S. Gundavarapu, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nature Photon., vol. 13, no. 1, pp. 60–67, 2019, doi: .
[Crossref]
L. Stern, “Ultranarrow linewidth and stable photonic-atomic laser,” in Frontiers in Optics + Laser Science APS/DLS, Washington, DC, USA, 2019, paper FTu5C.4. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=FiO-2019-FTu5C.4
D. Huang, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica, vol. 6, no. 6, pp. 745–752, 2019, doi: .
[Crossref]
H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3
S. Liu, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica, vol. 6, no. 2, pp. 128–134, 2019, doi: .
[Crossref]
T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.
D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.
J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100 Gbit/s per wavelength,” Opt. Fiber Technol., vol. 44, pp. 69–85, 2018, doi: .
[Crossref]
M. Morsy-Osman, “DSP-free coherent-lite ransceiver for next generation single wavelength optical intra-datacenter interconnects,” Opt. Express, vol. 26, no. 7, pp. 8890–8903, 2018, doi: .
[Crossref]
S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
[Crossref]
J. K. Perin, A. Shastri, and J. M. Kahn, “Design of low-power DSP-free coherent receivers for data center links,” J. Lightw. Technol., vol. 35, no. 21, pp. 4650–4662, 2017.
A. Andrae, “Total consumer power consumption forecast,” Nordic Digital Business Summit, Helsinki, Finland, Oct. 2017.
M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica, vol. 4, no. 5, pp. 532–536, 2017, doi: .
[Crossref]
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, pp. 035002-1–035002-39, 2017, Art. no. , doi: .
[Crossref]
K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.
S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015, doi: .
[Crossref]
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]
X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s Superchannel Transmission: An overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 16–24, 2014.
C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.
Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express, vol. 20, no. 11, pp. 12508–12514, 2012, doi: .
[Crossref]
P. Kwee, “Stabilized high-power laser system for the gravitational wave detector advanced LIGO,” Opt. Express, vol. 20, no. 10, pp. 10617–10634, 2012, doi: .
[Crossref]
T. Kessler, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Photon., vol. 6, pp. 687–692, 2012, doi: .
[Crossref]
J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors – A review,” IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, Sep. 2011.
D. J. Blumenthal, “Integrated photonics for low-power packet networking,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 458–471, 2011.
I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 631–633, 2010.
G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt., vol. 49, no. 25, pp. 4801–4807, 2010, doi: .
[Crossref]
X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightw. Technol., vol. 26, no. 10, pp. 1309–1316, 2008.
E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photon., vol. 1, pp. 395–401, 2007, doi: .
[Crossref]
M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 674–676, 2004.
F. Derr, “Coherent optical QPSK intradyne system: Concept and digital receiver realization,” J. Lightw. Technol., vol. 10, no. 9, pp. 1290–1296, 1992.
D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372, 1991.
L. G. Kazovsky, “Phase- and polarization-diversity coherent optical techniques,” J. Lightw. Technol., vol. 7, no. 2, pp. 279–292, 1989.
D. W. Allan, “Time and frequency (Time-Domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason., Ferroelectrics Frequency Control, vol. 34, no. 6, pp. 647–654, 1987.
A. Mooradian, ``Laser Linewidth,'' Physics Today, 1985. [Online]. Available: https://doi.org/10.1063/1.880973
D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.
D. W. Allan, “Time and frequency (Time-Domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason., Ferroelectrics Frequency Control, vol. 34, no. 6, pp. 647–654, 1987.
D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.
A. Andrae, “Total consumer power consumption forecast,” Nordic Digital Business Summit, Helsinki, Finland, Oct. 2017.
D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.
D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372, 1991.
M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica, vol. 4, no. 5, pp. 532–536, 2017, doi: .
[Crossref]
S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015, doi: .
[Crossref]
D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.
M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica, vol. 4, no. 5, pp. 532–536, 2017, doi: .
[Crossref]
D. J. Blumenthal, “Integrated photonics for low-power packet networking,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 458–471, 2011.
T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.
M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica, vol. 4, no. 5, pp. 532–536, 2017, doi: .
[Crossref]
Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]
H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, pp. 035002-1–035002-39, 2017, Art. no. , doi: .
[Crossref]
H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3
E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photon., vol. 1, pp. 395–401, 2007, doi: .
[Crossref]
S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
[Crossref]
X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s Superchannel Transmission: An overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 16–24, 2014.
S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
[Crossref]
S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
[Crossref]
C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.
T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.
M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica, vol. 4, no. 5, pp. 532–536, 2017, doi: .
[Crossref]
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, pp. 035002-1–035002-39, 2017, Art. no. , doi: .
[Crossref]
F. Derr, “Coherent optical QPSK intradyne system: Concept and digital receiver realization,” J. Lightw. Technol., vol. 10, no. 9, pp. 1290–1296, 1992.
J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors – A review,” IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, Sep. 2011.
D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.
H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3
Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.
I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 631–633, 2010.
C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.
Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.
S. Gundavarapu, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nature Photon., vol. 13, no. 1, pp. 60–67, 2019, doi: .
[Crossref]
D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.
D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372, 1991.
D. Huang, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica, vol. 6, no. 6, pp. 745–752, 2019, doi: .
[Crossref]
T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.
I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 631–633, 2010.
H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3
J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100 Gbit/s per wavelength,” Opt. Fiber Technol., vol. 44, pp. 69–85, 2018, doi: .
[Crossref]
J. K. Perin, A. Shastri, and J. M. Kahn, “Design of low-power DSP-free coherent receivers for data center links,” J. Lightw. Technol., vol. 35, no. 21, pp. 4650–4662, 2017.
S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015, doi: .
[Crossref]
L. G. Kazovsky, “Phase- and polarization-diversity coherent optical techniques,” J. Lightw. Technol., vol. 7, no. 2, pp. 279–292, 1989.
T. Kessler, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Photon., vol. 6, pp. 687–692, 2012, doi: .
[Crossref]
K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.
J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors – A review,” IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, Sep. 2011.
J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors – A review,” IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, Sep. 2011.
Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express, vol. 20, no. 11, pp. 12508–12514, 2012, doi: .
[Crossref]
T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.
J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100 Gbit/s per wavelength,” Opt. Fiber Technol., vol. 44, pp. 69–85, 2018, doi: .
[Crossref]
X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s Superchannel Transmission: An overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 16–24, 2014.
Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]
C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.
X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightw. Technol., vol. 26, no. 10, pp. 1309–1316, 2008.
J. J. Maki, “Evolution of pluggable optics and what is beyond,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib. (OFC), Mar. 3-7, 2019, pp. 1–3.
S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
[Crossref]
D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372, 1991.
A. Mooradian, ``Laser Linewidth,'' Physics Today, 1985. [Online]. Available: https://doi.org/10.1063/1.880973
S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015, doi: .
[Crossref]
Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express, vol. 20, no. 11, pp. 12508–12514, 2012, doi: .
[Crossref]
Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.
S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
[Crossref]
H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]
J. K. Perin, A. Shastri, and J. M. Kahn, “Design of low-power DSP-free coherent receivers for data center links,” J. Lightw. Technol., vol. 35, no. 21, pp. 4650–4662, 2017.
T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.
E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photon., vol. 1, pp. 395–401, 2007, doi: .
[Crossref]
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, pp. 035002-1–035002-39, 2017, Art. no. , doi: .
[Crossref]
D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.
I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 631–633, 2010.
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]
C. L. Schow and K. Schmidtke, “INTREPID: Developing power efficient analog coherent interconnects to transform data center networks,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib., Mar. 3–7, 2019, pp. 1–3.
C. L. Schow and K. Schmidtke, “INTREPID: Developing power efficient analog coherent interconnects to transform data center networks,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib., Mar. 3–7, 2019, pp. 1–3.
M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Proc. Conf. Opt. Fiber Commun. /Nat. Fiber Optic Engineers, Feb. 24-28, 2008, pp. 1–3.
J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100 Gbit/s per wavelength,” Opt. Fiber Technol., vol. 44, pp. 69–85, 2018, doi: .
[Crossref]
J. K. Perin, A. Shastri, and J. M. Kahn, “Design of low-power DSP-free coherent receivers for data center links,” J. Lightw. Technol., vol. 35, no. 21, pp. 4650–4662, 2017.
X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightw. Technol., vol. 26, no. 10, pp. 1309–1316, 2008.
E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photon., vol. 1, pp. 395–401, 2007, doi: .
[Crossref]
A. Simsek, “Achip-scale heterodyne optical phase-locked loop with low-power consumption,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W4G.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=OFC-2017-W4G.3
L. Stern, “Ultranarrow linewidth and stable photonic-atomic laser,” in Frontiers in Optics + Laser Science APS/DLS, Washington, DC, USA, 2019, paper FTu5C.4. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=FiO-2019-FTu5C.4
M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 674–676, 2004.
C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.
Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express, vol. 20, no. 11, pp. 12508–12514, 2012, doi: .
[Crossref]
T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.
Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.
S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
[Crossref]
X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s Superchannel Transmission: An overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 16–24, 2014.
P. J. Winzer, “Scaling Optical Fiber Networks: Challenges and Solutions,” Optics and Photonics News., pp. 30–35. Mar. 2015. [Online]. Available: http://www.osa-opn.org/abstract.cfm?URI = opn-26-3-28
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]
X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightw. Technol., vol. 26, no. 10, pp. 1309–1316, 2008.
S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015, doi: .
[Crossref]
Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express, vol. 20, no. 11, pp. 12508–12514, 2012, doi: .
[Crossref]
H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3
L. Stern, “Ultranarrow linewidth and stable photonic-atomic laser,” in Frontiers in Optics + Laser Science APS/DLS, Washington, DC, USA, 2019, paper FTu5C.4. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=FiO-2019-FTu5C.4
C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag., vol. 51, no. 3, pp. 50–57, 2013.
D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron., vol. 27, no. 3, pp. 352–372, 1991.
D. J. Blumenthal, “Integrated photonics for low-power packet networking,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 458–471, 2011.
M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 674–676, 2004.
I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett., vol. 22, no. 9, pp. 631–633, 2010.
J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors – A review,” IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, Sep. 2011.
X. Liu, S. Chandrasekhar, and P. J. Winzer, “Digital signal processing techniques enabling multi-Tb/s Superchannel Transmission: An overview of recent advances in DSP-enabled superchannels,” IEEE Signal Process. Mag., vol. 31, no. 2, pp. 16–24, 2014.
D. W. Allan, “Time and frequency (Time-Domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason., Ferroelectrics Frequency Control, vol. 34, no. 6, pp. 647–654, 1987.
X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightw. Technol., vol. 26, no. 10, pp. 1309–1316, 2008.
F. Derr, “Coherent optical QPSK intradyne system: Concept and digital receiver realization,” J. Lightw. Technol., vol. 10, no. 9, pp. 1290–1296, 1992.
L. G. Kazovsky, “Phase- and polarization-diversity coherent optical techniques,” J. Lightw. Technol., vol. 7, no. 2, pp. 279–292, 1989.
K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.
J. K. Perin, A. Shastri, and J. M. Kahn, “Design of low-power DSP-free coherent receivers for data center links,” J. Lightw. Technol., vol. 35, no. 21, pp. 4650–4662, 2017.
T. Kessler, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Photon., vol. 6, pp. 687–692, 2012, doi: .
[Crossref]
S. Gundavarapu, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nature Photon., vol. 13, no. 1, pp. 60–67, 2019, doi: .
[Crossref]
E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photon., vol. 1, pp. 395–401, 2007, doi: .
[Crossref]
H. Jung, S.-P. Yu, D. R. Carlson, T. E. Drake, T. C. Briles, and S. B. Papp, “Kerr solitons with tantala ring resonators,” in Nonlinear Optics, Waikoloa Beach, Hawaii, 2019. Available: http://www.osapublishing.org/abstract.cfm?URI = NLO-2019-NW2A.3
A. Andrae, “Total consumer power consumption forecast,” Nordic Digital Business Summit, Helsinki, Finland, Oct. 2017.
M. Morsy-Osman, “DSP-free coherent-lite ransceiver for next generation single wavelength optical intra-datacenter interconnects,” Opt. Express, vol. 26, no. 7, pp. 8890–8903, 2018, doi: .
[Crossref]
Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express, vol. 20, no. 11, pp. 12508–12514, 2012, doi: .
[Crossref]
S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015, doi: .
[Crossref]
S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express, vol. 26, no. 4, pp. 4522–4530, 2018, doi: .
[Crossref]
P. Kwee, “Stabilized high-power laser system for the gravitational wave detector advanced LIGO,” Opt. Express, vol. 20, no. 10, pp. 10617–10634, 2012, doi: .
[Crossref]
J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100 Gbit/s per wavelength,” Opt. Fiber Technol., vol. 44, pp. 69–85, 2018, doi: .
[Crossref]
M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica, vol. 4, no. 5, pp. 532–536, 2017, doi: .
[Crossref]
S. Liu, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica, vol. 6, no. 2, pp. 128–134, 2019, doi: .
[Crossref]
D. Huang, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica, vol. 6, no. 6, pp. 745–752, 2019, doi: .
[Crossref]
A. Mooradian, ``Laser Linewidth,'' Physics Today, 1985. [Online]. Available: https://doi.org/10.1063/1.880973
D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.
T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE, vol. 106, no. 12, pp. 2246–2257, 2018.
D. J. Blumenthal, G. Heideman René, G. Douwe, L. Arne, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Modern Phys., vol. 87, no. 2, pp. 637–701, 2015, doi: .
[Crossref]
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, pp. 035002-1–035002-39, 2017, Art. no. , doi: .
[Crossref]
M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Proc. Conf. Opt. Fiber Commun. /Nat. Fiber Optic Engineers, Feb. 24-28, 2008, pp. 1–3.
A. Simsek, “Achip-scale heterodyne optical phase-locked loop with low-power consumption,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W4G.3. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=OFC-2017-W4G.3
P. J. Winzer, “Scaling Optical Fiber Networks: Challenges and Solutions,” Optics and Photonics News., pp. 30–35. Mar. 2015. [Online]. Available: http://www.osa-opn.org/abstract.cfm?URI = opn-26-3-28
Cisco, “Cisco introduces foundation for next-generation internet: The Cisco CRS-3 carrier routing system,” Cisco Ann. Internet Rep., 2018. [Online]. Available. https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=5386763
Cisco, “Cisco global cloud index: Forecast and methodology, 2016–2021 white paper,” 2018. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
C. L. Schow and K. Schmidtke, “INTREPID: Developing power efficient analog coherent interconnects to transform data center networks,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib., Mar. 3–7, 2019, pp. 1–3.
Intel Newsroom, “Intel demonstrates industry-first co-packaged optics ethernet switch,” News Byte, Mar. 5, 2020. [Online]. Available: https://newsroom.intel.com/news/intel-demonstrates-industry-first-co-packaged-optics-ethernet-switch/#95.5fge9d
J. J. Maki, “Evolution of pluggable optics and what is beyond,” in Proc. 2019 Opt. Fiber Commun. Conf. Exhib. (OFC), Mar. 3-7, 2019, pp. 1–3.
Y. T. S. Liu, J. Norman, M. Dumont, A. Gossard, H. K. Tsang, and J. E. Bowers, “High efficiency, high gain and high saturation output power quantum Dot SOAs grown on Si and applications,” presented at the The Opt. Fiber Commun. Conf. Expo., 2020, Paper T4H.3.