Abstract

Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, called memory-driven computing, was innovated recently. This new computing architecture brings challenges and opportunities for novel optical interconnect solutions. Here, we first discuss our strategy to develop appropriate optical link solutions for different data traffic scenarios in memory-driven HPCs. Then, we present detailed review on recent work to demonstrate fully photonics-electronics-integrated single- and multi-wavelength directly modulated laser (DML) transmitters on silicon for the first time. Compact heterogeneous microring lasers and laser arrays were fabricated as photonic engines to work with a customized complementary metal-oxide semiconductor (CMOS) driver circuit. Microring lasers based on conventional quantum well and new quantum dot lasing medium were compared in the experiment. Thermal shunt and MOS capacitor structures were integrated into the lasers for effective thermal management and ultra low-energy tuning. It enables a controllable dense wavelength division multiplexing (DWDM) link architecture in an HPC environment. An equivalent microring laser circuit model was constructed to allow photonics-electronics co-simulation. Equalization functionality in the CMOS driver circuit proved to be critical to achieve up to 14 Gb/s direct modulation with 6 dB extinction ratio. Finally, the on-going and future work is discussed towards more robust, higher speed, and more energy efficient DML transmitters.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Optical interconnects to electronic chips,” Appl. Opt., vol. 49, pp. F59–F70, 2010.
  2. K. M. Bresniker, S. Singhal, and R. S. Williams, “Adapting to thrive in a new economy of memory abundance,” Computer, vol. 48, pp. 44–53, 2015.
  3. K. Keeton, S. Singhal, and M. Raymond, “The OpenFAM API: A programming model for disaggregated persistent memory,” in Proc. Workshop OpenSHMEM Related Technol., 2019, pp. 70–89.
  4. 2017. [Online]. Available: https://www.labs.hpe.com/memory-driven-computing
  5. 2017. [Online]. Available: https://news.hpe.com/u-s-dept-of-energy-taps-hewlett-packard-enterprises-machine-research-project-to-design-memory-driven-supercomputer-2/
  6. 2018. [Online]. Available: https://www.labs.hpe.com/next-next/exascale
  7. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightw. Technol., vol. 30, no. 4, pp. 448–457, 2012.
  8. R. G. Beausoleil, “A nanophotonic interconnect for high-performance many-core computation,” in Proc. 16th IEEE Symp. High Perform. Interconnects, 2008, pp. 182–189.
  9. E. Maniloff, S. Gareau, and M. Moyer, “400G and beyond: Coherent evolution to high-capacity inter data center links,” in Proc. Opt. Fiber Commun. Conf., OSA, 2019, Paper M3H.4.
  10. S. Yamaoka, “239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC,” in Proc. Eur. Conf. Opt. Commun., Dublin, Ireland, 2019, Paper PD.2.1.
  11. P. O. Weigel, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Exp., vol. 26, pp. 23728–23739, 2018.
  12. M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanović, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Proc. IEEE Custom Integr. Circuits Conf., 2011, pp. 1–8.
  13. N. Binkert, “Optical high radix switch design,” IEEE Micro, vol. 32, no. 3, pp. 100–109, 2012.
  14. C. Doerr and L. Chen, “Silicon photonics in optical coherent systems,” Proc. IEEE, vol. 106, no. 12, pp. 2291–2301, 2018.
  15. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Exp., vol. 14, pp. 9203–9210, 2006.
  16. G. Roelkens, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Exp., vol. 13, pp. 10102–10108, 2005.
  17. G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 14, pp. 8154–8159, 2006.
  18. H. Park, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Exp., vol. 15, pp. 13539–13546, 2007.
  19. T. Komljenovic, “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 2016.
  20. S. Matsuo, “Chapter two–Heterogeneously integrated III–V photonic devices on Si,” in Semiconductors and Semimetals, S. Lourdudoss, J. E. Bowers, and C. Jagadish, Eds., Amsterdam, The Netherlands: Elsevier, 2019, pp. 43–89.
  21. R. Jones, “Heterogeneously integrated InP/silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnol. Mag., vol. 13, no. 2, pp. 17–26, 2019.
  22. D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nature Photon., vol. 10, pp. 719–722, 2016.
  23. T. Hiraki, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nature Photon., vol. 11, pp. 482–485, 2017.
  24. J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nature Photon., vol. 11, pp. 486–4902017.
  25. A. Roshan-Zamir, “A 14 Gb/s directly modulated hybrid microring laser transmitter,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper M1l.7.
  26. D. Liang, “A fully-integrated multi-λ hybrid DML transmitter,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2019, Paper Th3B.5.
  27. C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Hybrid quantum-dot microring laser on silicon,” Optica, vol. 6, pp. 1145–1151, 2019.
  28. Y.-H. Fan, “A directly modulated quantum dot microring laser transmitter with integrated CMOS driver,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2019, Paper W3E.5.
  29. [Online]. Available: https://www.nextplatform.com/2019/09/09/inside-hpes-gen-z-switch-fabric/
  30. C.-H. Chen, “A comb laser-driven DWDM silicon photonic transmitter based on microring modulators,” Opt. Exp., vol. 23, pp. 21541–21548, 2015.
  31. Y. Kang, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 um light detection,” Opt. Exp., vol. 16, pp. 9365–9371, 2008.
  32. Z. Huang, “25 Gbps low-voltage waveguide Si-Ge avalanche photodiode,” Optica, vol. 3, pp. 793–798, 2016.
  33. J. Van Campenhout, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett., vol. 20, no. 16, pp. 1345–1347, 2008.
  34. D. Liang, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Exp., vol. 17, pp. 20355–20364, 2009.
  35. M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: Design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 3, pp. 673–681, 1999.
  36. N. V. Kryzhanovskaya, M. V. Maximov, and A. E. Zhukov, “Whispering-gallery mode microcavity quantum-dot lasers,” Quantum Electron., vol. 44, pp. 189–200, 2014.
  37. G. Mezosi, M. J. Strain, S. Furst, Z. Wang, S. Yu, and M. Sorel, “Unidirectional bistability in AlGaInAs microring and microdisk semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 21, no. 2, pp. 88–90, 2009.
  38. G. Yuan and S. Yu, “Analysis of dynamic switching behavior of bistable semiconductor ring lasers triggered by resonant optical pulse injection,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1227–1234, 2007.
  39. M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide ring lasers,” Appl. Phys. Lett., vol. 80, pp. 3051–3053, 2002.
  40. L. Liu, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon., vol. 4, pp. 182–187, 2010.
  41. M. T. Hill, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature, vol. 432, pp. 206–209, 2004.
  42. J. V. Campenhout, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightw. Technol., vol. 25, no. 6, pp. 1543–1548, 2007.
  43. M. N. Sysak, “Hybrid silicon evanescent laser technology: A thermal perspective,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1490–1498, Apr. 2011.
  44. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photon., vol. 4, pp. 511–517, 2010.
  45. A. Lee, H. Liu, and A. Seeds, “Semiconductor III-V lasers monolithically grown on Si substrates,” Semicond. Sci. Technol., vol. 28, 2012, Art. no. .
  46. J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photon., vol. 3, 2018, Art. no. .
  47. Y. Wan, J. Norman, and J. E. Bowers, “Quantum dot microcavity lasers on silicon substrates,” in Future Directions in Silicon Photonics, S. Lourdudoss, J. E. Bowers, and C. Jagadish, Eds., New York, NY, USA: Academic, 2019, pp. 305–354.
  48. S. Sui, M. Tang, Y. Yang, J. Xiao, Y. Du, and Y. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron., vol. 51, no. 4, 2015, Art no. 2600108.
  49. G. Roelkens, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 751–779, 2010.
  50. D. Jung, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett., vol. 112, 2018, Art. no. .
  51. Y. Wan, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica, vol. 4, pp. 940–944, 2017.
  52. M. O'teen, “Chapter 29 - systems and technology for Production-Scale molecular beam epitaxy,” in Molecular Beam Epitaxy, 2nd ed.. Amsterdam, The Netherlands: Elsevier, 2018, pp. 649–675.
  53. D. Dai, D. Liang, and J. E. Bowers, “Enhancement of the evanescent coupling between deeply-etched IIIV-Si hybrid microring laser and its small Si bus waveguide by using a bending coupler,” in Proc. Asia Commun. Photon. Conf. Exhib., 2009, Paper TuP5.
  54. C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 385–391, 2015.
  55. D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III-V-on-Si MOS microring resonator with negligible tuning power consumption,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, 2016, Paper Th1K.4.
  56. B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” J. Quantum Electron., vol. 26, pp. 113–122, 1990.
  57. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123–129, 1987.
  58. G. Ortner, “External cavity InAs/InP quantum dot laser with a tuning range of 166nm,” Appl. Phys. Lett., vol. 88, 2006, Art. no. .
  59. X. Huang, “Heterogeneous MOS microring resonators,” in Proc. Photon. Conf., Orlando, FL, USA, 2017, pp. 121–122.
  60. C. Chen, “Hybrid integrated DWDM silicon photonic transceiver with self-adaptive CMOS circuits,” in Proc. Opt. Interconnects Conf., Santa Fe, NM, USA, 2013, pp. 122–123.
  61. G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in Proc. IEEE Int. Semicond. Laser Conf., Santa Fe, NM, USA, 2018, pp. 1–2.
  62. G. Kurczveil, A. Seyedi, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Error-free operation in a hybrid-silicon quantum dot comb laser,” Photon. Technol. Lett., vol. 30, pp. 71–74, 2018.
  63. G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Exp., vol. 24, pp. 16167–16174, 2016.
  64. C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Error-free 12.5 Gb/s direct modulation of low-threshold hybrid QD microring laser,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, pp. 1–3.
  65. C. Zhang, D. Liang, G. Kurczveil, and R. G. Beausoleil, “High speed QDs microring lasers on silicon,” in Proc. Eur. Conf. Integr. Opt., Valencia, Spain, 2018, Paper Th.2.A.2.
  66. B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310 nm hybrid silicon quantum dot photodiodes with Ultra-low dark current,” in Proc. Device Res. Conf., Santa Barbara, CA, USA, 2018, pp. 1–2.
  67. B. Tossoun, “InAs quantum dot waveguide photodiodes heterogeneously integrated on silicon,” Optica, vol. 6, pp. 1277–1281, 2019.
  68. G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” Photon. Technol. Lett., vol. 12, pp. 230–232, 2000.
  69. T. Kageyama, “Extremely high temperature (220oC) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Proc. Conf. Lasers Electro-Opt. Eur., 12th Eur. Quantum Electron. Conf., 2011, Paper PDA_1.
  70. M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nature Photon., vol. 3, pp. 30–31, 2009.
  71. A. Capua, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Exp., vol. 15, pp. 5388–5393, 2007.
  72. H. Huang, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Amer. B, vol. 35, pp. 2780–2787, 2018.
  73. S. A. Moore, L. O. Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” Photon. Technol. Lett., vol. 18, pp. 1861–1863, 2006.
  74. J. Van Campenhout, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 15, pp. 6744–6749, 2007.
  75. T. Spuesens, L. Liu, T. d. Vries, P. R. Romeo, P. Regreny, and D. V. Thourhout, “Improved design of an InP-based microdisk laser heterogeneously integrated with SOI,” in Proc. 6th IEEE Int. Conf. Group IV Photon., 2009, pp. 202–204.
  76. I. R. Sellers, “1.3 um InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett., vol. 40, pp. 1412–1413, 2004.
  77. K. Tanabe and Y. Arakawa, “1.3 um InAs/GaAs quantum dot lasers on SOI waveguide structures,” in Proc. Conf. Lasers Electro-Opt., OSA, 2014, Paper STh1G.6.
  78. R. R. Alexander, “Systematic study of the effects of modulation P-doping on 1.3 um InAs/GaAs dot-in-well lasers,” in Proc. IEEE 19th Int. Conf. Indium Phosphide Related Mater., 2007, pp. 517–520.
  79. K. Li, “O-band InAs/GaAs quantum dot laser monolithically integrated on exact (011) Si substrate,” J. Crystal Growth, vol. 511, pp. 56–60, 2019.
  80. J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Exp., vol. 27, pp. 2681–2688, 2019.
  81. D. Liang, “Teardrop reflector-assisted unidirectional hybrid-silicon microring lasers,” IEEE Photon. Technol. Lett., vol. 24, no. 22, pp. 1988–1990, 2012.
  82. A. Arbabi, S. M. Kamali, E. Arbabi, B. G. Griffin, and L. L. Goddard, “Grating integrated single mode microring laser,” Opt. Exp., vol. 23, pp. 5335–5347, 2015.
  83. L. V. Asryan and R. A. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol., vol. 11, pp. 554–567, 1996.
  84. M. N. Sysak, “Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser,” Opt. Exp., vol. 15, pp. 15041–15046, 2007.
  85. D. Liang, “Optimization of hybrid silicon microring lasers,” IEEE Photon. J., vol. 3, no. 3, pp. 580–587, 2011.
  86. M. Raj, M. Monge, and A. Emami, “A modelling and nonlinear equalization technique for a 20 Gb/s 0.77 pJ/b VCSEL transmitter in 32 nm SOI CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 8, pp. 1734–1743, 2016.
  87. A. E. Zhukov, M. V. Maksimov, and A. R. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors, vol. 46, pp. 1225–1250, 2012.
  88. Y.-H. Jhang, “Direct modulation of 1.3 um quantum dot lasers on silicon at 60 °C,” Opt. Exp., vol. 24, pp. 18428–18435, 2016.
  89. D. Inoue, “Directly modulated 1.3 um quantum dot lasers epitaxially grown on silicon,” Opt. Exp., vol. 26, pp. 7022–7033, 2018.
  90. Y. Wan, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res., vol. 6, pp. 776–781, 2018.
  91. K. Nakahara, “Direct modulation at 56 and 50 Gb/s of 1.3- μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett., vol. 27, no. 5, pp. 534–536, 2015.
  92. S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightw. Technol., vol. 33, no. 6, pp. 1217–1222, 2015.
  93. S. Matsuo and T. Kakitsuka, “Low-operating-energy directly modulated lasers for short-distance optical interconnects,” Advances Opt. Photon., vol. 10, pp. 567–643, 2018.
  94. S. Sui, Y. Huang, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Hybrid deformed-ring AlGaInAs/Si microlasers with stable unidirectional emission,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, 2017, Art. no. .
  95. P. Mechet, “Unidirectional III-V microdisk lasers heterogeneously integrated on SOI,” Opt. Exp., vol. 21, pp. 19339–19352, 2013.
  96. M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett., vol. 84, pp. 2485–2487, 2004.
  97. J. P. Hohimer, G. A. Vawter, and D. C. Craft, “Unidirectional operation in a semiconductor ring diode laser,” Appl. Phys. Lett., vol. 62, pp. 1185–1187, 1993.
  98. J. P. Hohimer and G. A. Vawter, “Unidirectional semiconductor ring lasers with racetrack cavities,” Appl. Phys. Lett., vol. 63, pp. 2457–2459, 1993.
  99. H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science, vol. 346, pp. 975–978, 2014.
  100. B. Dong, “Optical injection in a hybrid-silicon quantum dot comb laser,” Opt. Lett., vol. 44, no. 23, pp. 5755–5758, 2019.
  101. D. Liang, “Optical injection-locked high-speed heterogeneous quantum-dot microring lasers,” in Proc. Eur. Conf. Opt. Commun., Dublin, Ireland, 2019, Paper Th.2.D.

2019 (6)

R. Jones, “Heterogeneously integrated InP/silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnol. Mag., vol. 13, no. 2, pp. 17–26, 2019.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Hybrid quantum-dot microring laser on silicon,” Optica, vol. 6, pp. 1145–1151, 2019.

B. Tossoun, “InAs quantum dot waveguide photodiodes heterogeneously integrated on silicon,” Optica, vol. 6, pp. 1277–1281, 2019.

K. Li, “O-band InAs/GaAs quantum dot laser monolithically integrated on exact (011) Si substrate,” J. Crystal Growth, vol. 511, pp. 56–60, 2019.

J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Exp., vol. 27, pp. 2681–2688, 2019.

B. Dong, “Optical injection in a hybrid-silicon quantum dot comb laser,” Opt. Lett., vol. 44, no. 23, pp. 5755–5758, 2019.

2018 (9)

H. Huang, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Amer. B, vol. 35, pp. 2780–2787, 2018.

G. Kurczveil, A. Seyedi, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Error-free operation in a hybrid-silicon quantum dot comb laser,” Photon. Technol. Lett., vol. 30, pp. 71–74, 2018.

D. Jung, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett., vol. 112, 2018, Art. no. .

D. Inoue, “Directly modulated 1.3 um quantum dot lasers epitaxially grown on silicon,” Opt. Exp., vol. 26, pp. 7022–7033, 2018.

Y. Wan, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res., vol. 6, pp. 776–781, 2018.

S. Matsuo and T. Kakitsuka, “Low-operating-energy directly modulated lasers for short-distance optical interconnects,” Advances Opt. Photon., vol. 10, pp. 567–643, 2018.

P. O. Weigel, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Exp., vol. 26, pp. 23728–23739, 2018.

C. Doerr and L. Chen, “Silicon photonics in optical coherent systems,” Proc. IEEE, vol. 106, no. 12, pp. 2291–2301, 2018.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photon., vol. 3, 2018, Art. no. .

2017 (4)

T. Hiraki, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nature Photon., vol. 11, pp. 482–485, 2017.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nature Photon., vol. 11, pp. 486–4902017.

S. Sui, Y. Huang, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Hybrid deformed-ring AlGaInAs/Si microlasers with stable unidirectional emission,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, 2017, Art. no. .

Y. Wan, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica, vol. 4, pp. 940–944, 2017.

2016 (6)

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Exp., vol. 24, pp. 16167–16174, 2016.

M. Raj, M. Monge, and A. Emami, “A modelling and nonlinear equalization technique for a 20 Gb/s 0.77 pJ/b VCSEL transmitter in 32 nm SOI CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 8, pp. 1734–1743, 2016.

Y.-H. Jhang, “Direct modulation of 1.3 um quantum dot lasers on silicon at 60 °C,” Opt. Exp., vol. 24, pp. 18428–18435, 2016.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nature Photon., vol. 10, pp. 719–722, 2016.

T. Komljenovic, “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 2016.

Z. Huang, “25 Gbps low-voltage waveguide Si-Ge avalanche photodiode,” Optica, vol. 3, pp. 793–798, 2016.

2015 (7)

S. Sui, M. Tang, Y. Yang, J. Xiao, Y. Du, and Y. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron., vol. 51, no. 4, 2015, Art no. 2600108.

C.-H. Chen, “A comb laser-driven DWDM silicon photonic transmitter based on microring modulators,” Opt. Exp., vol. 23, pp. 21541–21548, 2015.

K. M. Bresniker, S. Singhal, and R. S. Williams, “Adapting to thrive in a new economy of memory abundance,” Computer, vol. 48, pp. 44–53, 2015.

A. Arbabi, S. M. Kamali, E. Arbabi, B. G. Griffin, and L. L. Goddard, “Grating integrated single mode microring laser,” Opt. Exp., vol. 23, pp. 5335–5347, 2015.

K. Nakahara, “Direct modulation at 56 and 50 Gb/s of 1.3- μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett., vol. 27, no. 5, pp. 534–536, 2015.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightw. Technol., vol. 33, no. 6, pp. 1217–1222, 2015.

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 385–391, 2015.

2014 (2)

N. V. Kryzhanovskaya, M. V. Maximov, and A. E. Zhukov, “Whispering-gallery mode microcavity quantum-dot lasers,” Quantum Electron., vol. 44, pp. 189–200, 2014.

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science, vol. 346, pp. 975–978, 2014.

2013 (1)

P. Mechet, “Unidirectional III-V microdisk lasers heterogeneously integrated on SOI,” Opt. Exp., vol. 21, pp. 19339–19352, 2013.

2012 (5)

A. E. Zhukov, M. V. Maksimov, and A. R. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors, vol. 46, pp. 1225–1250, 2012.

D. Liang, “Teardrop reflector-assisted unidirectional hybrid-silicon microring lasers,” IEEE Photon. Technol. Lett., vol. 24, no. 22, pp. 1988–1990, 2012.

A. Lee, H. Liu, and A. Seeds, “Semiconductor III-V lasers monolithically grown on Si substrates,” Semicond. Sci. Technol., vol. 28, 2012, Art. no. .

M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightw. Technol., vol. 30, no. 4, pp. 448–457, 2012.

N. Binkert, “Optical high radix switch design,” IEEE Micro, vol. 32, no. 3, pp. 100–109, 2012.

2011 (2)

M. N. Sysak, “Hybrid silicon evanescent laser technology: A thermal perspective,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1490–1498, Apr. 2011.

D. Liang, “Optimization of hybrid silicon microring lasers,” IEEE Photon. J., vol. 3, no. 3, pp. 580–587, 2011.

2010 (4)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photon., vol. 4, pp. 511–517, 2010.

L. Liu, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon., vol. 4, pp. 182–187, 2010.

G. Roelkens, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 751–779, 2010.

D. A. B. Miller, “Optical interconnects to electronic chips,” Appl. Opt., vol. 49, pp. F59–F70, 2010.

2009 (3)

G. Mezosi, M. J. Strain, S. Furst, Z. Wang, S. Yu, and M. Sorel, “Unidirectional bistability in AlGaInAs microring and microdisk semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 21, no. 2, pp. 88–90, 2009.

D. Liang, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Exp., vol. 17, pp. 20355–20364, 2009.

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nature Photon., vol. 3, pp. 30–31, 2009.

2008 (2)

J. Van Campenhout, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett., vol. 20, no. 16, pp. 1345–1347, 2008.

Y. Kang, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 um light detection,” Opt. Exp., vol. 16, pp. 9365–9371, 2008.

2007 (6)

H. Park, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Exp., vol. 15, pp. 13539–13546, 2007.

G. Yuan and S. Yu, “Analysis of dynamic switching behavior of bistable semiconductor ring lasers triggered by resonant optical pulse injection,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1227–1234, 2007.

J. V. Campenhout, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightw. Technol., vol. 25, no. 6, pp. 1543–1548, 2007.

A. Capua, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Exp., vol. 15, pp. 5388–5393, 2007.

J. Van Campenhout, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 15, pp. 6744–6749, 2007.

M. N. Sysak, “Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser,” Opt. Exp., vol. 15, pp. 15041–15046, 2007.

2006 (4)

G. Ortner, “External cavity InAs/InP quantum dot laser with a tuning range of 166nm,” Appl. Phys. Lett., vol. 88, 2006, Art. no. .

S. A. Moore, L. O. Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” Photon. Technol. Lett., vol. 18, pp. 1861–1863, 2006.

G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 14, pp. 8154–8159, 2006.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Exp., vol. 14, pp. 9203–9210, 2006.

2005 (1)

G. Roelkens, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Exp., vol. 13, pp. 10102–10108, 2005.

2004 (3)

M. T. Hill, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature, vol. 432, pp. 206–209, 2004.

I. R. Sellers, “1.3 um InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett., vol. 40, pp. 1412–1413, 2004.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett., vol. 84, pp. 2485–2487, 2004.

2002 (1)

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide ring lasers,” Appl. Phys. Lett., vol. 80, pp. 3051–3053, 2002.

2000 (1)

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” Photon. Technol. Lett., vol. 12, pp. 230–232, 2000.

1999 (1)

M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: Design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 3, pp. 673–681, 1999.

1996 (1)

L. V. Asryan and R. A. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol., vol. 11, pp. 554–567, 1996.

1993 (2)

J. P. Hohimer, G. A. Vawter, and D. C. Craft, “Unidirectional operation in a semiconductor ring diode laser,” Appl. Phys. Lett., vol. 62, pp. 1185–1187, 1993.

J. P. Hohimer and G. A. Vawter, “Unidirectional semiconductor ring lasers with racetrack cavities,” Appl. Phys. Lett., vol. 63, pp. 2457–2459, 1993.

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” J. Quantum Electron., vol. 26, pp. 113–122, 1990.

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123–129, 1987.

Alamo, J. A. D.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” J. Quantum Electron., vol. 26, pp. 113–122, 1990.

Alexander, R. R.

R. R. Alexander, “Systematic study of the effects of modulation P-doping on 1.3 um InAs/GaAs dot-in-well lasers,” in Proc. IEEE 19th Int. Conf. Indium Phosphide Related Mater., 2007, pp. 517–520.

Arakawa, Y.

J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Exp., vol. 27, pp. 2681–2688, 2019.

K. Tanabe and Y. Arakawa, “1.3 um InAs/GaAs quantum dot lasers on SOI waveguide structures,” in Proc. Conf. Lasers Electro-Opt., OSA, 2014, Paper STh1G.6.

Arbabi, A.

A. Arbabi, S. M. Kamali, E. Arbabi, B. G. Griffin, and L. L. Goddard, “Grating integrated single mode microring laser,” Opt. Exp., vol. 23, pp. 5335–5347, 2015.

Arbabi, E.

A. Arbabi, S. M. Kamali, E. Arbabi, B. G. Griffin, and L. L. Goddard, “Grating integrated single mode microring laser,” Opt. Exp., vol. 23, pp. 5335–5347, 2015.

Asryan, L. V.

L. V. Asryan and R. A. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol., vol. 11, pp. 554–567, 1996.

Baba, T.

M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: Design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 3, pp. 673–681, 1999.

Baets, R.

G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 14, pp. 8154–8159, 2006.

Beausoleil, R. G.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Hybrid quantum-dot microring laser on silicon,” Optica, vol. 6, pp. 1145–1151, 2019.

G. Kurczveil, A. Seyedi, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Error-free operation in a hybrid-silicon quantum dot comb laser,” Photon. Technol. Lett., vol. 30, pp. 71–74, 2018.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Exp., vol. 24, pp. 16167–16174, 2016.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nature Photon., vol. 10, pp. 719–722, 2016.

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 385–391, 2015.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III-V-on-Si MOS microring resonator with negligible tuning power consumption,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, 2016, Paper Th1K.4.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in Proc. IEEE Int. Semicond. Laser Conf., Santa Fe, NM, USA, 2018, pp. 1–2.

R. G. Beausoleil, “A nanophotonic interconnect for high-performance many-core computation,” in Proc. 16th IEEE Symp. High Perform. Interconnects, 2008, pp. 182–189.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Error-free 12.5 Gb/s direct modulation of low-threshold hybrid QD microring laser,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, pp. 1–3.

C. Zhang, D. Liang, G. Kurczveil, and R. G. Beausoleil, “High speed QDs microring lasers on silicon,” in Proc. Eur. Conf. Integr. Opt., Valencia, Spain, 2018, Paper Th.2.A.2.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310 nm hybrid silicon quantum dot photodiodes with Ultra-low dark current,” in Proc. Device Res. Conf., Santa Barbara, CA, USA, 2018, pp. 1–2.

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123–129, 1987.

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” J. Quantum Electron., vol. 26, pp. 113–122, 1990.

Binkert, N.

N. Binkert, “Optical high radix switch design,” IEEE Micro, vol. 32, no. 3, pp. 100–109, 2012.

Boeuf, F.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nature Photon., vol. 11, pp. 486–4902017.

Bowers, J. E.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photon., vol. 3, 2018, Art. no. .

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 385–391, 2015.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photon., vol. 4, pp. 511–517, 2010.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Exp., vol. 14, pp. 9203–9210, 2006.

Y. Wan, J. Norman, and J. E. Bowers, “Quantum dot microcavity lasers on silicon substrates,” in Future Directions in Silicon Photonics, S. Lourdudoss, J. E. Bowers, and C. Jagadish, Eds., New York, NY, USA: Academic, 2019, pp. 305–354.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III-V-on-Si MOS microring resonator with negligible tuning power consumption,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, 2016, Paper Th1K.4.

D. Dai, D. Liang, and J. E. Bowers, “Enhancement of the evanescent coupling between deeply-etched IIIV-Si hybrid microring laser and its small Si bus waveguide by using a bending coupler,” in Proc. Asia Commun. Photon. Conf. Exhib., 2009, Paper TuP5.

Bresniker, K. M.

K. M. Bresniker, S. Singhal, and R. S. Williams, “Adapting to thrive in a new economy of memory abundance,” Computer, vol. 48, pp. 44–53, 2015.

Campenhout, J. V.

J. V. Campenhout, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightw. Technol., vol. 25, no. 6, pp. 1543–1548, 2007.

Capua, A.

A. Capua, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Exp., vol. 15, pp. 5388–5393, 2007.

Cataluna, M. A.

S. A. Moore, L. O. Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” Photon. Technol. Lett., vol. 18, pp. 1861–1863, 2006.

Chang, R. K.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett., vol. 84, pp. 2485–2487, 2004.

Chen, C.

C. Chen, “Hybrid integrated DWDM silicon photonic transceiver with self-adaptive CMOS circuits,” in Proc. Opt. Interconnects Conf., Santa Fe, NM, USA, 2013, pp. 122–123.

Chen, C.-H.

C.-H. Chen, “A comb laser-driven DWDM silicon photonic transmitter based on microring modulators,” Opt. Exp., vol. 23, pp. 21541–21548, 2015.

Chen, L.

C. Doerr and L. Chen, “Silicon photonics in optical coherent systems,” Proc. IEEE, vol. 106, no. 12, pp. 2291–2301, 2018.

Chern, G. D.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett., vol. 84, pp. 2485–2487, 2004.

Christodoulides, D. N.

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science, vol. 346, pp. 975–978, 2014.

Cohen, O.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Exp., vol. 14, pp. 9203–9210, 2006.

Craft, D. C.

J. P. Hohimer, G. A. Vawter, and D. C. Craft, “Unidirectional operation in a semiconductor ring diode laser,” Appl. Phys. Lett., vol. 62, pp. 1185–1187, 1993.

Dai, D.

D. Dai, D. Liang, and J. E. Bowers, “Enhancement of the evanescent coupling between deeply-etched IIIV-Si hybrid microring laser and its small Si bus waveguide by using a bending coupler,” in Proc. Asia Commun. Photon. Conf. Exhib., 2009, Paper TuP5.

Deppe, D. G.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” Photon. Technol. Lett., vol. 12, pp. 230–232, 2000.

Descos, A.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Hybrid quantum-dot microring laser on silicon,” Optica, vol. 6, pp. 1145–1151, 2019.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in Proc. IEEE Int. Semicond. Laser Conf., Santa Fe, NM, USA, 2018, pp. 1–2.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Error-free 12.5 Gb/s direct modulation of low-threshold hybrid QD microring laser,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, pp. 1–3.

Doerr, C.

C. Doerr and L. Chen, “Silicon photonics in optical coherent systems,” Proc. IEEE, vol. 106, no. 12, pp. 2291–2301, 2018.

Donati, S.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide ring lasers,” Appl. Phys. Lett., vol. 80, pp. 3051–3053, 2002.

Dong, B.

B. Dong, “Optical injection in a hybrid-silicon quantum dot comb laser,” Opt. Lett., vol. 44, no. 23, pp. 5755–5758, 2019.

Du, Y.

S. Sui, Y. Huang, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Hybrid deformed-ring AlGaInAs/Si microlasers with stable unidirectional emission,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, 2017, Art. no. .

S. Sui, M. Tang, Y. Yang, J. Xiao, Y. Du, and Y. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron., vol. 51, no. 4, 2015, Art no. 2600108.

Emami, A.

M. Raj, M. Monge, and A. Emami, “A modelling and nonlinear equalization technique for a 20 Gb/s 0.77 pJ/b VCSEL transmitter in 32 nm SOI CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 8, pp. 1734–1743, 2016.

Fan, Y.-H.

Y.-H. Fan, “A directly modulated quantum dot microring laser transmitter with integrated CMOS driver,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2019, Paper W3E.5.

Fang, A. W.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Exp., vol. 14, pp. 9203–9210, 2006.

Faolain, L. O.

S. A. Moore, L. O. Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” Photon. Technol. Lett., vol. 18, pp. 1861–1863, 2006.

Fiorentino, M.

G. Kurczveil, A. Seyedi, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Error-free operation in a hybrid-silicon quantum dot comb laser,” Photon. Technol. Lett., vol. 30, pp. 71–74, 2018.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nature Photon., vol. 10, pp. 719–722, 2016.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Exp., vol. 24, pp. 16167–16174, 2016.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in Proc. IEEE Int. Semicond. Laser Conf., Santa Fe, NM, USA, 2018, pp. 1–2.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III-V-on-Si MOS microring resonator with negligible tuning power consumption,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, 2016, Paper Th1K.4.

Flynn, M. B.

S. A. Moore, L. O. Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” Photon. Technol. Lett., vol. 18, pp. 1861–1863, 2006.

Fujii, T.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightw. Technol., vol. 33, no. 6, pp. 1217–1222, 2015.

Fujikata, J.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nature Photon., vol. 11, pp. 486–4902017.

Fujita, M.

M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: Design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 3, pp. 673–681, 1999.

Furst, S.

G. Mezosi, M. J. Strain, S. Furst, Z. Wang, S. Yu, and M. Sorel, “Unidirectional bistability in AlGaInAs microring and microdisk semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 21, no. 2, pp. 88–90, 2009.

Gareau, S.

E. Maniloff, S. Gareau, and M. Moyer, “400G and beyond: Coherent evolution to high-capacity inter data center links,” in Proc. Opt. Fiber Commun. Conf., OSA, 2019, Paper M3H.4.

Georgas, M.

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanović, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Proc. IEEE Custom Integr. Circuits Conf., 2011, pp. 1–8.

Giuliani, G.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide ring lasers,” Appl. Phys. Lett., vol. 80, pp. 3051–3053, 2002.

Goddard, L. L.

A. Arbabi, S. M. Kamali, E. Arbabi, B. G. Griffin, and L. L. Goddard, “Grating integrated single mode microring laser,” Opt. Exp., vol. 23, pp. 5335–5347, 2015.

Griffin, B. G.

A. Arbabi, S. M. Kamali, E. Arbabi, B. G. Griffin, and L. L. Goddard, “Grating integrated single mode microring laser,” Opt. Exp., vol. 23, pp. 5335–5347, 2015.

Han, J.-H.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nature Photon., vol. 11, pp. 486–4902017.

Hasebe, K.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightw. Technol., vol. 33, no. 6, pp. 1217–1222, 2015.

Heinrich, M.

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science, vol. 346, pp. 975–978, 2014.

Hill, M. T.

M. T. Hill, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature, vol. 432, pp. 206–209, 2004.

Hiraki, T.

T. Hiraki, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nature Photon., vol. 11, pp. 482–485, 2017.

Hodaei, H.

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science, vol. 346, pp. 975–978, 2014.

Hohimer, J. P.

J. P. Hohimer and G. A. Vawter, “Unidirectional semiconductor ring lasers with racetrack cavities,” Appl. Phys. Lett., vol. 63, pp. 2457–2459, 1993.

J. P. Hohimer, G. A. Vawter, and D. C. Craft, “Unidirectional operation in a semiconductor ring diode laser,” Appl. Phys. Lett., vol. 62, pp. 1185–1187, 1993.

Huang, H.

H. Huang, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Amer. B, vol. 35, pp. 2780–2787, 2018.

Huang, X.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nature Photon., vol. 10, pp. 719–722, 2016.

X. Huang, “Heterogeneous MOS microring resonators,” in Proc. Photon. Conf., Orlando, FL, USA, 2017, pp. 121–122.

Huang, Y.

S. Sui, Y. Huang, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Hybrid deformed-ring AlGaInAs/Si microlasers with stable unidirectional emission,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, 2017, Art. no. .

S. Sui, M. Tang, Y. Yang, J. Xiao, Y. Du, and Y. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron., vol. 51, no. 4, 2015, Art no. 2600108.

Huang, Z.

Huffaker, D. L.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” Photon. Technol. Lett., vol. 12, pp. 230–232, 2000.

Inoue, D.

D. Inoue, “Directly modulated 1.3 um quantum dot lasers epitaxially grown on silicon,” Opt. Exp., vol. 26, pp. 7022–7033, 2018.

Jang, B.

J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Exp., vol. 27, pp. 2681–2688, 2019.

Jhang, Y.-H.

Y.-H. Jhang, “Direct modulation of 1.3 um quantum dot lasers on silicon at 60 °C,” Opt. Exp., vol. 24, pp. 18428–18435, 2016.

Johnson, N. M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett., vol. 84, pp. 2485–2487, 2004.

Jones, R.

R. Jones, “Heterogeneously integrated InP/silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnol. Mag., vol. 13, no. 2, pp. 17–26, 2019.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Exp., vol. 14, pp. 9203–9210, 2006.

Jung, D.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photon., vol. 3, 2018, Art. no. .

D. Jung, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett., vol. 112, 2018, Art. no. .

Kageyama, T.

T. Kageyama, “Extremely high temperature (220oC) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Proc. Conf. Lasers Electro-Opt. Eur., 12th Eur. Quantum Electron. Conf., 2011, Paper PDA_1.

Kakitsuka, T.

S. Matsuo and T. Kakitsuka, “Low-operating-energy directly modulated lasers for short-distance optical interconnects,” Advances Opt. Photon., vol. 10, pp. 567–643, 2018.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightw. Technol., vol. 33, no. 6, pp. 1217–1222, 2015.

Kamali, S. M.

A. Arbabi, S. M. Kamali, E. Arbabi, B. G. Griffin, and L. L. Goddard, “Grating integrated single mode microring laser,” Opt. Exp., vol. 23, pp. 5335–5347, 2015.

Kang, Y.

Y. Kang, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 um light detection,” Opt. Exp., vol. 16, pp. 9365–9371, 2008.

Keeton, K.

K. Keeton, S. Singhal, and M. Raymond, “The OpenFAM API: A programming model for disaggregated persistent memory,” in Proc. Workshop OpenSHMEM Related Technol., 2019, pp. 70–89.

Khajavikhan, M.

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science, vol. 346, pp. 975–978, 2014.

Kneissl, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett., vol. 84, pp. 2485–2487, 2004.

Komljenovic, T.

T. Komljenovic, “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 2016.

Kotlyar, M. V.

S. A. Moore, L. O. Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” Photon. Technol. Lett., vol. 18, pp. 1861–1863, 2006.

Kovsh, A. R.

A. E. Zhukov, M. V. Maksimov, and A. R. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors, vol. 46, pp. 1225–1250, 2012.

Krauss, T. F.

S. A. Moore, L. O. Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” Photon. Technol. Lett., vol. 18, pp. 1861–1863, 2006.

Kryzhanovskaya, N. V.

N. V. Kryzhanovskaya, M. V. Maximov, and A. E. Zhukov, “Whispering-gallery mode microcavity quantum-dot lasers,” Quantum Electron., vol. 44, pp. 189–200, 2014.

Kurczveil, G.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Hybrid quantum-dot microring laser on silicon,” Optica, vol. 6, pp. 1145–1151, 2019.

G. Kurczveil, A. Seyedi, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Error-free operation in a hybrid-silicon quantum dot comb laser,” Photon. Technol. Lett., vol. 30, pp. 71–74, 2018.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nature Photon., vol. 10, pp. 719–722, 2016.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Exp., vol. 24, pp. 16167–16174, 2016.

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 385–391, 2015.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III-V-on-Si MOS microring resonator with negligible tuning power consumption,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, 2016, Paper Th1K.4.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in Proc. IEEE Int. Semicond. Laser Conf., Santa Fe, NM, USA, 2018, pp. 1–2.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Error-free 12.5 Gb/s direct modulation of low-threshold hybrid QD microring laser,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, pp. 1–3.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310 nm hybrid silicon quantum dot photodiodes with Ultra-low dark current,” in Proc. Device Res. Conf., Santa Barbara, CA, USA, 2018, pp. 1–2.

C. Zhang, D. Liang, G. Kurczveil, and R. G. Beausoleil, “High speed QDs microring lasers on silicon,” in Proc. Eur. Conf. Integr. Opt., Valencia, Spain, 2018, Paper Th.2.A.2.

Kwoen, J.

J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Exp., vol. 27, pp. 2681–2688, 2019.

Laybourn, P. J. R.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide ring lasers,” Appl. Phys. Lett., vol. 80, pp. 3051–3053, 2002.

Lee, A.

A. Lee, H. Liu, and A. Seeds, “Semiconductor III-V lasers monolithically grown on Si substrates,” Semicond. Sci. Technol., vol. 28, 2012, Art. no. .

Leu, J.

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanović, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Proc. IEEE Custom Integr. Circuits Conf., 2011, pp. 1–8.

Li, K.

K. Li, “O-band InAs/GaAs quantum dot laser monolithically integrated on exact (011) Si substrate,” J. Crystal Growth, vol. 511, pp. 56–60, 2019.

Liang, D.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Hybrid quantum-dot microring laser on silicon,” Optica, vol. 6, pp. 1145–1151, 2019.

G. Kurczveil, A. Seyedi, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Error-free operation in a hybrid-silicon quantum dot comb laser,” Photon. Technol. Lett., vol. 30, pp. 71–74, 2018.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nature Photon., vol. 10, pp. 719–722, 2016.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Exp., vol. 24, pp. 16167–16174, 2016.

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 385–391, 2015.

D. Liang, “Teardrop reflector-assisted unidirectional hybrid-silicon microring lasers,” IEEE Photon. Technol. Lett., vol. 24, no. 22, pp. 1988–1990, 2012.

D. Liang, “Optimization of hybrid silicon microring lasers,” IEEE Photon. J., vol. 3, no. 3, pp. 580–587, 2011.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photon., vol. 4, pp. 511–517, 2010.

D. Liang, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Exp., vol. 17, pp. 20355–20364, 2009.

D. Dai, D. Liang, and J. E. Bowers, “Enhancement of the evanescent coupling between deeply-etched IIIV-Si hybrid microring laser and its small Si bus waveguide by using a bending coupler,” in Proc. Asia Commun. Photon. Conf. Exhib., 2009, Paper TuP5.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III-V-on-Si MOS microring resonator with negligible tuning power consumption,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, 2016, Paper Th1K.4.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in Proc. IEEE Int. Semicond. Laser Conf., Santa Fe, NM, USA, 2018, pp. 1–2.

D. Liang, “A fully-integrated multi-λ hybrid DML transmitter,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2019, Paper Th3B.5.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Error-free 12.5 Gb/s direct modulation of low-threshold hybrid QD microring laser,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, pp. 1–3.

C. Zhang, D. Liang, G. Kurczveil, and R. G. Beausoleil, “High speed QDs microring lasers on silicon,” in Proc. Eur. Conf. Integr. Opt., Valencia, Spain, 2018, Paper Th.2.A.2.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310 nm hybrid silicon quantum dot photodiodes with Ultra-low dark current,” in Proc. Device Res. Conf., Santa Barbara, CA, USA, 2018, pp. 1–2.

D. Liang, “Optical injection-locked high-speed heterogeneous quantum-dot microring lasers,” in Proc. Eur. Conf. Opt. Commun., Dublin, Ireland, 2019, Paper Th.2.D.

Liu, H.

A. Lee, H. Liu, and A. Seeds, “Semiconductor III-V lasers monolithically grown on Si substrates,” Semicond. Sci. Technol., vol. 28, 2012, Art. no. .

Liu, L.

L. Liu, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon., vol. 4, pp. 182–187, 2010.

T. Spuesens, L. Liu, T. d. Vries, P. R. Romeo, P. Regreny, and D. V. Thourhout, “Improved design of an InP-based microdisk laser heterogeneously integrated with SOI,” in Proc. 6th IEEE Int. Conf. Group IV Photon., 2009, pp. 202–204.

Maksimov, M. V.

A. E. Zhukov, M. V. Maksimov, and A. R. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors, vol. 46, pp. 1225–1250, 2012.

Maniloff, E.

E. Maniloff, S. Gareau, and M. Moyer, “400G and beyond: Coherent evolution to high-capacity inter data center links,” in Proc. Opt. Fiber Commun. Conf., OSA, 2019, Paper M3H.4.

Matsuo, S.

S. Matsuo and T. Kakitsuka, “Low-operating-energy directly modulated lasers for short-distance optical interconnects,” Advances Opt. Photon., vol. 10, pp. 567–643, 2018.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightw. Technol., vol. 33, no. 6, pp. 1217–1222, 2015.

S. Matsuo, “Chapter two–Heterogeneously integrated III–V photonic devices on Si,” in Semiconductors and Semimetals, S. Lourdudoss, J. E. Bowers, and C. Jagadish, Eds., Amsterdam, The Netherlands: Elsevier, 2019, pp. 43–89.

Maximov, M. V.

N. V. Kryzhanovskaya, M. V. Maximov, and A. E. Zhukov, “Whispering-gallery mode microcavity quantum-dot lasers,” Quantum Electron., vol. 44, pp. 189–200, 2014.

Mechet, P.

P. Mechet, “Unidirectional III-V microdisk lasers heterogeneously integrated on SOI,” Opt. Exp., vol. 21, pp. 19339–19352, 2013.

Mezosi, G.

G. Mezosi, M. J. Strain, S. Furst, Z. Wang, S. Yu, and M. Sorel, “Unidirectional bistability in AlGaInAs microring and microdisk semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 21, no. 2, pp. 88–90, 2009.

Miller, D. A. B.

Miri, M.-A.

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science, vol. 346, pp. 975–978, 2014.

Miyashita, N.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett., vol. 84, pp. 2485–2487, 2004.

Monge, M.

M. Raj, M. Monge, and A. Emami, “A modelling and nonlinear equalization technique for a 20 Gb/s 0.77 pJ/b VCSEL transmitter in 32 nm SOI CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 8, pp. 1734–1743, 2016.

Moore, S. A.

S. A. Moore, L. O. Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” Photon. Technol. Lett., vol. 18, pp. 1861–1863, 2006.

Moss, B.

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanović, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Proc. IEEE Custom Integr. Circuits Conf., 2011, pp. 1–8.

Moyer, M.

E. Maniloff, S. Gareau, and M. Moyer, “400G and beyond: Coherent evolution to high-capacity inter data center links,” in Proc. Opt. Fiber Commun. Conf., OSA, 2019, Paper M3H.4.

Nakahara, K.

K. Nakahara, “Direct modulation at 56 and 50 Gb/s of 1.3- μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett., vol. 27, no. 5, pp. 534–536, 2015.

Norman, J.

Y. Wan, J. Norman, and J. E. Bowers, “Quantum dot microcavity lasers on silicon substrates,” in Future Directions in Silicon Photonics, S. Lourdudoss, J. E. Bowers, and C. Jagadish, Eds., New York, NY, USA: Academic, 2019, pp. 305–354.

Norman, J. C.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photon., vol. 3, 2018, Art. no. .

Notzel, R.

G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 14, pp. 8154–8159, 2006.

Ortner, G.

G. Ortner, “External cavity InAs/InP quantum dot laser with a tuning range of 166nm,” Appl. Phys. Lett., vol. 88, 2006, Art. no. .

O'teen, M.

M. O'teen, “Chapter 29 - systems and technology for Production-Scale molecular beam epitaxy,” in Molecular Beam Epitaxy, 2nd ed.. Amsterdam, The Netherlands: Elsevier, 2018, pp. 649–675.

Paniccia, M. J.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Exp., vol. 14, pp. 9203–9210, 2006.

Park, G.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” Photon. Technol. Lett., vol. 12, pp. 230–232, 2000.

Park, H.

H. Park, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Exp., vol. 15, pp. 13539–13546, 2007.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Exp., vol. 14, pp. 9203–9210, 2006.

Raj, M.

M. Raj, M. Monge, and A. Emami, “A modelling and nonlinear equalization technique for a 20 Gb/s 0.77 pJ/b VCSEL transmitter in 32 nm SOI CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 8, pp. 1734–1743, 2016.

Raymond, M.

K. Keeton, S. Singhal, and M. Raymond, “The OpenFAM API: A programming model for disaggregated persistent memory,” in Proc. Workshop OpenSHMEM Related Technol., 2019, pp. 70–89.

Regreny, P.

T. Spuesens, L. Liu, T. d. Vries, P. R. Romeo, P. Regreny, and D. V. Thourhout, “Improved design of an InP-based microdisk laser heterogeneously integrated with SOI,” in Proc. 6th IEEE Int. Conf. Group IV Photon., 2009, pp. 202–204.

Roelkens, G.

G. Roelkens, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 751–779, 2010.

G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 14, pp. 8154–8159, 2006.

G. Roelkens, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Exp., vol. 13, pp. 10102–10108, 2005.

Romeo, P. R.

T. Spuesens, L. Liu, T. d. Vries, P. R. Romeo, P. Regreny, and D. V. Thourhout, “Improved design of an InP-based microdisk laser heterogeneously integrated with SOI,” in Proc. 6th IEEE Int. Conf. Group IV Photon., 2009, pp. 202–204.

Roshan-Zamir, A.

A. Roshan-Zamir, “A 14 Gb/s directly modulated hybrid microring laser transmitter,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper M1l.7.

Sakai, A.

M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: Design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 3, pp. 673–681, 1999.

Sato, T.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightw. Technol., vol. 33, no. 6, pp. 1217–1222, 2015.

Seeds, A.

A. Lee, H. Liu, and A. Seeds, “Semiconductor III-V lasers monolithically grown on Si substrates,” Semicond. Sci. Technol., vol. 28, 2012, Art. no. .

Sellers, I. R.

I. R. Sellers, “1.3 um InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett., vol. 40, pp. 1412–1413, 2004.

Seyedi, A.

G. Kurczveil, A. Seyedi, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Error-free operation in a hybrid-silicon quantum dot comb laser,” Photon. Technol. Lett., vol. 30, pp. 71–74, 2018.

Shchekin, O. B.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” Photon. Technol. Lett., vol. 12, pp. 230–232, 2000.

Singhal, S.

K. M. Bresniker, S. Singhal, and R. S. Williams, “Adapting to thrive in a new economy of memory abundance,” Computer, vol. 48, pp. 44–53, 2015.

K. Keeton, S. Singhal, and M. Raymond, “The OpenFAM API: A programming model for disaggregated persistent memory,” in Proc. Workshop OpenSHMEM Related Technol., 2019, pp. 70–89.

Smit, M.

G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 14, pp. 8154–8159, 2006.

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123–129, 1987.

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” J. Quantum Electron., vol. 26, pp. 113–122, 1990.

Sorel, M.

G. Mezosi, M. J. Strain, S. Furst, Z. Wang, S. Yu, and M. Sorel, “Unidirectional bistability in AlGaInAs microring and microdisk semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 21, no. 2, pp. 88–90, 2009.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide ring lasers,” Appl. Phys. Lett., vol. 80, pp. 3051–3053, 2002.

Spuesens, T.

T. Spuesens, L. Liu, T. d. Vries, P. R. Romeo, P. Regreny, and D. V. Thourhout, “Improved design of an InP-based microdisk laser heterogeneously integrated with SOI,” in Proc. 6th IEEE Int. Conf. Group IV Photon., 2009, pp. 202–204.

Srinivasan, S.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III-V-on-Si MOS microring resonator with negligible tuning power consumption,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, 2016, Paper Th1K.4.

Stojanovic, V.

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanović, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Proc. IEEE Custom Integr. Circuits Conf., 2011, pp. 1–8.

Strain, M. J.

G. Mezosi, M. J. Strain, S. Furst, Z. Wang, S. Yu, and M. Sorel, “Unidirectional bistability in AlGaInAs microring and microdisk semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 21, no. 2, pp. 88–90, 2009.

Sugawara, M.

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nature Photon., vol. 3, pp. 30–31, 2009.

Sui, S.

S. Sui, Y. Huang, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Hybrid deformed-ring AlGaInAs/Si microlasers with stable unidirectional emission,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, 2017, Art. no. .

S. Sui, M. Tang, Y. Yang, J. Xiao, Y. Du, and Y. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron., vol. 51, no. 4, 2015, Art no. 2600108.

Sun, C.

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanović, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Proc. IEEE Custom Integr. Circuits Conf., 2011, pp. 1–8.

Suris, R. A.

L. V. Asryan and R. A. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol., vol. 11, pp. 554–567, 1996.

Sysak, M. N.

M. N. Sysak, “Hybrid silicon evanescent laser technology: A thermal perspective,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1490–1498, Apr. 2011.

M. N. Sysak, “Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser,” Opt. Exp., vol. 15, pp. 15041–15046, 2007.

Takagi, S.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nature Photon., vol. 11, pp. 486–4902017.

Takahashi, S.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nature Photon., vol. 11, pp. 486–4902017.

Takeda, K.

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightw. Technol., vol. 33, no. 6, pp. 1217–1222, 2015.

Takenaka, M.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nature Photon., vol. 11, pp. 486–4902017.

Tanabe, K.

K. Tanabe and Y. Arakawa, “1.3 um InAs/GaAs quantum dot lasers on SOI waveguide structures,” in Proc. Conf. Lasers Electro-Opt., OSA, 2014, Paper STh1G.6.

Tang, M.

S. Sui, Y. Huang, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Hybrid deformed-ring AlGaInAs/Si microlasers with stable unidirectional emission,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, 2017, Art. no. .

S. Sui, M. Tang, Y. Yang, J. Xiao, Y. Du, and Y. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron., vol. 51, no. 4, 2015, Art no. 2600108.

Taubenblatt, M. A.

M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightw. Technol., vol. 30, no. 4, pp. 448–457, 2012.

Teepe, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett., vol. 84, pp. 2485–2487, 2004.

Thourhout, D. V.

T. Spuesens, L. Liu, T. d. Vries, P. R. Romeo, P. Regreny, and D. V. Thourhout, “Improved design of an InP-based microdisk laser heterogeneously integrated with SOI,” in Proc. 6th IEEE Int. Conf. Group IV Photon., 2009, pp. 202–204.

Tossoun, B.

B. Tossoun, “InAs quantum dot waveguide photodiodes heterogeneously integrated on silicon,” Optica, vol. 6, pp. 1277–1281, 2019.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310 nm hybrid silicon quantum dot photodiodes with Ultra-low dark current,” in Proc. Device Res. Conf., Santa Barbara, CA, USA, 2018, pp. 1–2.

Usami, M.

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nature Photon., vol. 3, pp. 30–31, 2009.

Van Campenhout, J.

J. Van Campenhout, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett., vol. 20, no. 16, pp. 1345–1347, 2008.

J. Van Campenhout, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 15, pp. 6744–6749, 2007.

Van Thourhout, D.

G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 14, pp. 8154–8159, 2006.

Vawter, G. A.

J. P. Hohimer, G. A. Vawter, and D. C. Craft, “Unidirectional operation in a semiconductor ring diode laser,” Appl. Phys. Lett., vol. 62, pp. 1185–1187, 1993.

J. P. Hohimer and G. A. Vawter, “Unidirectional semiconductor ring lasers with racetrack cavities,” Appl. Phys. Lett., vol. 63, pp. 2457–2459, 1993.

Vries, T. d.

T. Spuesens, L. Liu, T. d. Vries, P. R. Romeo, P. Regreny, and D. V. Thourhout, “Improved design of an InP-based microdisk laser heterogeneously integrated with SOI,” in Proc. 6th IEEE Int. Conf. Group IV Photon., 2009, pp. 202–204.

Wan, Y.

Y. Wan, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res., vol. 6, pp. 776–781, 2018.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photon., vol. 3, 2018, Art. no. .

Y. Wan, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica, vol. 4, pp. 940–944, 2017.

Y. Wan, J. Norman, and J. E. Bowers, “Quantum dot microcavity lasers on silicon substrates,” in Future Directions in Silicon Photonics, S. Lourdudoss, J. E. Bowers, and C. Jagadish, Eds., New York, NY, USA: Academic, 2019, pp. 305–354.

Wang, Z.

G. Mezosi, M. J. Strain, S. Furst, Z. Wang, S. Yu, and M. Sorel, “Unidirectional bistability in AlGaInAs microring and microdisk semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 21, no. 2, pp. 88–90, 2009.

Watanabe, K.

J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Exp., vol. 27, pp. 2681–2688, 2019.

Weigel, P. O.

P. O. Weigel, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Exp., vol. 26, pp. 23728–23739, 2018.

Williams, R. S.

K. M. Bresniker, S. Singhal, and R. S. Williams, “Adapting to thrive in a new economy of memory abundance,” Computer, vol. 48, pp. 44–53, 2015.

Xiao, J.

S. Sui, Y. Huang, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Hybrid deformed-ring AlGaInAs/Si microlasers with stable unidirectional emission,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, 2017, Art. no. .

S. Sui, M. Tang, Y. Yang, J. Xiao, Y. Du, and Y. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron., vol. 51, no. 4, 2015, Art no. 2600108.

Yamaoka, S.

S. Yamaoka, “239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC,” in Proc. Eur. Conf. Opt. Commun., Dublin, Ireland, 2019, Paper PD.2.1.

Yang, Y.

S. Sui, Y. Huang, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Hybrid deformed-ring AlGaInAs/Si microlasers with stable unidirectional emission,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, 2017, Art. no. .

S. Sui, M. Tang, Y. Yang, J. Xiao, Y. Du, and Y. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron., vol. 51, no. 4, 2015, Art no. 2600108.

Yu, S.

G. Mezosi, M. J. Strain, S. Furst, Z. Wang, S. Yu, and M. Sorel, “Unidirectional bistability in AlGaInAs microring and microdisk semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 21, no. 2, pp. 88–90, 2009.

G. Yuan and S. Yu, “Analysis of dynamic switching behavior of bistable semiconductor ring lasers triggered by resonant optical pulse injection,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1227–1234, 2007.

Yuan, G.

G. Yuan and S. Yu, “Analysis of dynamic switching behavior of bistable semiconductor ring lasers triggered by resonant optical pulse injection,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1227–1234, 2007.

Zhang, C.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Hybrid quantum-dot microring laser on silicon,” Optica, vol. 6, pp. 1145–1151, 2019.

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 385–391, 2015.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in Proc. IEEE Int. Semicond. Laser Conf., Santa Fe, NM, USA, 2018, pp. 1–2.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310 nm hybrid silicon quantum dot photodiodes with Ultra-low dark current,” in Proc. Device Res. Conf., Santa Barbara, CA, USA, 2018, pp. 1–2.

C. Zhang, D. Liang, G. Kurczveil, and R. G. Beausoleil, “High speed QDs microring lasers on silicon,” in Proc. Eur. Conf. Integr. Opt., Valencia, Spain, 2018, Paper Th.2.A.2.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Error-free 12.5 Gb/s direct modulation of low-threshold hybrid QD microring laser,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, pp. 1–3.

Zhukov, A. E.

N. V. Kryzhanovskaya, M. V. Maximov, and A. E. Zhukov, “Whispering-gallery mode microcavity quantum-dot lasers,” Quantum Electron., vol. 44, pp. 189–200, 2014.

A. E. Zhukov, M. V. Maksimov, and A. R. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors, vol. 46, pp. 1225–1250, 2012.

Advances Opt. Photon. (1)

S. Matsuo and T. Kakitsuka, “Low-operating-energy directly modulated lasers for short-distance optical interconnects,” Advances Opt. Photon., vol. 10, pp. 567–643, 2018.

APL Photon. (1)

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photon., vol. 3, 2018, Art. no. .

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide ring lasers,” Appl. Phys. Lett., vol. 80, pp. 3051–3053, 2002.

D. Jung, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett., vol. 112, 2018, Art. no. .

G. Ortner, “External cavity InAs/InP quantum dot laser with a tuning range of 166nm,” Appl. Phys. Lett., vol. 88, 2006, Art. no. .

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett., vol. 84, pp. 2485–2487, 2004.

J. P. Hohimer, G. A. Vawter, and D. C. Craft, “Unidirectional operation in a semiconductor ring diode laser,” Appl. Phys. Lett., vol. 62, pp. 1185–1187, 1993.

J. P. Hohimer and G. A. Vawter, “Unidirectional semiconductor ring lasers with racetrack cavities,” Appl. Phys. Lett., vol. 63, pp. 2457–2459, 1993.

Computer (1)

K. M. Bresniker, S. Singhal, and R. S. Williams, “Adapting to thrive in a new economy of memory abundance,” Computer, vol. 48, pp. 44–53, 2015.

Electron. Lett. (1)

I. R. Sellers, “1.3 um InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett., vol. 40, pp. 1412–1413, 2004.

IEEE J. Quantum Electron. (2)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123–129, 1987.

S. Sui, M. Tang, Y. Yang, J. Xiao, Y. Du, and Y. Huang, “Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Quantum Electron., vol. 51, no. 4, 2015, Art no. 2600108.

IEEE J. Sel. Topics Quantum Electron. (5)

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 385–391, 2015.

M. N. Sysak, “Hybrid silicon evanescent laser technology: A thermal perspective,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1490–1498, Apr. 2011.

M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: Design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 3, pp. 673–681, 1999.

G. Yuan and S. Yu, “Analysis of dynamic switching behavior of bistable semiconductor ring lasers triggered by resonant optical pulse injection,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1227–1234, 2007.

S. Sui, Y. Huang, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Hybrid deformed-ring AlGaInAs/Si microlasers with stable unidirectional emission,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, 2017, Art. no. .

IEEE J. Solid-State Circuits (1)

M. Raj, M. Monge, and A. Emami, “A modelling and nonlinear equalization technique for a 20 Gb/s 0.77 pJ/b VCSEL transmitter in 32 nm SOI CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 8, pp. 1734–1743, 2016.

IEEE Micro (1)

N. Binkert, “Optical high radix switch design,” IEEE Micro, vol. 32, no. 3, pp. 100–109, 2012.

IEEE Nanotechnol. Mag. (1)

R. Jones, “Heterogeneously integrated InP/silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnol. Mag., vol. 13, no. 2, pp. 17–26, 2019.

IEEE Photon. J. (1)

D. Liang, “Optimization of hybrid silicon microring lasers,” IEEE Photon. J., vol. 3, no. 3, pp. 580–587, 2011.

IEEE Photon. Technol. Lett. (4)

K. Nakahara, “Direct modulation at 56 and 50 Gb/s of 1.3- μm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Photon. Technol. Lett., vol. 27, no. 5, pp. 534–536, 2015.

D. Liang, “Teardrop reflector-assisted unidirectional hybrid-silicon microring lasers,” IEEE Photon. Technol. Lett., vol. 24, no. 22, pp. 1988–1990, 2012.

G. Mezosi, M. J. Strain, S. Furst, Z. Wang, S. Yu, and M. Sorel, “Unidirectional bistability in AlGaInAs microring and microdisk semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 21, no. 2, pp. 88–90, 2009.

J. Van Campenhout, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett., vol. 20, no. 16, pp. 1345–1347, 2008.

J. Crystal Growth (1)

K. Li, “O-band InAs/GaAs quantum dot laser monolithically integrated on exact (011) Si substrate,” J. Crystal Growth, vol. 511, pp. 56–60, 2019.

J. Lightw. Technol. (4)

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightw. Technol., vol. 33, no. 6, pp. 1217–1222, 2015.

T. Komljenovic, “Heterogeneous silicon photonic integrated circuits,” J. Lightw. Technol., vol. 34, no. 1, pp. 20–35, 2016.

M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightw. Technol., vol. 30, no. 4, pp. 448–457, 2012.

J. V. Campenhout, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightw. Technol., vol. 25, no. 6, pp. 1543–1548, 2007.

J. Opt. Soc. Amer. B (1)

H. Huang, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Amer. B, vol. 35, pp. 2780–2787, 2018.

J. Quantum Electron. (1)

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” J. Quantum Electron., vol. 26, pp. 113–122, 1990.

Laser Photon. Rev. (1)

G. Roelkens, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 751–779, 2010.

Nature (1)

M. T. Hill, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature, vol. 432, pp. 206–209, 2004.

Nature Photon. (6)

L. Liu, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon., vol. 4, pp. 182–187, 2010.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photon., vol. 4, pp. 511–517, 2010.

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nature Photon., vol. 3, pp. 30–31, 2009.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, “Integrated finely tunable microring laser on silicon,” Nature Photon., vol. 10, pp. 719–722, 2016.

T. Hiraki, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nature Photon., vol. 11, pp. 482–485, 2017.

J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nature Photon., vol. 11, pp. 486–4902017.

Opt. Exp. (17)

D. Liang, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Exp., vol. 17, pp. 20355–20364, 2009.

C.-H. Chen, “A comb laser-driven DWDM silicon photonic transmitter based on microring modulators,” Opt. Exp., vol. 23, pp. 21541–21548, 2015.

Y. Kang, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 um light detection,” Opt. Exp., vol. 16, pp. 9365–9371, 2008.

P. O. Weigel, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Exp., vol. 26, pp. 23728–23739, 2018.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Exp., vol. 14, pp. 9203–9210, 2006.

G. Roelkens, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Exp., vol. 13, pp. 10102–10108, 2005.

G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 14, pp. 8154–8159, 2006.

H. Park, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Exp., vol. 15, pp. 13539–13546, 2007.

A. Capua, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Exp., vol. 15, pp. 5388–5393, 2007.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Exp., vol. 24, pp. 16167–16174, 2016.

Y.-H. Jhang, “Direct modulation of 1.3 um quantum dot lasers on silicon at 60 °C,” Opt. Exp., vol. 24, pp. 18428–18435, 2016.

D. Inoue, “Directly modulated 1.3 um quantum dot lasers epitaxially grown on silicon,” Opt. Exp., vol. 26, pp. 7022–7033, 2018.

M. N. Sysak, “Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser,” Opt. Exp., vol. 15, pp. 15041–15046, 2007.

J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Exp., vol. 27, pp. 2681–2688, 2019.

A. Arbabi, S. M. Kamali, E. Arbabi, B. G. Griffin, and L. L. Goddard, “Grating integrated single mode microring laser,” Opt. Exp., vol. 23, pp. 5335–5347, 2015.

J. Van Campenhout, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Exp., vol. 15, pp. 6744–6749, 2007.

P. Mechet, “Unidirectional III-V microdisk lasers heterogeneously integrated on SOI,” Opt. Exp., vol. 21, pp. 19339–19352, 2013.

Opt. Lett. (1)

B. Dong, “Optical injection in a hybrid-silicon quantum dot comb laser,” Opt. Lett., vol. 44, no. 23, pp. 5755–5758, 2019.

Optica (4)

Photon. Res. (1)

Photon. Technol. Lett. (3)

G. Kurczveil, A. Seyedi, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Error-free operation in a hybrid-silicon quantum dot comb laser,” Photon. Technol. Lett., vol. 30, pp. 71–74, 2018.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” Photon. Technol. Lett., vol. 12, pp. 230–232, 2000.

S. A. Moore, L. O. Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” Photon. Technol. Lett., vol. 18, pp. 1861–1863, 2006.

Proc. IEEE (1)

C. Doerr and L. Chen, “Silicon photonics in optical coherent systems,” Proc. IEEE, vol. 106, no. 12, pp. 2291–2301, 2018.

Quantum Electron. (1)

N. V. Kryzhanovskaya, M. V. Maximov, and A. E. Zhukov, “Whispering-gallery mode microcavity quantum-dot lasers,” Quantum Electron., vol. 44, pp. 189–200, 2014.

Science (1)

H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science, vol. 346, pp. 975–978, 2014.

Semicond. Sci. Technol. (2)

L. V. Asryan and R. A. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol., vol. 11, pp. 554–567, 1996.

A. Lee, H. Liu, and A. Seeds, “Semiconductor III-V lasers monolithically grown on Si substrates,” Semicond. Sci. Technol., vol. 28, 2012, Art. no. .

Semiconductors (1)

A. E. Zhukov, M. V. Maksimov, and A. R. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors, vol. 46, pp. 1225–1250, 2012.

Other (28)

T. Spuesens, L. Liu, T. d. Vries, P. R. Romeo, P. Regreny, and D. V. Thourhout, “Improved design of an InP-based microdisk laser heterogeneously integrated with SOI,” in Proc. 6th IEEE Int. Conf. Group IV Photon., 2009, pp. 202–204.

K. Tanabe and Y. Arakawa, “1.3 um InAs/GaAs quantum dot lasers on SOI waveguide structures,” in Proc. Conf. Lasers Electro-Opt., OSA, 2014, Paper STh1G.6.

R. R. Alexander, “Systematic study of the effects of modulation P-doping on 1.3 um InAs/GaAs dot-in-well lasers,” in Proc. IEEE 19th Int. Conf. Indium Phosphide Related Mater., 2007, pp. 517–520.

D. Liang, “Optical injection-locked high-speed heterogeneous quantum-dot microring lasers,” in Proc. Eur. Conf. Opt. Commun., Dublin, Ireland, 2019, Paper Th.2.D.

Y. Wan, J. Norman, and J. E. Bowers, “Quantum dot microcavity lasers on silicon substrates,” in Future Directions in Silicon Photonics, S. Lourdudoss, J. E. Bowers, and C. Jagadish, Eds., New York, NY, USA: Academic, 2019, pp. 305–354.

M. O'teen, “Chapter 29 - systems and technology for Production-Scale molecular beam epitaxy,” in Molecular Beam Epitaxy, 2nd ed.. Amsterdam, The Netherlands: Elsevier, 2018, pp. 649–675.

D. Dai, D. Liang, and J. E. Bowers, “Enhancement of the evanescent coupling between deeply-etched IIIV-Si hybrid microring laser and its small Si bus waveguide by using a bending coupler,” in Proc. Asia Commun. Photon. Conf. Exhib., 2009, Paper TuP5.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III-V-on-Si MOS microring resonator with negligible tuning power consumption,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, 2016, Paper Th1K.4.

T. Kageyama, “Extremely high temperature (220oC) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in Proc. Conf. Lasers Electro-Opt. Eur., 12th Eur. Quantum Electron. Conf., 2011, Paper PDA_1.

C. Zhang, D. Liang, G. Kurczveil, A. Descos, and R. G. Beausoleil, “Error-free 12.5 Gb/s direct modulation of low-threshold hybrid QD microring laser,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, pp. 1–3.

C. Zhang, D. Liang, G. Kurczveil, and R. G. Beausoleil, “High speed QDs microring lasers on silicon,” in Proc. Eur. Conf. Integr. Opt., Valencia, Spain, 2018, Paper Th.2.A.2.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310 nm hybrid silicon quantum dot photodiodes with Ultra-low dark current,” in Proc. Device Res. Conf., Santa Barbara, CA, USA, 2018, pp. 1–2.

X. Huang, “Heterogeneous MOS microring resonators,” in Proc. Photon. Conf., Orlando, FL, USA, 2017, pp. 121–122.

C. Chen, “Hybrid integrated DWDM silicon photonic transceiver with self-adaptive CMOS circuits,” in Proc. Opt. Interconnects Conf., Santa Fe, NM, USA, 2013, pp. 122–123.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in Proc. IEEE Int. Semicond. Laser Conf., Santa Fe, NM, USA, 2018, pp. 1–2.

Y.-H. Fan, “A directly modulated quantum dot microring laser transmitter with integrated CMOS driver,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2019, Paper W3E.5.

[Online]. Available: https://www.nextplatform.com/2019/09/09/inside-hpes-gen-z-switch-fabric/

S. Matsuo, “Chapter two–Heterogeneously integrated III–V photonic devices on Si,” in Semiconductors and Semimetals, S. Lourdudoss, J. E. Bowers, and C. Jagadish, Eds., Amsterdam, The Netherlands: Elsevier, 2019, pp. 43–89.

A. Roshan-Zamir, “A 14 Gb/s directly modulated hybrid microring laser transmitter,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper M1l.7.

D. Liang, “A fully-integrated multi-λ hybrid DML transmitter,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2019, Paper Th3B.5.

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanović, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Proc. IEEE Custom Integr. Circuits Conf., 2011, pp. 1–8.

R. G. Beausoleil, “A nanophotonic interconnect for high-performance many-core computation,” in Proc. 16th IEEE Symp. High Perform. Interconnects, 2008, pp. 182–189.

E. Maniloff, S. Gareau, and M. Moyer, “400G and beyond: Coherent evolution to high-capacity inter data center links,” in Proc. Opt. Fiber Commun. Conf., OSA, 2019, Paper M3H.4.

S. Yamaoka, “239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC,” in Proc. Eur. Conf. Opt. Commun., Dublin, Ireland, 2019, Paper PD.2.1.

K. Keeton, S. Singhal, and M. Raymond, “The OpenFAM API: A programming model for disaggregated persistent memory,” in Proc. Workshop OpenSHMEM Related Technol., 2019, pp. 70–89.

2017. [Online]. Available: https://www.labs.hpe.com/memory-driven-computing

2017. [Online]. Available: https://news.hpe.com/u-s-dept-of-energy-taps-hewlett-packard-enterprises-machine-research-project-to-design-memory-driven-supercomputer-2/

2018. [Online]. Available: https://www.labs.hpe.com/next-next/exascale

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.