Abstract

Widespread adoption of silicon photonics into datacenters requires that the integration of the driving electronics with the photonics be an essential component of transceiver development. In this article, we describe our silicon photonic transceiver design: a 2.5D integrated multi-chip module (MCM) for 4-channel wavelength division multiplexed (WDM) microdisk modulation targeting 10 Gbps per channel. A silicon interposer is used to provide connectivity between the photonic integrated circuit (PIC) and the commercial transimpedance amplifiers (TIAs). Error free modulation is demonstrated at 10 Gbps with −16 dBm received power for the photonic bare die and at 6 Gbps with −15 dBm received power for the first iteration of the MCM transceiver. In this context, we outline the different integration approaches currently being employed to interface between electronics and photonics—monolithic, 2D, 3D, and 2.5D—and discuss their tradeoffs. Notable demonstrations of the various integration architectures are highlighted. Finally, we address the scalability of the architecture and highlight a subsequent prototype employing custom electronic integrated circuits (EICs).

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Cisco visual networking index Forecast and trends, 2017-2022,” White Paper, 2019. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
  2. A. S. G. Andrae and T. Edler, “On global electricity usage of communication technology: Trends to 2030,” Challenges, vol. 6, pp. 117–157, 2015.
  3. E. J. Fluhr, “The 12-core POWER8TM processor with 7.6 Tb/s IO bandwidth, integrated voltage regulation, and resonant clocking,” IEEE J. Solid-State Circuit, vol. 50, no. 1, pp. 10–23, 2015.
  4. S. Rumley, “Optical interconnects for extreme scale computing systems,” Parallel Comput., vol. 64, pp. 65–80, 2017.
  5. A. Krishnamoorthy, “From chip to cloud: Optical interconnects in engineered systems,” J. Lightw. Technol., vol. 35, no. 15, pp. 3103–3115, 2017.
  6. I. A. Young, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 235–248, 2010.
  7. Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: A review,” OSA Optica, vol. 5, no. 11, pp. 1354–1370, 2018.
  8. P. De Dobbelaere, “Silicon photonics transceivers for hyper-scale datacenters: Deployment and roadmap,” 2016. [Online]. Available: http://www.phoxtrot.eu/wp-content/uploads/2017/01/ECOC-2016-PeterDe-Dobbelaere.pdf
  9. “Elenion technologies announces availability of silicon photonic integrated modulator/receiver assembly for coherent applications,” 17, 2017. [Online]. Available: https://elenion.com/news/2017/3/17/elenion-technologies-announces-availability-of-silicon-photonic-integrated-modulator-receiver-assembly-for-coherent-applications
  10. “Optoelectronics & photonics: Product selection guide,” 2019. [Online]. Available: https://www.macom.com/files/live/sites/ma/files/contributed/aboutMacom/pdf/2019%20OptoPhotonics%20Brochure.pdf
  11. “100G parallel single mode data center connectivity,” 2017. [Online]. Available: https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optical-transceiver-100g-psm4-qsfp28-brief.pdf
  12. A. Samani, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach–Zehnder modulator,” Opt. Express, vol 25, no. 12, pp. 13252–13262, 2017.
  13. J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.
  14. L. Vivien, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express, vol. 20, no. 2, pp. 1096–1101, 2012.
  15. S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933, 2016.
  16. A. V. Krishnamoorthy, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 357–376, 2011.
  17. C. Sun, “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, pp. 534–538. 2015.
  18. V. Stojanović, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes,” Opt. Express, vol. 26, no. 10, 2018, Art. no. .
  19. B. Yu, “FinFET scaling to 10 nm gate length,” in Proc. Digest. Int. Electron Devices Meeting, 2002, pp. 251–254.
  20. J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. Krishnamoorthy, “A Monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1309–1322, 2012.
  21. A. Narasimha, “A 40-Gb/s QSFP optoelectronic transceiver in a 0.13 um CMOS silicon-on-insulator technology,” in Proc. Opt. Fiber Commun. Conf., 2008, pp. 1–3, Paper OMK7.
  22. N. B. Feilchenfeld, “An integrated silicon photonics technology for o-band datacom,” in Proc. IEEE Int. Electron Devices Meeting, 2015, pp. 25.7.1–25.7.4.
  23. L. Zimmermann, “BiCMOS silicon photonics platform,” in Proc. Opt. Fiber Commun. Conf., 2015, pp. 1–3, Paper Th4E.5.
  24. A. Narasimha, “An ultra low power CMOS photonics technology platform for H/S optoelectronic transceivers at less than $1 per Gbps,” in Proc. Opt. Fiber Commun. Conf., 2010, pp. 1–3, Paper OMV4.
  25. A. H. Atabaki, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature, vol. 556, pp. 349–354, 2018.
  26. P. De Dobbelaere, “Advanced silicon photonic technology platform leveraging a semiconductor supply chain,” in Proc. IEEE Int. Electron Devices Meeting, 2017, pp. 34.1.1–34.1.4.
  27. H. Li, “A 25 Gb/s 4.4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength stabilzation in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 3145–3159, 2015.
  28. A. Inmann and D. Hodgins, Implantable Sensor Systems for Medical Applications, Cambridge, U.K.: Woodhead, 2013, p. 119.
  29. I. Ndip, A. Öz, S. Guttowski, H. Reichl, K. Lang, and H. Henke, “Modeling and minimizing the inductance of bond wire interconnects,” in Proc. IEEE Workshop Signal Power Integrity, 2013, pp. 1–4.
  30. H. Li, “A 112 Gb/s PAM4 silicon photonics transmitter with microring modulator and CMOS driver,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 1–3, Paper Th4A.4.
  31. M. Rakowski, “Hybrid 14 nm FinFET silicon photonics technology for low-power Tb/s/mm2 Optical I/O,” in Proc. Symp. VLSI Technol. Digest Tech. Papers, 2018, pp. 221–222.
  32. H. D. Thacker, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in Proc. Electron. Components Technol. Conf., 2010, pp. 240–246.
  33. Y. Chen, , “A 25 Gb/s hybrid integrated silicon photonic transceiver in 28 nm CMOS and SOI,” in Proc. IEEE Intz. Solid-State Circuits Conf., 2015, pp. 1–3.
  34. R. Yarema, “Advances in bonding technologies,” 2014. [Online]. Available: https://indico.cern.ch/event/309449/contributions/1679992/attachments/591500/814219/Bonn_talk.pdf
  35. M. Garcia-Sciveres and N. Wermes, “A review of advances in pixel detectors for experiments with high rate and radiation,” Rep. Profess Phys., vol. 81, no. 6, 2018.
  36. Collier Ventures Inc., “Die Bumping,” 2019. [Online]. Available: http://covinc.com/our-services/die-bumping/
  37. G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in Proc. Eur. Conf. Opt. Commun., 2014, pp. 1–3, Paper PD.2.4.
  38. G. Denoyer, “Hybrid silicon photonic circuits and transceiver for 50 Gb/s NRZ transmission over single-mode fiber,” J. Lightw. Technol., vol. 33, no. 6, pp. 1247–1254, 2015.
  39. S. Straullu, “Demonstration of a partially integrated silicon photonics ONU in a self-coherent reflective FDMA PON,” J. Lightw. Technol., vol. 35, no. 7, pp. 1307–1312, 2017.
  40. L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, p. 426, 2016.
  41. D. Kim, “2.5D silicon optical interposer for 400 Gbps electronic-photonic integrated circuit platform packaging,” in Proc. IEEE Electron. Packag. Technol. Conf., 2017, pp. 1–4.
  42. C. Doerr, “Silicon photonics coherent transceiver in a ball-grid array package,” in Proc. Opt. Fiber Commun. Conf., 2017, pp. 1–3, Paper Th5D.5.
  43. J. S. Orcutt, “Monolithic silicon photonics at 25 Gb/s,” in Proc. Opt. Fiber Commun. Conf., 2016, pp. 1–3, Paper Th4H.1.
  44. J. S. Orcutt, “Design of monolithic silicon photonics at 25 Gb/s,” in Proc. IEEE Compound Semicond. Integr. Circuit Symp., 2017, pp. 1–4.
  45. F. Y. Liu, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2049–2067, 2012.
  46. M. Rakowski, “A 4 × 20 Gb/s WDM ring-based hybrid CMOS silicon photonics transceiver,” in Proc. IEEE Int. Solid-State Circuits Conf., 2015, vol. 58, pp. 408–409.
  47. I. Shubin, “All solid-state multi-chip multi-channel WDM photonic module,” in Proc. IEEE Electron. Components Technol. Conf., 2015, pp. 1293–1298.
  48. H. D. Thacker, “An all-solid-state, WDM silicon photonic digital link for chip-to-chip communications,” Opt. Express, vol. 23, no. 10, pp. 12808–12822. 2015.
  49. Y. De Koninck, “Advanced silicon photonics transceivers,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.
  50. T. Aoki, “Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver,” J. Lightw. Technol., vol. 36, no. 5, pp. 1262–1267, 2018.
  51. B. Sirbu, “3D silicon photonics interposer for Tb/s optical interconnects in data centers with double-side assembled active components and integrated optical and electrical through silicon via on SOI,” in Proc. IEEE Electron. Components Technol. Conf., 2019, pp. 1052–1059.
  52. A. Novack, “A silicon photonic transceiver and hybrid tunable laser for 64 gbaud coherent communication,” in Proc. Opt. Fiber Commun. Conf., 2018, pp. 1–3, Paper Th4D.4.
  53. Xilinx, “Recommended design rules and strategies for BGA devices,” 2016. [Online] Available: https://www.xilinx.com/support/documentation/user_guides/ug1099-bga-device-design-rules.pdf
  54. S. Bernabé, “On-board silicon photonics-based transceivers with 1-Tb/s capacity,” IEEE Components, Packag. Manuf. Technol., vol. 6, no. 7, pp. 1018–1025, 2016.
  55. P. Dong, “Simultaneous wavelength locking of microring modulator array with a single monitoring signal,” Opt. Express, vol. 25, no. 14, pp. 16040–16046, 2017.
  56. K. Padmaraju, D. R. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512. 2014.
  57. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro, vol. 33, no. 1, pp. 42–52, 2013.
  58. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, pp. 1–11, 2014.
  59. E. Timurdogan, “APSUNY process design kit (PDKv3.0): O, C and L band silicon photonics component libraries on 300 mm wafers,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 1–3, Paper Tu2A.1.
  60. Z. Zhou, B. Bai, and L. Liu, “Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 3, pp. 1–13, 2019.
  61. L. Luo, “WDM-compatible mode-division multiplexing on a silicon chip,” Nature Commun., vol. 5, pp. 1–7, 2014.
  62. “GLOBALFOUNDRIES silicon photonics platform,” 2018. [Online]. Available: http://soiconsortium.eu/wp-content/uploads/2018/10/GLOBALFOUNDRIES_SiPh_platform_v2.pdf
  63. N. Fahrenkopf, C. McDonough, G. Leake, Z. Su, E. Timurdogan, and D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.
  64. Z. Chen, “Use of polarization freedom beyond polarization division multiplexing to support high-speed and spectral-efficient data transmission,” Light: Sci. Appl., vol. 6, pp. 1–7, 2016.
  65. J. He, “Silicon high-order mode (De)multiplexer on single polarization,” J. Lightw. Technol., vol. 36, no. 24, pp. 5746–5753, 2018.
  66. B. Snyder, “Packaging and assembly challenges for 50G silicon photonics interposers,” in Proc. Opt. Fiber Commun. Conf., 2018, pp. 1–3, Paper Tu2A.3.
  67. K. Chang, R. Li, L. Ding, and S. Zhang, “Study of transmission line performance on through silicon interposer,” in Proc. IEEE Electron. Packag. Technol. Conf., 2014, pp. 284–287.
  68. J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance turning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.
  69. L. Luo, “High bandwidth on-chip silicon photonic interleaver,” Opt. Express, vol. 18, no. 22, pp. 23080–23087, 2010.
  70. J. S. LevyA. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon., vol. 4, no. 1, pp. 37–40, 2009.
  71. Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. VLSI Syst., vol. 22, no. 10, pp. 2081–2092, 2014.
  72. F. Frey, R. Elschner, and J. Fischer, “Estimation of Trends for Coherent DSP ASIC Power Dissipation for different bitrates and transmission reaches,” in Proc. Photon. Netw. Conf., May 2017, pp. 1–8.
  73. R. Polster, Y. Thonnart, G. Waltener, J. Gonzalez, and E. Cassan, “Efficiency optimization of silicon photonics links in 65-nm CMOS and 28-nm FDSOI technology nodes,” IEEE Trans. VLSI Syst., vol. 24, no. 12, pp. 3450–3459, 2016.
  74. M. Bahadori, “Energy-performance optimized design of silicon photonic interconnection networks for high-performance computing,” in Proc. Des., Autom., and Test Europe Conf., 2017, pp. 326–331.

2019 (5)

“Cisco visual networking index Forecast and trends, 2017-2022,” White Paper, 2019. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Z. Zhou, B. Bai, and L. Liu, “Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 3, pp. 1–13, 2019.

N. Fahrenkopf, C. McDonough, G. Leake, Z. Su, E. Timurdogan, and D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance turning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

2018 (6)

J. He, “Silicon high-order mode (De)multiplexer on single polarization,” J. Lightw. Technol., vol. 36, no. 24, pp. 5746–5753, 2018.

T. Aoki, “Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver,” J. Lightw. Technol., vol. 36, no. 5, pp. 1262–1267, 2018.

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: A review,” OSA Optica, vol. 5, no. 11, pp. 1354–1370, 2018.

V. Stojanović, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes,” Opt. Express, vol. 26, no. 10, 2018, Art. no. .

A. H. Atabaki, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature, vol. 556, pp. 349–354, 2018.

M. Garcia-Sciveres and N. Wermes, “A review of advances in pixel detectors for experiments with high rate and radiation,” Rep. Profess Phys., vol. 81, no. 6, 2018.

2017 (5)

A. Samani, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach–Zehnder modulator,” Opt. Express, vol 25, no. 12, pp. 13252–13262, 2017.

S. Rumley, “Optical interconnects for extreme scale computing systems,” Parallel Comput., vol. 64, pp. 65–80, 2017.

A. Krishnamoorthy, “From chip to cloud: Optical interconnects in engineered systems,” J. Lightw. Technol., vol. 35, no. 15, pp. 3103–3115, 2017.

P. Dong, “Simultaneous wavelength locking of microring modulator array with a single monitoring signal,” Opt. Express, vol. 25, no. 14, pp. 16040–16046, 2017.

S. Straullu, “Demonstration of a partially integrated silicon photonics ONU in a self-coherent reflective FDMA PON,” J. Lightw. Technol., vol. 35, no. 7, pp. 1307–1312, 2017.

2016 (5)

L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, p. 426, 2016.

S. Bernabé, “On-board silicon photonics-based transceivers with 1-Tb/s capacity,” IEEE Components, Packag. Manuf. Technol., vol. 6, no. 7, pp. 1018–1025, 2016.

Z. Chen, “Use of polarization freedom beyond polarization division multiplexing to support high-speed and spectral-efficient data transmission,” Light: Sci. Appl., vol. 6, pp. 1–7, 2016.

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933, 2016.

R. Polster, Y. Thonnart, G. Waltener, J. Gonzalez, and E. Cassan, “Efficiency optimization of silicon photonics links in 65-nm CMOS and 28-nm FDSOI technology nodes,” IEEE Trans. VLSI Syst., vol. 24, no. 12, pp. 3450–3459, 2016.

2015 (6)

G. Denoyer, “Hybrid silicon photonic circuits and transceiver for 50 Gb/s NRZ transmission over single-mode fiber,” J. Lightw. Technol., vol. 33, no. 6, pp. 1247–1254, 2015.

H. Li, “A 25 Gb/s 4.4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength stabilzation in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 3145–3159, 2015.

A. S. G. Andrae and T. Edler, “On global electricity usage of communication technology: Trends to 2030,” Challenges, vol. 6, pp. 117–157, 2015.

E. J. Fluhr, “The 12-core POWER8TM processor with 7.6 Tb/s IO bandwidth, integrated voltage regulation, and resonant clocking,” IEEE J. Solid-State Circuit, vol. 50, no. 1, pp. 10–23, 2015.

C. Sun, “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, pp. 534–538. 2015.

H. D. Thacker, “An all-solid-state, WDM silicon photonic digital link for chip-to-chip communications,” Opt. Express, vol. 23, no. 10, pp. 12808–12822. 2015.

2014 (4)

K. Padmaraju, D. R. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512. 2014.

L. Luo, “WDM-compatible mode-division multiplexing on a silicon chip,” Nature Commun., vol. 5, pp. 1–7, 2014.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, pp. 1–11, 2014.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. VLSI Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

2013 (2)

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro, vol. 33, no. 1, pp. 42–52, 2013.

A. Inmann and D. Hodgins, Implantable Sensor Systems for Medical Applications, Cambridge, U.K.: Woodhead, 2013, p. 119.

2012 (3)

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. Krishnamoorthy, “A Monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1309–1322, 2012.

L. Vivien, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express, vol. 20, no. 2, pp. 1096–1101, 2012.

F. Y. Liu, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2049–2067, 2012.

2011 (1)

A. V. Krishnamoorthy, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 357–376, 2011.

2010 (2)

I. A. Young, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 235–248, 2010.

L. Luo, “High bandwidth on-chip silicon photonic interleaver,” Opt. Express, vol. 18, no. 22, pp. 23080–23087, 2010.

2009 (1)

J. S. LevyA. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon., vol. 4, no. 1, pp. 37–40, 2009.

Ackert, J. J.

K. Padmaraju, D. R. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512. 2014.

Andrae, A. S. G.

A. S. G. Andrae and T. Edler, “On global electricity usage of communication technology: Trends to 2030,” Challenges, vol. 6, pp. 117–157, 2015.

Aoki, T.

T. Aoki, “Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver,” J. Lightw. Technol., vol. 36, no. 5, pp. 1262–1267, 2018.

Atabaki, A. H.

A. H. Atabaki, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature, vol. 556, pp. 349–354, 2018.

Audzevich, Y.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. VLSI Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Bahadori, M.

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: A review,” OSA Optica, vol. 5, no. 11, pp. 1354–1370, 2018.

M. Bahadori, “Energy-performance optimized design of silicon photonic interconnection networks for high-performance computing,” in Proc. Des., Autom., and Test Europe Conf., 2017, pp. 326–331.

Bai, B.

Z. Zhou, B. Bai, and L. Liu, “Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 3, pp. 1–13, 2019.

Bergman, K.

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: A review,” OSA Optica, vol. 5, no. 11, pp. 1354–1370, 2018.

K. Padmaraju, D. R. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512. 2014.

Bernabé, S.

S. Bernabé, “On-board silicon photonics-based transceivers with 1-Tb/s capacity,” IEEE Components, Packag. Manuf. Technol., vol. 6, no. 7, pp. 1018–1025, 2016.

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, pp. 1–11, 2014.

Buckwalter, J. F.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. Krishnamoorthy, “A Monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1309–1322, 2012.

Carroll, L.

L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, p. 426, 2016.

Cassan, E.

R. Polster, Y. Thonnart, G. Waltener, J. Gonzalez, and E. Cassan, “Efficiency optimization of silicon photonics links in 65-nm CMOS and 28-nm FDSOI technology nodes,” IEEE Trans. VLSI Syst., vol. 24, no. 12, pp. 3450–3459, 2016.

Chang, K.

K. Chang, R. Li, L. Ding, and S. Zhang, “Study of transmission line performance on through silicon interposer,” in Proc. IEEE Electron. Packag. Technol. Conf., 2014, pp. 284–287.

Chen, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in Proc. Eur. Conf. Opt. Commun., 2014, pp. 1–3, Paper PD.2.4.

Chen, Y.

Y. Chen, , “A 25 Gb/s hybrid integrated silicon photonic transceiver in 28 nm CMOS and SOI,” in Proc. IEEE Intz. Solid-State Circuits Conf., 2015, pp. 1–3.

Chen, Z.

Z. Chen, “Use of polarization freedom beyond polarization division multiplexing to support high-speed and spectral-efficient data transmission,” Light: Sci. Appl., vol. 6, pp. 1–7, 2016.

Cheng, Q.

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: A review,” OSA Optica, vol. 5, no. 11, pp. 1354–1370, 2018.

Coolbaugh, D.

N. Fahrenkopf, C. McDonough, G. Leake, Z. Su, E. Timurdogan, and D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

De Dobbelaere, P.

P. De Dobbelaere, “Silicon photonics transceivers for hyper-scale datacenters: Deployment and roadmap,” 2016. [Online]. Available: http://www.phoxtrot.eu/wp-content/uploads/2017/01/ECOC-2016-PeterDe-Dobbelaere.pdf

P. De Dobbelaere, “Advanced silicon photonic technology platform leveraging a semiconductor supply chain,” in Proc. IEEE Int. Electron Devices Meeting, 2017, pp. 34.1.1–34.1.4.

De Koninck, Y.

Y. De Koninck, “Advanced silicon photonics transceivers,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.

Denoyer, G.

G. Denoyer, “Hybrid silicon photonic circuits and transceiver for 50 Gb/s NRZ transmission over single-mode fiber,” J. Lightw. Technol., vol. 33, no. 6, pp. 1247–1254, 2015.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in Proc. Eur. Conf. Opt. Commun., 2014, pp. 1–3, Paper PD.2.4.

Ding, L.

K. Chang, R. Li, L. Ding, and S. Zhang, “Study of transmission line performance on through silicon interposer,” in Proc. IEEE Electron. Packag. Technol. Conf., 2014, pp. 284–287.

Doerr, C.

C. Doerr, “Silicon photonics coherent transceiver in a ball-grid array package,” in Proc. Opt. Fiber Commun. Conf., 2017, pp. 1–3, Paper Th5D.5.

Dong, P.

Driscoll, J.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance turning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Driscoll, J. B.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Edler, T.

A. S. G. Andrae and T. Edler, “On global electricity usage of communication technology: Trends to 2030,” Challenges, vol. 6, pp. 117–157, 2015.

Elschner, R.

F. Frey, R. Elschner, and J. Fischer, “Estimation of Trends for Coherent DSP ASIC Power Dissipation for different bitrates and transmission reaches,” in Proc. Photon. Netw. Conf., May 2017, pp. 1–8.

Emami, A.

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933, 2016.

Fahrenkopf, N.

N. Fahrenkopf, C. McDonough, G. Leake, Z. Su, E. Timurdogan, and D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

Feilchenfeld, N. B.

N. B. Feilchenfeld, “An integrated silicon photonics technology for o-band datacom,” in Proc. IEEE Int. Electron Devices Meeting, 2015, pp. 25.7.1–25.7.4.

Fischer, J.

F. Frey, R. Elschner, and J. Fischer, “Estimation of Trends for Coherent DSP ASIC Power Dissipation for different bitrates and transmission reaches,” in Proc. Photon. Netw. Conf., May 2017, pp. 1–8.

Fluhr, E. J.

E. J. Fluhr, “The 12-core POWER8TM processor with 7.6 Tb/s IO bandwidth, integrated voltage regulation, and resonant clocking,” IEEE J. Solid-State Circuit, vol. 50, no. 1, pp. 10–23, 2015.

Foster, M. A.

J. S. LevyA. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon., vol. 4, no. 1, pp. 37–40, 2009.

Frey, F.

F. Frey, R. Elschner, and J. Fischer, “Estimation of Trends for Coherent DSP ASIC Power Dissipation for different bitrates and transmission reaches,” in Proc. Photon. Netw. Conf., May 2017, pp. 1–8.

Gaeta, A. L.

J. S. LevyA. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon., vol. 4, no. 1, pp. 37–40, 2009.

Garcia-Sciveres, M.

M. Garcia-Sciveres and N. Wermes, “A review of advances in pixel detectors for experiments with high rate and radiation,” Rep. Profess Phys., vol. 81, no. 6, 2018.

Glick, M.

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: A review,” OSA Optica, vol. 5, no. 11, pp. 1354–1370, 2018.

Gondarenko, A.

J. S. LevyA. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon., vol. 4, no. 1, pp. 37–40, 2009.

Gonzalez, J.

R. Polster, Y. Thonnart, G. Waltener, J. Gonzalez, and E. Cassan, “Efficiency optimization of silicon photonics links in 65-nm CMOS and 28-nm FDSOI technology nodes,” IEEE Trans. VLSI Syst., vol. 24, no. 12, pp. 3450–3459, 2016.

Guttowski, S.

I. Ndip, A. Öz, S. Guttowski, H. Reichl, K. Lang, and H. Henke, “Modeling and minimizing the inductance of bond wire interconnects,” in Proc. IEEE Workshop Signal Power Integrity, 2013, pp. 1–4.

He, J.

J. He, “Silicon high-order mode (De)multiplexer on single polarization,” J. Lightw. Technol., vol. 36, no. 24, pp. 5746–5753, 2018.

Henke, H.

I. Ndip, A. Öz, S. Guttowski, H. Reichl, K. Lang, and H. Henke, “Modeling and minimizing the inductance of bond wire interconnects,” in Proc. IEEE Workshop Signal Power Integrity, 2013, pp. 1–4.

Hodgins, D.

A. Inmann and D. Hodgins, Implantable Sensor Systems for Medical Applications, Cambridge, U.K.: Woodhead, 2013, p. 119.

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, pp. 1–11, 2014.

Inmann, A.

A. Inmann and D. Hodgins, Implantable Sensor Systems for Medical Applications, Cambridge, U.K.: Woodhead, 2013, p. 119.

Jayatilleka, H.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance turning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Kim, D.

D. Kim, “2.5D silicon optical interposer for 400 Gbps electronic-photonic integrated circuit platform packaging,” in Proc. IEEE Electron. Packag. Technol. Conf., 2017, pp. 1–4.

Knights, A. P.

K. Padmaraju, D. R. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512. 2014.

Krishnamoorthy, A.

A. Krishnamoorthy, “From chip to cloud: Optical interconnects in engineered systems,” J. Lightw. Technol., vol. 35, no. 15, pp. 3103–3115, 2017.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. Krishnamoorthy, “A Monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1309–1322, 2012.

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 357–376, 2011.

Kumar, R.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance turning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Lang, K.

I. Ndip, A. Öz, S. Guttowski, H. Reichl, K. Lang, and H. Henke, “Modeling and minimizing the inductance of bond wire interconnects,” in Proc. IEEE Workshop Signal Power Integrity, 2013, pp. 1–4.

Leake, G.

N. Fahrenkopf, C. McDonough, G. Leake, Z. Su, E. Timurdogan, and D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

Lentine, A. L.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro, vol. 33, no. 1, pp. 42–52, 2013.

Levy, J. S.

J. S. LevyA. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon., vol. 4, no. 1, pp. 37–40, 2009.

Li, G.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. Krishnamoorthy, “A Monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1309–1322, 2012.

Li, H.

H. Li, “A 25 Gb/s 4.4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength stabilzation in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 3145–3159, 2015.

H. Li, “A 112 Gb/s PAM4 silicon photonics transmitter with microring modulator and CMOS driver,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 1–3, Paper Th4A.4.

Li, R.

K. Chang, R. Li, L. Ding, and S. Zhang, “Study of transmission line performance on through silicon interposer,” in Proc. IEEE Electron. Packag. Technol. Conf., 2014, pp. 284–287.

Lipson, M.

J. S. LevyA. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon., vol. 4, no. 1, pp. 37–40, 2009.

Liu, F. Y.

F. Y. Liu, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2049–2067, 2012.

Liu, L.

Z. Zhou, B. Bai, and L. Liu, “Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 3, pp. 1–13, 2019.

Logan, D. R.

K. Padmaraju, D. R. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512. 2014.

Luo, L.

L. Luo, “WDM-compatible mode-division multiplexing on a silicon chip,” Nature Commun., vol. 5, pp. 1–7, 2014.

L. Luo, “High bandwidth on-chip silicon photonic interleaver,” Opt. Express, vol. 18, no. 22, pp. 23080–23087, 2010.

McDonough, C.

N. Fahrenkopf, C. McDonough, G. Leake, Z. Su, E. Timurdogan, and D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

Menezo, S.

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933, 2016.

Moore, A. W.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. VLSI Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Moore, S. W.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. VLSI Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Mujumdar, A.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. VLSI Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Narasimha, A.

A. Narasimha, “A 40-Gb/s QSFP optoelectronic transceiver in a 0.13 um CMOS silicon-on-insulator technology,” in Proc. Opt. Fiber Commun. Conf., 2008, pp. 1–3, Paper OMK7.

A. Narasimha, “An ultra low power CMOS photonics technology platform for H/S optoelectronic transceivers at less than $1 per Gbps,” in Proc. Opt. Fiber Commun. Conf., 2010, pp. 1–3, Paper OMV4.

Ndip, I.

I. Ndip, A. Öz, S. Guttowski, H. Reichl, K. Lang, and H. Henke, “Modeling and minimizing the inductance of bond wire interconnects,” in Proc. IEEE Workshop Signal Power Integrity, 2013, pp. 1–4.

Novack, A.

A. Novack, “A silicon photonic transceiver and hybrid tunable laser for 64 gbaud coherent communication,” in Proc. Opt. Fiber Commun. Conf., 2018, pp. 1–3, Paper Th4D.4.

Orcutt, J. S.

J. S. Orcutt, “Monolithic silicon photonics at 25 Gb/s,” in Proc. Opt. Fiber Commun. Conf., 2016, pp. 1–3, Paper Th4H.1.

J. S. Orcutt, “Design of monolithic silicon photonics at 25 Gb/s,” in Proc. IEEE Compound Semicond. Integr. Circuit Symp., 2017, pp. 1–4.

Öz, A.

I. Ndip, A. Öz, S. Guttowski, H. Reichl, K. Lang, and H. Henke, “Modeling and minimizing the inductance of bond wire interconnects,” in Proc. IEEE Workshop Signal Power Integrity, 2013, pp. 1–4.

Padmaraju, K.

K. Padmaraju, D. R. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512. 2014.

Pares, G.

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933, 2016.

Park, B.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in Proc. Eur. Conf. Opt. Commun., 2014, pp. 1–3, Paper PD.2.4.

Polster, R.

R. Polster, Y. Thonnart, G. Waltener, J. Gonzalez, and E. Cassan, “Efficiency optimization of silicon photonics links in 65-nm CMOS and 28-nm FDSOI technology nodes,” IEEE Trans. VLSI Syst., vol. 24, no. 12, pp. 3450–3459, 2016.

Raj, K.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. Krishnamoorthy, “A Monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1309–1322, 2012.

Rakowski, M.

M. Rakowski, “A 4 × 20 Gb/s WDM ring-based hybrid CMOS silicon photonics transceiver,” in Proc. IEEE Int. Solid-State Circuits Conf., 2015, vol. 58, pp. 408–409.

M. Rakowski, “Hybrid 14 nm FinFET silicon photonics technology for low-power Tb/s/mm2 Optical I/O,” in Proc. Symp. VLSI Technol. Digest Tech. Papers, 2018, pp. 221–222.

Reichl, H.

I. Ndip, A. Öz, S. Guttowski, H. Reichl, K. Lang, and H. Henke, “Modeling and minimizing the inductance of bond wire interconnects,” in Proc. IEEE Workshop Signal Power Integrity, 2013, pp. 1–4.

Rong, H.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance turning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Rumley, S.

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: A review,” OSA Optica, vol. 5, no. 11, pp. 1354–1370, 2018.

S. Rumley, “Optical interconnects for extreme scale computing systems,” Parallel Comput., vol. 64, pp. 65–80, 2017.

Russo, R.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in Proc. Eur. Conf. Opt. Commun., 2014, pp. 1–3, Paper PD.2.4.

Saeedi, S.

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933, 2016.

Sakib, M.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance turning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

Samani, A.

Santipo, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in Proc. Eur. Conf. Opt. Commun., 2014, pp. 1–3, Paper PD.2.4.

Shiraishi, T.

K. Padmaraju, D. R. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512. 2014.

Shubin, I.

I. Shubin, “All solid-state multi-chip multi-channel WDM photonic module,” in Proc. IEEE Electron. Components Technol. Conf., 2015, pp. 1293–1298.

Sirbu, B.

B. Sirbu, “3D silicon photonics interposer for Tb/s optical interconnects in data centers with double-side assembled active components and integrated optical and electrical through silicon via on SOI,” in Proc. IEEE Electron. Components Technol. Conf., 2019, pp. 1052–1059.

Snyder, B.

B. Snyder, “Packaging and assembly challenges for 50G silicon photonics interposers,” in Proc. Opt. Fiber Commun. Conf., 2018, pp. 1–3, Paper Tu2A.3.

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, pp. 1–11, 2014.

Stojanovic, V.

V. Stojanović, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes,” Opt. Express, vol. 26, no. 10, 2018, Art. no. .

Straullu, S.

S. Straullu, “Demonstration of a partially integrated silicon photonics ONU in a self-coherent reflective FDMA PON,” J. Lightw. Technol., vol. 35, no. 7, pp. 1307–1312, 2017.

Su, Z.

N. Fahrenkopf, C. McDonough, G. Leake, Z. Su, E. Timurdogan, and D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

Sun, C.

C. Sun, “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, pp. 534–538. 2015.

Sun, J.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance turning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, pp. 1–11, 2014.

Thacker, H. D.

H. D. Thacker, “An all-solid-state, WDM silicon photonic digital link for chip-to-chip communications,” Opt. Express, vol. 23, no. 10, pp. 12808–12822. 2015.

H. D. Thacker, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in Proc. Electron. Components Technol. Conf., 2010, pp. 240–246.

Thonnart, Y.

R. Polster, Y. Thonnart, G. Waltener, J. Gonzalez, and E. Cassan, “Efficiency optimization of silicon photonics links in 65-nm CMOS and 28-nm FDSOI technology nodes,” IEEE Trans. VLSI Syst., vol. 24, no. 12, pp. 3450–3459, 2016.

Timurdogan, E.

N. Fahrenkopf, C. McDonough, G. Leake, Z. Su, E. Timurdogan, and D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, pp. 1–11, 2014.

E. Timurdogan, “APSUNY process design kit (PDKv3.0): O, C and L band silicon photonics component libraries on 300 mm wafers,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 1–3, Paper Tu2A.1.

Trotter, D. C.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro, vol. 33, no. 1, pp. 42–52, 2013.

Turner-Foster, A. C.

J. S. LevyA. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon., vol. 4, no. 1, pp. 37–40, 2009.

Vivien, L.

Waltener, G.

R. Polster, Y. Thonnart, G. Waltener, J. Gonzalez, and E. Cassan, “Efficiency optimization of silicon photonics links in 65-nm CMOS and 28-nm FDSOI technology nodes,” IEEE Trans. VLSI Syst., vol. 24, no. 12, pp. 3450–3459, 2016.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, pp. 1–11, 2014.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro, vol. 33, no. 1, pp. 42–52, 2013.

Watts, P. M.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. VLSI Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Wermes, N.

M. Garcia-Sciveres and N. Wermes, “A review of advances in pixel detectors for experiments with high rate and radiation,” Rep. Profess Phys., vol. 81, no. 6, 2018.

West, A.

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. VLSI Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

Yarema, R.

R. Yarema, “Advances in bonding technologies,” 2014. [Online]. Available: https://indico.cern.ch/event/309449/contributions/1679992/attachments/591500/814219/Bonn_talk.pdf

Young, I. A.

I. A. Young, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 235–248, 2010.

Yu, B.

B. Yu, “FinFET scaling to 10 nm gate length,” in Proc. Digest. Int. Electron Devices Meeting, 2002, pp. 251–254.

Zhang, S.

K. Chang, R. Li, L. Ding, and S. Zhang, “Study of transmission line performance on through silicon interposer,” in Proc. IEEE Electron. Packag. Technol. Conf., 2014, pp. 284–287.

Zheng, X.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. Krishnamoorthy, “A Monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1309–1322, 2012.

Zhou, Y.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in Proc. Eur. Conf. Opt. Commun., 2014, pp. 1–3, Paper PD.2.4.

Zhou, Z.

Z. Zhou, B. Bai, and L. Liu, “Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 3, pp. 1–13, 2019.

Zimmermann, L.

L. Zimmermann, “BiCMOS silicon photonics platform,” in Proc. Opt. Fiber Commun. Conf., 2015, pp. 1–3, Paper Th4E.5.

Zortman, W. A.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro, vol. 33, no. 1, pp. 42–52, 2013.

Appl. Sci. (1)

L. Carroll, “Photonic packaging: Transforming silicon photonic integrated circuits into photonic devices,” Appl. Sci., vol. 6, no. 12, p. 426, 2016.

Challenges (1)

A. S. G. Andrae and T. Edler, “On global electricity usage of communication technology: Trends to 2030,” Challenges, vol. 6, pp. 117–157, 2015.

IEEE Components, Packag. Manuf. Technol. (1)

S. Bernabé, “On-board silicon photonics-based transceivers with 1-Tb/s capacity,” IEEE Components, Packag. Manuf. Technol., vol. 6, no. 7, pp. 1018–1025, 2016.

IEEE J. Sel. Topics Quantum Electron. (3)

Z. Zhou, B. Bai, and L. Liu, “Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 3, pp. 1–13, 2019.

N. Fahrenkopf, C. McDonough, G. Leake, Z. Su, E. Timurdogan, and D. Coolbaugh, “The AIM photonics MPW: A highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, pp. 1–6, 2019.

A. V. Krishnamoorthy, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 357–376, 2011.

IEEE J. Solid-State Circuit (1)

E. J. Fluhr, “The 12-core POWER8TM processor with 7.6 Tb/s IO bandwidth, integrated voltage regulation, and resonant clocking,” IEEE J. Solid-State Circuit, vol. 50, no. 1, pp. 10–23, 2015.

IEEE J. Solid-State Circuits (4)

I. A. Young, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 235–248, 2010.

H. Li, “A 25 Gb/s 4.4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength stabilzation in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 3145–3159, 2015.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. Krishnamoorthy, “A Monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1309–1322, 2012.

F. Y. Liu, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2049–2067, 2012.

IEEE Micro (1)

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro, vol. 33, no. 1, pp. 42–52, 2013.

IEEE Trans. VLSI Syst. (2)

Y. Audzevich, P. M. Watts, A. West, A. Mujumdar, S. W. Moore, and A. W. Moore, “Power optimized transceivers for future switched networks,” IEEE Trans. VLSI Syst., vol. 22, no. 10, pp. 2081–2092, 2014.

R. Polster, Y. Thonnart, G. Waltener, J. Gonzalez, and E. Cassan, “Efficiency optimization of silicon photonics links in 65-nm CMOS and 28-nm FDSOI technology nodes,” IEEE Trans. VLSI Syst., vol. 24, no. 12, pp. 3450–3459, 2016.

Implantable Sensor Systems for Medical Applications (1)

A. Inmann and D. Hodgins, Implantable Sensor Systems for Medical Applications, Cambridge, U.K.: Woodhead, 2013, p. 119.

J. Lightw. Technol. (9)

A. Krishnamoorthy, “From chip to cloud: Optical interconnects in engineered systems,” J. Lightw. Technol., vol. 35, no. 15, pp. 3103–3115, 2017.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

S. Saeedi, S. Menezo, G. Pares, and A. Emami, “A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication,” J. Lightw. Technol., vol. 34, no. 12, pp. 2924–2933, 2016.

J. Sun, R. Kumar, M. Sakib, J. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance turning,” J. Lightw. Technol., vol. 37, no. 1, pp. 110–115, 2019.

K. Padmaraju, D. R. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightw. Technol., vol. 32, no. 3, pp. 505–512. 2014.

J. He, “Silicon high-order mode (De)multiplexer on single polarization,” J. Lightw. Technol., vol. 36, no. 24, pp. 5746–5753, 2018.

G. Denoyer, “Hybrid silicon photonic circuits and transceiver for 50 Gb/s NRZ transmission over single-mode fiber,” J. Lightw. Technol., vol. 33, no. 6, pp. 1247–1254, 2015.

S. Straullu, “Demonstration of a partially integrated silicon photonics ONU in a self-coherent reflective FDMA PON,” J. Lightw. Technol., vol. 35, no. 7, pp. 1307–1312, 2017.

T. Aoki, “Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver,” J. Lightw. Technol., vol. 36, no. 5, pp. 1262–1267, 2018.

Light: Sci. Appl. (1)

Z. Chen, “Use of polarization freedom beyond polarization division multiplexing to support high-speed and spectral-efficient data transmission,” Light: Sci. Appl., vol. 6, pp. 1–7, 2016.

Nature (2)

C. Sun, “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, pp. 534–538. 2015.

A. H. Atabaki, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature, vol. 556, pp. 349–354, 2018.

Nature Commun. (2)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nature Commun., vol. 5, pp. 1–11, 2014.

L. Luo, “WDM-compatible mode-division multiplexing on a silicon chip,” Nature Commun., vol. 5, pp. 1–7, 2014.

Nature Photon. (1)

J. S. LevyA. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon., vol. 4, no. 1, pp. 37–40, 2009.

Opt. Express (6)

OSA Optica (1)

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: A review,” OSA Optica, vol. 5, no. 11, pp. 1354–1370, 2018.

Parallel Comput. (1)

S. Rumley, “Optical interconnects for extreme scale computing systems,” Parallel Comput., vol. 64, pp. 65–80, 2017.

Rep. Profess Phys. (1)

M. Garcia-Sciveres and N. Wermes, “A review of advances in pixel detectors for experiments with high rate and radiation,” Rep. Profess Phys., vol. 81, no. 6, 2018.

Other (35)

Collier Ventures Inc., “Die Bumping,” 2019. [Online]. Available: http://covinc.com/our-services/die-bumping/

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56 Gb/s NRZ 2.2 km transmission over single mode fiber,” in Proc. Eur. Conf. Opt. Commun., 2014, pp. 1–3, Paper PD.2.4.

P. De Dobbelaere, “Advanced silicon photonic technology platform leveraging a semiconductor supply chain,” in Proc. IEEE Int. Electron Devices Meeting, 2017, pp. 34.1.1–34.1.4.

A. Narasimha, “A 40-Gb/s QSFP optoelectronic transceiver in a 0.13 um CMOS silicon-on-insulator technology,” in Proc. Opt. Fiber Commun. Conf., 2008, pp. 1–3, Paper OMK7.

N. B. Feilchenfeld, “An integrated silicon photonics technology for o-band datacom,” in Proc. IEEE Int. Electron Devices Meeting, 2015, pp. 25.7.1–25.7.4.

L. Zimmermann, “BiCMOS silicon photonics platform,” in Proc. Opt. Fiber Commun. Conf., 2015, pp. 1–3, Paper Th4E.5.

A. Narasimha, “An ultra low power CMOS photonics technology platform for H/S optoelectronic transceivers at less than $1 per Gbps,” in Proc. Opt. Fiber Commun. Conf., 2010, pp. 1–3, Paper OMV4.

I. Ndip, A. Öz, S. Guttowski, H. Reichl, K. Lang, and H. Henke, “Modeling and minimizing the inductance of bond wire interconnects,” in Proc. IEEE Workshop Signal Power Integrity, 2013, pp. 1–4.

H. Li, “A 112 Gb/s PAM4 silicon photonics transmitter with microring modulator and CMOS driver,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 1–3, Paper Th4A.4.

M. Rakowski, “Hybrid 14 nm FinFET silicon photonics technology for low-power Tb/s/mm2 Optical I/O,” in Proc. Symp. VLSI Technol. Digest Tech. Papers, 2018, pp. 221–222.

H. D. Thacker, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in Proc. Electron. Components Technol. Conf., 2010, pp. 240–246.

Y. Chen, , “A 25 Gb/s hybrid integrated silicon photonic transceiver in 28 nm CMOS and SOI,” in Proc. IEEE Intz. Solid-State Circuits Conf., 2015, pp. 1–3.

R. Yarema, “Advances in bonding technologies,” 2014. [Online]. Available: https://indico.cern.ch/event/309449/contributions/1679992/attachments/591500/814219/Bonn_talk.pdf

“Cisco visual networking index Forecast and trends, 2017-2022,” White Paper, 2019. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

P. De Dobbelaere, “Silicon photonics transceivers for hyper-scale datacenters: Deployment and roadmap,” 2016. [Online]. Available: http://www.phoxtrot.eu/wp-content/uploads/2017/01/ECOC-2016-PeterDe-Dobbelaere.pdf

“Elenion technologies announces availability of silicon photonic integrated modulator/receiver assembly for coherent applications,” 17, 2017. [Online]. Available: https://elenion.com/news/2017/3/17/elenion-technologies-announces-availability-of-silicon-photonic-integrated-modulator-receiver-assembly-for-coherent-applications

“Optoelectronics & photonics: Product selection guide,” 2019. [Online]. Available: https://www.macom.com/files/live/sites/ma/files/contributed/aboutMacom/pdf/2019%20OptoPhotonics%20Brochure.pdf

“100G parallel single mode data center connectivity,” 2017. [Online]. Available: https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optical-transceiver-100g-psm4-qsfp28-brief.pdf

B. Yu, “FinFET scaling to 10 nm gate length,” in Proc. Digest. Int. Electron Devices Meeting, 2002, pp. 251–254.

Y. De Koninck, “Advanced silicon photonics transceivers,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.

B. Sirbu, “3D silicon photonics interposer for Tb/s optical interconnects in data centers with double-side assembled active components and integrated optical and electrical through silicon via on SOI,” in Proc. IEEE Electron. Components Technol. Conf., 2019, pp. 1052–1059.

A. Novack, “A silicon photonic transceiver and hybrid tunable laser for 64 gbaud coherent communication,” in Proc. Opt. Fiber Commun. Conf., 2018, pp. 1–3, Paper Th4D.4.

Xilinx, “Recommended design rules and strategies for BGA devices,” 2016. [Online] Available: https://www.xilinx.com/support/documentation/user_guides/ug1099-bga-device-design-rules.pdf

M. Rakowski, “A 4 × 20 Gb/s WDM ring-based hybrid CMOS silicon photonics transceiver,” in Proc. IEEE Int. Solid-State Circuits Conf., 2015, vol. 58, pp. 408–409.

I. Shubin, “All solid-state multi-chip multi-channel WDM photonic module,” in Proc. IEEE Electron. Components Technol. Conf., 2015, pp. 1293–1298.

D. Kim, “2.5D silicon optical interposer for 400 Gbps electronic-photonic integrated circuit platform packaging,” in Proc. IEEE Electron. Packag. Technol. Conf., 2017, pp. 1–4.

C. Doerr, “Silicon photonics coherent transceiver in a ball-grid array package,” in Proc. Opt. Fiber Commun. Conf., 2017, pp. 1–3, Paper Th5D.5.

J. S. Orcutt, “Monolithic silicon photonics at 25 Gb/s,” in Proc. Opt. Fiber Commun. Conf., 2016, pp. 1–3, Paper Th4H.1.

J. S. Orcutt, “Design of monolithic silicon photonics at 25 Gb/s,” in Proc. IEEE Compound Semicond. Integr. Circuit Symp., 2017, pp. 1–4.

M. Bahadori, “Energy-performance optimized design of silicon photonic interconnection networks for high-performance computing,” in Proc. Des., Autom., and Test Europe Conf., 2017, pp. 326–331.

F. Frey, R. Elschner, and J. Fischer, “Estimation of Trends for Coherent DSP ASIC Power Dissipation for different bitrates and transmission reaches,” in Proc. Photon. Netw. Conf., May 2017, pp. 1–8.

“GLOBALFOUNDRIES silicon photonics platform,” 2018. [Online]. Available: http://soiconsortium.eu/wp-content/uploads/2018/10/GLOBALFOUNDRIES_SiPh_platform_v2.pdf

E. Timurdogan, “APSUNY process design kit (PDKv3.0): O, C and L band silicon photonics component libraries on 300 mm wafers,” in Proc. Opt. Fiber Commun. Conf., 2019, pp. 1–3, Paper Tu2A.1.

B. Snyder, “Packaging and assembly challenges for 50G silicon photonics interposers,” in Proc. Opt. Fiber Commun. Conf., 2018, pp. 1–3, Paper Tu2A.3.

K. Chang, R. Li, L. Ding, and S. Zhang, “Study of transmission line performance on through silicon interposer,” in Proc. IEEE Electron. Packag. Technol. Conf., 2014, pp. 284–287.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.