shifter inside a Sagnac interferometer,” Opt. Commun., vol. 324, pp. 127–133, 2014.

Chan, E. H. W.

E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678,  2012.

Chang, Q.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62,  2009.

Cheng, Q.

Q. Cheng, A. Alomainy, and Y. Hao, “Near-field millimeter-wave phased array imaging with compressive sensing,” IEEE Access, vol. 5, pp. 18975–18986, 2017.

Choi, D.-Y.

Choudhary, A.

Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Gigahertz optical tuning of an on-chip radio frequency photonic delay line,” Optica, vol. 4, pp. 418–423, 2017.

A. Choudhary, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Scientific Rep., vol. 7, 2017, Art. no. .

A. Choudhary, “Linearity and resolution of on-chip Brillouin filters for rf and optical communications,” in Proc. Opto-Electron. Commun. Conf. and Photon. Global Conf., 2017, pp. 1–2.

Chrostowski, L.

M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.

Cortes, L. R.

M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.

Eggleton, B. J.

Fu, X.

Guo, Z.

Z. Guo and J. Ma, “Microwave photonic phase shifter with a full 360° tunable range based on polarization sensitive electro-optical phase modulator and polarization modulator,” Opt. Eng., vol. 57, 2018, Art. no. .

Hagan, D. J.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.

Hansen, R. C.

R. C. Hansen, Phased Array Antennas. Hoboken, NJ, USA: Wiley, 1998.

Hao, Y.

Q. Cheng, A. Alomainy, and Y. Hao, “Near-field millimeter-wave phased array imaging with compressive sensing,” IEEE Access, vol. 5, pp. 18975–18986, 2017.

Hutchings, D. C.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.

Kittlaus, E. A.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon., vol. 10, pp. 463–467, 2016.

Knight, G. A.

S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 6, pp. 1003–1006,  1997.

Laer, R. V.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210,  2006.

Li, M.

M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.

Li, Q.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62,  2009.

Lim, S.

A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors, vol. 18, 2018, Art. no. .

Lindsay, A. C.

S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 6, pp. 1003–1006,  1997.

Liu, J.

Liu, W.

Liu, X.

Liu, Y.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210,  2006.

Luther-Davies, B.

Ma, J.

Z. Guo and J. Ma, “Microwave photonic phase shifter with a full 360° tunable range based on polarization sensitive electro-optical phase modulator and polarization modulator,” Opt. Eng., vol. 57, 2018, Art. no. .

Madden, S. J.

Marpaung, D.

McKay, L.

Merklein, M.

M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt., vol. 20, 2018, Art. no. .

M. Merklein,“Stimulated Brillouin scattering in photonic integrated circuits: Novel applications and devices,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2, pp. 336–346, 2016.

Minasian, R. A.

E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678,  2012.

Minzioni, P.

P. Minzioni, “Roadmap on all-optical processing,” J. Opt., vol. 21, 2019, Art. no. .

Mishra, D.

Naqvi, A.

A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors, vol. 18, 2018, Art. no. .

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229,  2006.

Pagani, M.

Pant, R.

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229,  2006.

Pinchas, M.

Porzi, C.

C. Porzi, “Photonic integrated microwave phase shifter up to the mm-wave band with fast response time in silicon-on-insulator technology,” J. Lightw. Technol., vol. 36, no. 19, pp. 4494–4500,  2018.

Poulton, C. G.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon., vol. 5, pp. 536–587, 2013.

Qiu, M.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62,  2009.

Rakich, P. T.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon., vol. 10, pp. 463–467, 2016.

Rosenberg, S.

Safavi-Naeini, A. H.

Schwarzbaum, A.

Sheik-Bahae, M.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.

Shin, H.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon., vol. 10, pp. 463–467, 2016.

Shu, C.

Sonkar, R. K.

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129,  1987.

Steel, M. J.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.

Stepanov, D.

M. Attygalle and D. Stepanov, “Phase manipulation of RF signals using a fiber Bragg grating with step group delay profile,” in Proc. Adv. Photon. Congr., 2012, Paper BW2E.5.

Sternklar, S.

Stiller, B.

M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt., vol. 20, 2018, Art. no. .

Stryland, E. W. Van

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.

Su, Y.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62,  2009.

Thourhout, D. V.

Wang, X.

M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.

Winnall, S. T.

S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 6, pp. 1003–1006,  1997.

Yao, J.

Ye, T.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62,  2009.

Zarifi, A.

Zhang, N.

Zhang, W.

E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678,  2012.

Zhang, Z.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62,  2009.

Adv. Opt. Photon. (1)

APL Photon. (1)

A. Zarifi, “Highly localized distributed Brillouin scattering response in a photonic integrated circuit,” APL Photon., vol. 3, 2018, Art. no. .

IEEE Access (1)

Q. Cheng, A. Alomainy, and Y. Hao, “Near-field millimeter-wave phased array imaging with compressive sensing,” IEEE Access, vol. 5, pp. 18975–18986, 2017.

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129,  1987.

IEEE J. Sel. Topics Quantum Electron. (1)

M. Merklein,“Stimulated Brillouin scattering in photonic integrated circuits: Novel applications and devices,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 2, pp. 336–346, 2016.

IEEE Photon. Technol. Lett. (2)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 208–210,  2006.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 60–62,  2009.

IEEE Trans. Microw. Theory Techn. (1)

S. T. Winnall, A. C. Lindsay, and G. A. Knight, “A wide-band microwave photonic phase and frequency shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 6, pp. 1003–1006,  1997.

J. Lightw. Technol. (3)

E. H. W. Chan, W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightw. Technol., vol. 30, no. 23, pp. 3672–3678,  2012.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol., vol. 24, no. 1, pp. 201–229,  2006.

C. Porzi, “Photonic integrated microwave phase shifter up to the mm-wave band with fast response time in silicon-on-insulator technology,” J. Lightw. Technol., vol. 36, no. 19, pp. 4494–4500,  2018.

J. Opt. (2)

P. Minzioni, “Roadmap on all-optical processing,” J. Opt., vol. 21, 2019, Art. no. .

M. Merklein, B. Stiller, and B. J. Eggleton, “Brillouin-based light storage and delay techniques,” J. Opt., vol. 20, 2018, Art. no. .

J. Opt. Soc. Am. B (2)

Nature Photon. (3)

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nature Photon., vol. 13, no. 10, pp. 664–677, 2019.

D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature Photon., vol. 13, pp. 80–90, 2019.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon., vol. 10, pp. 463–467, 2016.

Opt. Commun. (1)

E. Chan, “Microwave photonic phase shifter based on a nonreciprocal optical phase shifter inside a Sagnac interferometer,” Opt. Commun., vol. 324, pp. 127–133, 2014.

Opt. Eng. (1)

Z. Guo and J. Ma, “Microwave photonic phase shifter with a full 360° tunable range based on polarization sensitive electro-optical phase modulator and polarization modulator,” Opt. Eng., vol. 57, 2018, Art. no. .

Opt. Express (1)

Opt. Lett. (7)

Opt. Quantum Electron. (1)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-krönig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1–30, 1992.

Optica (3)

Scientific Rep. (1)

A. Choudhary, “High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference,” Scientific Rep., vol. 7, 2017, Art. no. .

Sensors (1)

A. Naqvi and S. Lim, “Review of recent phased arrays for millimeter-wave wireless communication,” Sensors, vol. 18, 2018, Art. no. .

Other (6)

R. C. Hansen, Phased Array Antennas. Hoboken, NJ, USA: Wiley, 1998.

M. Attygalle and D. Stepanov, “Phase manipulation of RF signals using a fiber Bragg grating with step group delay profile,” in Proc. Adv. Photon. Congr., 2012, Paper BW2E.5.

M. Burla, L. R. Cortes, M. Li, X. Wang, L. Chrostowski, and J. Azana, “On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide bragg grating,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2013, pp. 92–95.

R. W. Boyd, Nonlinear Optics, 3rd ed., New York, NY, USA: Academic, 2008.

A. Choudhary, “Linearity and resolution of on-chip Brillouin filters for rf and optical communications,” in Proc. Opto-Electron. Commun. Conf. and Photon. Global Conf., 2017, pp. 1–2.

G. P. Agrawal, “Chapter 9 - Stimulated Brillouin scattering,” in Nonlinear Fiber Optics, G. P. Agrawal, Ed., Optics and Photonics.4th ed., San Diego, CA, USA: Academic Press, 2006, pp. 329–367.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.