Abstract

The continued growth in Hyperscale data center (HDC) deployment is expected to drive world-wide Internet traffic to an astounding 21 zettabytes by 2021. This growth will place increased demands on data center interconnects (DCIs) and drive the capacity of the underlying electronic application specific integrated circuit (ASIC) switch chips that route DCI ethernet traffic, from 12.8 Tbps per chip today to 100 Tbps and beyond in the future. This astounding growth will push the limits of today's incoherent fiber link technologies that connect switches, including power dissipation, density, and practical engineering solutions. To overcome these limits, high capacity coherent WDM, traditionally relegated to the metro and long-haul networks, will need to move into the DCI. However, migrating coherent WDM into the DCI, particularly for link distances less than 2 km, will require elimination of power consuming and costly technologies like the digital signal processor (DSP). Additionally, new photonic integration technologies will be needed to co-locate the coherent optical interfaces directly with switch ASICs to alleviate the bandwidth, power, and density limits. In this article, we introduce a new approach to DSP-free coherent WDM for the DCI called FRESCO: FREquency Stabilized Coherent Optical Links for Low Energy DCIs. FRESCO utilizes spectrally pure, ultra-stable light source technology, normally associated with high-end scientific applications like atomic clocks, to enable high capacity high-order WDM QAM with low bandwidth, low power electronics normally associated with RF links. Terabits per second FRESCO links based on shared, stabilized sources and high-density coherent WDM silicon photonic coherent transceivers that are co-located with the switch ASIC will pave the way to a DSP-free coherent WDM scalable DCI solution.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco, “Cisco global cloud index: Forecast and methodology, 2016–2021 white paper,” 2018. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
  2. A. Andrae, “Total consumer power consumption forecast,” Nordic Digital Business Summit, Helsinki, Finland, Oct. 2017.
  3. Cisco, “Cisco introduces foundation for next-generation internet: The Cisco CRS-3 carrier routing system,” Cisco Ann. Internet Rep., 2018. [Online]. Available. https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=5386763
  4. D. J. Blumenthal, “Integrated photonics for low-power packet networking,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 458–471, 2011.
  5. C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.
  6. C. L. Schow and K. Schmidtke, “INTREPID: Developing power efficient analog coherent interconnects to transform data center networks,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib., Mar. 3–7, 2019, pp. 1–3.
  7. Intel Newsroom, “Intel demonstrates industry-first co-packaged optics ethernet switch,” News Byte, Mar. 5, 2020. [Online]. Available: https://newsroom.intel.com/news/intel-demonstrates-industry-first-co-packaged-optics-ethernet-switch/#95.5fge9d
  8. J. J. Maki, “Evolution of pluggable optics and what is beyond,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib. (OFC), Mar. 3-7, 2019, pp. 1–3.
  9. J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100 Gbit/s per wavelength,” Opt. Fiber Technol., vol. 44, pp. 69–85, 2018, doi: .
    [Crossref]
  10. K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.
  11. J. K. Perin, A. Shastri, and J. M. Kahn, “Design of low-power DSP-free coherent receivers for data center links,” J. Lightw. Technol., vol. 35, no. 21, pp. 4650–4662, 2017.
  12. M. Morsy-Osman, “DSP-free coherent-lite ransceiver for next generation single wavelength optical intra-datacenter interconnects,” Opt. Express, vol. 26, no. 7, pp. 8890–8903, 2018, doi: .
    [Crossref]
  13. P. J. Winzer, “Scaling Optical Fiber Networks: Challenges and Solutions,” Optics and Photonics News., pp. 30–35. Mar. 2015. [Online]. Available: http://www.osa-opn.org/abstract.cfm?URI = opn-26-3-28
  14. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 674–676, 2004.
  15. F. Derr, “Coherent optical QPSK intradyne system: Concept and digital receiver realization,” J. Lightw. Technol., vol. 10, no. 9, pp. 1290–1296, 1992.
  16. L. G. Kazovsky, “Phase- and polarization-diversity coherent optical techniques,” J. Lightw. Technol., vol. 7, no. 2, pp. 279–292, 1989.
  17. X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s Superchannel Transmission: An overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 16–24, 2014.
  18. I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 631–633, 2010.
  19. M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Proc. Conf. Opt. Fiber Commun. /Nat. Fiber Optic Engineers, Feb. 24-28, 2008, pp. 1–3.
  20. X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightw. Technol., vol. 26, no. 10, pp. 1309–1316, 2008.
  21. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express, vol. 20, no. 11, pp. 12508–12514, 2012, doi: .
    [Crossref]
  22. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015, doi: .
    [Crossref]
  23. A. Simsek, “Achip-scale heterodyne optical phase-locked loop with low-power consumption,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W4G.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=OFC-2017-W4G.3
  24. S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
    [Crossref]
  25. A. Mooradian, ``Laser Linewidth,'' Physics Today, 1985. [Online]. Available: https://doi.org/10.1063/1.880973
  26. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt., vol. 49, no. 25, pp. 4801–4807, 2010, doi: .
    [Crossref]
  27. D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372, 1991.
  28. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.
  29. D. W. Allan, “Time and frequency (Time-Domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason., Ferroelectrics Frequency Control, vol. 34, no. 6, pp. 647–654, 1987.
  30. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
    [Crossref]
  31. J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors – A review,” IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, Sep. 2011.
  32. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, pp. 035002-1–035002-39, 2017, Art. no. , doi: .
    [Crossref]
  33. P. Kwee, “Stabilized high-power laser system for the gravitational wave detector advanced LIGO,” Opt. Express, vol. 20, no. 10, pp. 10617–10634, 2012, doi: .
    [Crossref]
  34. T. Kessler, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Photon., vol. 6, pp. 687–692, 2012, doi: .
    [Crossref]
  35. S. Gundavarapu, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nature Photon., vol. 13, no. 1, pp. 60–67, 2019, doi: .
    [Crossref]
  36. L. Stern, “Ultranarrow linewidth and stable photonic-atomic laser,” in Frontiers in Optics + Laser Science APS/DLS, Washington, DC, USA, 2019, paper FTu5C.4. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=FiO-2019-FTu5C.4
  37. D. Huang, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica, vol. 6, no. 6, pp. 745–752, 2019, doi: .
    [Crossref]
  38. H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3
  39. S. Liu, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica, vol. 6, no. 2, pp. 128–134, 2019, doi: .
    [Crossref]
  40. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photon., vol. 1, pp. 395–401, 2007, doi: .
    [Crossref]
  41. Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.
  42. T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.
  43. D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.
  44. M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica, vol. 4, no. 5, pp. 532–536, 2017, doi: .
    [Crossref]

2019 (5)

S. Gundavarapu, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nature Photon., vol. 13, no. 1, pp. 60–67, 2019, doi: .
[Crossref]

L. Stern, “Ultranarrow linewidth and stable photonic-atomic laser,” in Frontiers in Optics + Laser Science APS/DLS, Washington, DC, USA, 2019, paper FTu5C.4. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=FiO-2019-FTu5C.4

D. Huang, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica, vol. 6, no. 6, pp. 745–752, 2019, doi: .
[Crossref]

H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3

S. Liu, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica, vol. 6, no. 2, pp. 128–134, 2019, doi: .
[Crossref]

2018 (5)

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.

D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.

J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100 Gbit/s per wavelength,” Opt. Fiber Technol., vol. 44, pp. 69–85, 2018, doi: .
[Crossref]

M. Morsy-Osman, “DSP-free coherent-lite ransceiver for next generation single wavelength optical intra-datacenter interconnects,” Opt. Express, vol. 26, no. 7, pp. 8890–8903, 2018, doi: .
[Crossref]

S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
[Crossref]

2017 (4)

J. K. Perin, A. Shastri, and J. M. Kahn, “Design of low-power DSP-free coherent receivers for data center links,” J. Lightw. Technol., vol. 35, no. 21, pp. 4650–4662, 2017.

A. Andrae, “Total consumer power consumption forecast,” Nordic Digital Business Summit, Helsinki, Finland, Oct. 2017.

M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica, vol. 4, no. 5, pp. 532–536, 2017, doi: .
[Crossref]

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, pp. 035002-1–035002-39, 2017, Art. no. , doi: .
[Crossref]

2016 (1)

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

2015 (2)

2014 (1)

X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s Superchannel Transmission: An overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 16–24, 2014.

2013 (1)

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.

2012 (3)

2011 (2)

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors – A review,” IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, Sep. 2011.

D. J. Blumenthal, “Integrated photonics for low-power packet networking,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 458–471, 2011.

2010 (2)

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 631–633, 2010.

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt., vol. 49, no. 25, pp. 4801–4807, 2010, doi: .
[Crossref]

2008 (1)

X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightw. Technol., vol. 26, no. 10, pp. 1309–1316, 2008.

2007 (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photon., vol. 1, pp. 395–401, 2007, doi: .
[Crossref]

2004 (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 674–676, 2004.

1992 (1)

F. Derr, “Coherent optical QPSK intradyne system: Concept and digital receiver realization,” J. Lightw. Technol., vol. 10, no. 9, pp. 1290–1296, 1992.

1991 (1)

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372, 1991.

1989 (1)

L. G. Kazovsky, “Phase- and polarization-diversity coherent optical techniques,” J. Lightw. Technol., vol. 7, no. 2, pp. 279–292, 1989.

1987 (1)

D. W. Allan, “Time and frequency (Time-Domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason., Ferroelectrics Frequency Control, vol. 34, no. 6, pp. 647–654, 1987.

1985 (1)

A. Mooradian, ``Laser Linewidth,'' Physics Today, 1985. [Online]. Available: https://doi.org/10.1063/1.880973

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.

Allan, D. W.

D. W. Allan, “Time and frequency (Time-Domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason., Ferroelectrics Frequency Control, vol. 34, no. 6, pp. 647–654, 1987.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.

Andrae, A.

A. Andrae, “Total consumer power consumption forecast,” Nordic Digital Business Summit, Helsinki, Finland, Oct. 2017.

Arne, L.

D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.

Beausoleil, R. G.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372, 1991.

Belt, M.

Beppu, S.

Blumenthal, D. J.

D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.

M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica, vol. 4, no. 5, pp. 532–536, 2017, doi: .
[Crossref]

D. J. Blumenthal, “Integrated photonics for low-power packet networking,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 458–471, 2011.

Bowers, J. E.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.

M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica, vol. 4, no. 5, pp. 532–536, 2017, doi: .
[Crossref]

Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]

Briles, T. C.

H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3

Cappellaro, P.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, pp. 035002-1–035002-39, 2017, Art. no. , doi: .
[Crossref]

Carlson, D. R.

H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photon., vol. 1, pp. 395–401, 2007, doi: .
[Crossref]

Chandrasekhar, S.

S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
[Crossref]

X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s Superchannel Transmission: An overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 16–24, 2014.

Chen, X.

Cho, J.

Cole, C.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.

Davenport, M. L.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.

M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica, vol. 4, no. 5, pp. 532–536, 2017, doi: .
[Crossref]

Degen, C. L.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, pp. 035002-1–035002-39, 2017, Art. no. , doi: .
[Crossref]

Derr, F.

F. Derr, “Coherent optical QPSK intradyne system: Concept and digital receiver realization,” J. Lightw. Technol., vol. 10, no. 9, pp. 1290–1296, 1992.

Di Domenico, G.

Donley, E. A.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors – A review,” IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, Sep. 2011.

Douwe, G.

D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.

Drake, T. E.

H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3

Dumont, M.

Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 631–633, 2010.

Ghiasi, A.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.

Gossard, A.

Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.

Gundavarapu, S.

S. Gundavarapu, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nature Photon., vol. 13, no. 1, pp. 60–67, 2019, doi: .
[Crossref]

Heideman René, G.

D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.

Hjelme, D. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372, 1991.

Huang, D.

D. Huang, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica, vol. 6, no. 6, pp. 745–752, 2019, doi: .
[Crossref]

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 631–633, 2010.

Jung, H.

H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3

Kahn, J. M.

J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100 Gbit/s per wavelength,” Opt. Fiber Technol., vol. 44, pp. 69–85, 2018, doi: .
[Crossref]

J. K. Perin, A. Shastri, and J. M. Kahn, “Design of low-power DSP-free coherent receivers for data center links,” J. Lightw. Technol., vol. 35, no. 21, pp. 4650–4662, 2017.

Kasai, K.

Kazovsky, L. G.

L. G. Kazovsky, “Phase- and polarization-diversity coherent optical techniques,” J. Lightw. Technol., vol. 7, no. 2, pp. 279–292, 1989.

Kessler, T.

T. Kessler, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Photon., vol. 6, pp. 687–692, 2012, doi: .
[Crossref]

Kikuchi, K.

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

Kitching, J.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors – A review,” IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, Sep. 2011.

Knappe, S.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors – A review,” IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, Sep. 2011.

Koizumi, Y.

Komljenovic, T.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.

Krause Perin, J.

J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100 Gbit/s per wavelength,” Opt. Fiber Technol., vol. 44, pp. 69–85, 2018, doi: .
[Crossref]

Kwee, P.

Liu, S.

Liu, X.

X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s Superchannel Transmission: An overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 16–24, 2014.

Liu, Y. T. S.

Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.

Ludlow, A. D.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]

Lyubomirsky, I.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.

Ma, Y.

X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightw. Technol., vol. 26, no. 10, pp. 1309–1316, 2008.

Maki, J. J.

J. J. Maki, “Evolution of pluggable optics and what is beyond,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib. (OFC), Mar. 3-7, 2019, pp. 1–3.

Makovejs, S.

Mickelson, A. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372, 1991.

Mooradian, A.

A. Mooradian, ``Laser Linewidth,'' Physics Today, 1985. [Online]. Available: https://doi.org/10.1063/1.880973

Morsy-Osman, M.

Nakazawa, M.

Norman, J.

Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.

Olsson, S. L. I.

Papp, S. B.

H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3

Peik, E.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]

Perin, J. K.

J. K. Perin, A. Shastri, and J. M. Kahn, “Design of low-power DSP-free coherent receivers for data center links,” J. Lightw. Technol., vol. 35, no. 21, pp. 4650–4662, 2017.

Pintus, P.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photon., vol. 1, pp. 395–401, 2007, doi: .
[Crossref]

Reinhard, F.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, pp. 035002-1–035002-39, 2017, Art. no. , doi: .
[Crossref]

Roeloffzen, C.

D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.

Savory, S. J.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 631–633, 2010.

Schilt, S.

Schmidt, P. O.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]

Schmidtke, K.

C. L. Schow and K. Schmidtke, “INTREPID: Developing power efficient analog coherent interconnects to transform data center networks,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib., Mar. 3–7, 2019, pp. 1–3.

Schow, C. L.

C. L. Schow and K. Schmidtke, “INTREPID: Developing power efficient analog coherent interconnects to transform data center networks,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib., Mar. 3–7, 2019, pp. 1–3.

Seimetz, M.

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Proc. Conf. Opt. Fiber Commun. /Nat. Fiber Optic Engineers, Feb. 24-28, 2008, pp. 1–3.

Shastri, A.

J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100 Gbit/s per wavelength,” Opt. Fiber Technol., vol. 44, pp. 69–85, 2018, doi: .
[Crossref]

J. K. Perin, A. Shastri, and J. M. Kahn, “Design of low-power DSP-free coherent receivers for data center links,” J. Lightw. Technol., vol. 35, no. 21, pp. 4650–4662, 2017.

Shieh, W.

X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightw. Technol., vol. 26, no. 10, pp. 1309–1316, 2008.

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photon., vol. 1, pp. 395–401, 2007, doi: .
[Crossref]

Simsek, A.

A. Simsek, “Achip-scale heterodyne optical phase-locked loop with low-power consumption,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W4G.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=OFC-2017-W4G.3

Stern, L.

L. Stern, “Ultranarrow linewidth and stable photonic-atomic laser,” in Frontiers in Optics + Laser Science APS/DLS, Washington, DC, USA, 2019, paper FTu5C.4. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=FiO-2019-FTu5C.4

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 674–676, 2004.

Telang, V.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.

Thomann, P.

Toyoda, K.

Tran, M. A.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.

Tsang, H. K.

Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.

Winzer, P. J.

S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
[Crossref]

X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s Superchannel Transmission: An overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 16–24, 2014.

P. J. Winzer, “Scaling Optical Fiber Networks: Challenges and Solutions,” Optics and Photonics News., pp. 30–35. Mar. 2015. [Online]. Available: http://www.osa-opn.org/abstract.cfm?URI = opn-26-3-28

Ye, J.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]

Yi, X.

X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightw. Technol., vol. 26, no. 10, pp. 1309–1316, 2008.

Yoshida, M.

Yu, S.-P.

H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3

Appl. Opt. (1)

Frontiers in Optics + Laser Science APS/DLS (1)

L. Stern, “Ultranarrow linewidth and stable photonic-atomic laser,” in Frontiers in Optics + Laser Science APS/DLS, Washington, DC, USA, 2019, paper FTu5C.4. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=FiO-2019-FTu5C.4

IEEE Commun. Mag. (1)

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.

IEEE J. Quantum Electron. (1)

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372, 1991.

IEEE J. Sel. Topics Quantum Electron. (1)

D. J. Blumenthal, “Integrated photonics for low-power packet networking,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 458–471, 2011.

IEEE Photon. Technol. Lett. (2)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 674–676, 2004.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 631–633, 2010.

IEEE Sensors J. (1)

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors – A review,” IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, Sep. 2011.

IEEE Signal Process. Mag. (1)

X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s Superchannel Transmission: An overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 16–24, 2014.

IEEE Trans. Ultrason., Ferroelectrics Frequency Control (1)

D. W. Allan, “Time and frequency (Time-Domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason., Ferroelectrics Frequency Control, vol. 34, no. 6, pp. 647–654, 1987.

J. Lightw. Technol. (5)

X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightw. Technol., vol. 26, no. 10, pp. 1309–1316, 2008.

F. Derr, “Coherent optical QPSK intradyne system: Concept and digital receiver realization,” J. Lightw. Technol., vol. 10, no. 9, pp. 1290–1296, 1992.

L. G. Kazovsky, “Phase- and polarization-diversity coherent optical techniques,” J. Lightw. Technol., vol. 7, no. 2, pp. 279–292, 1989.

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

J. K. Perin, A. Shastri, and J. M. Kahn, “Design of low-power DSP-free coherent receivers for data center links,” J. Lightw. Technol., vol. 35, no. 21, pp. 4650–4662, 2017.

Nature Photon. (3)

T. Kessler, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Photon., vol. 6, pp. 687–692, 2012, doi: .
[Crossref]

S. Gundavarapu, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nature Photon., vol. 13, no. 1, pp. 60–67, 2019, doi: .
[Crossref]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photon., vol. 1, pp. 395–401, 2007, doi: .
[Crossref]

Nonlinear Optics (1)

H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3

Nordic Digital Business Summit (1)

A. Andrae, “Total consumer power consumption forecast,” Nordic Digital Business Summit, Helsinki, Finland, Oct. 2017.

Opt. Express (5)

Opt. Fiber Technol. (1)

J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100 Gbit/s per wavelength,” Opt. Fiber Technol., vol. 44, pp. 69–85, 2018, doi: .
[Crossref]

Optica (3)

Physics Today (1)

A. Mooradian, ``Laser Linewidth,'' Physics Today, 1985. [Online]. Available: https://doi.org/10.1063/1.880973

Proc. IEEE (3)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.

D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.

Rev. Modern Phys. (2)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, pp. 035002-1–035002-39, 2017, Art. no. , doi: .
[Crossref]

Other (9)

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Proc. Conf. Opt. Fiber Commun. /Nat. Fiber Optic Engineers, Feb. 24-28, 2008, pp. 1–3.

A. Simsek, “Achip-scale heterodyne optical phase-locked loop with low-power consumption,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W4G.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=OFC-2017-W4G.3

P. J. Winzer, “Scaling Optical Fiber Networks: Challenges and Solutions,” Optics and Photonics News., pp. 30–35. Mar. 2015. [Online]. Available: http://www.osa-opn.org/abstract.cfm?URI = opn-26-3-28

Cisco, “Cisco introduces foundation for next-generation internet: The Cisco CRS-3 carrier routing system,” Cisco Ann. Internet Rep., 2018. [Online]. Available. https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=5386763

Cisco, “Cisco global cloud index: Forecast and methodology, 2016–2021 white paper,” 2018. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

C. L. Schow and K. Schmidtke, “INTREPID: Developing power efficient analog coherent interconnects to transform data center networks,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib., Mar. 3–7, 2019, pp. 1–3.

Intel Newsroom, “Intel demonstrates industry-first co-packaged optics ethernet switch,” News Byte, Mar. 5, 2020. [Online]. Available: https://newsroom.intel.com/news/intel-demonstrates-industry-first-co-packaged-optics-ethernet-switch/#95.5fge9d

J. J. Maki, “Evolution of pluggable optics and what is beyond,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib. (OFC), Mar. 3-7, 2019, pp. 1–3.

Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.