Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 14,
  • pp. 3616-3623
  • (2020)

VLSI Implementations of Carrier Phase Recovery Algorithms for M-QAM Fiber-Optic Systems

Not Accessible

Your library or personal account may give you access

Abstract

We present circuit implementations of blind phase search (BPS) carrier phase recovery (CPR) for M-QAM coherent optical receivers and highlight some BPS algorithm modifications necessary to obtain efficient VLSI circuits. In addition, we show how three key design parameters (input word length, number of test phases, and type and size of averaging window) affect the resulting implementation. To study design tradeoffs, we develop BPS CPR circuit netlists for a 32-GBaud system, using a 22-nm CMOS process technology: our implementations reach energy efficiencies of around 1 pJ/bit for 16QAM up to 3 pJ/bit for 256QAM, at an SNR penalty of approximately 0.25 dB at a BER of 10−2. Furthermore, we present a circuit implementation of pilot-symbol-aided CPR, reaching 0.38 pJ/bit and 0.34 pJ/bit for 16QAM and 256QAM, respectively, at a slightly higher SNR penalty. The two CPR methods are also evaluated in terms of silicon area and scaling to higher-order modulation formats.

PDF Article
More Like This
Hardware optimization of dual-stage carrier-phase recovery for coherent optical receivers

Celestino S. Martins, Fernando P. Guiomar, and Armando N. Pinto
OSA Continuum 4(12) 3157-3175 (2021)

Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL

Qunbi Zhuge, Mohamed Morsy-Osman, Xian Xu, Mohammad E. Mousa-Pasandi, Mathieu Chagnon, Ziad A. El-Sahn, and David V. Plant
Opt. Express 20(17) 19599-19609 (2012)

Low-complexity carrier phase recovery based on principal component analysis for square-QAM modulation formats

Júlio César Medeiros Diniz, Qirui Fan, Stenio Magalhães Ranzini, Faisal Nadeem Khan, Francesco Da Ros, Darko Zibar, and Alan Pak Tao Lau
Opt. Express 27(11) 15617-15626 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.