Abstract

In order to support continuous growth of global IP traffic, highly energy-efficient networks are demanded. One of the key components is an optical multicast switch which has large bandwidth with small power consumption. When using multicast switches, however, intrinsic losses will be an issue especially for large port count switches. Erbium doped fiber amplifiers (EDFAs) are typically used for the loss compensation, although it would much increase the number of components and footprint of the system. One of the options to solve this problem would be an integration technology of semiconductor optical amplifiers (SOAs) on the silicon photonics switches which we have recently developed. In the previous work, we have demonstrated a gain-integrated 4 × 4 silicon matrix switch. For the practical use of our technology, it is very important to show further scalability of the platform. Moreover, it is also important to show applicability to other switch topologies, such as multicast switches. In this article, we demonstrate an 8 × 8 silicon photonics multicast switch with on-chip integrated 2 × 4-ch. SOAs. The on-chip SOAs exhibit a net gain of ∼9 dB, which almost compensates for the intrinsic loss. We observe the crosstalk of less than −35 dB. Loss/crosstalk reduction and chip power consumption are also discussed.

PDF Article

References

  • View by:

  1. R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, pp. 1–3, Paper Mo.2.D.2.
  2. S. Tibuleac, “ROADM network design issues,” in Proc. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2009, Paper NMD1.
  3. Y. Sakamaki, “Experimental demonstration of multi-degree colorless, directionless, contentionless ROADM for 127-Gbit/s PDM-QPSK transmission system,” Opt. Express, vol. 19, no. 26, pp. B1–B11, 2011.
  4. W. I. Way, “Optimum architecture for M × N multicast switch-based colorless, directionless, contentionless, and flexible-grid ROADM,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, Paper NW3F.5.
  5. K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale and simple-configuration optical switch enabled by asymmetric-port-count subswitches,” IEEE Photon. J., vol. 8, no. 2, 2016, Art. no. .
  6. K. Ueda, “Novel intra- and inter-datacenter converged network exploiting space- and wavelength- dimensional switches,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper M3K.2.
  7. T. Watanabe, “Compact PLC-based transponder aggregator for colorless and directionless ROADM,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2011, Paper OTuD3.
  8. K. Suzuki, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express, vol. 22, no. 4, pp. 3887–3894, 2014.
  9. K. Suzuki, “Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches,” Opt. Express, vol. 25, no. 7, pp. 7538–7546, 2017.
  10. K. Tanizawa, “Silicon photonic 32 × 32 strictly-non-blocking blade switch and its full path characterization,” in Proc. OptoElectronics Commun. Conf., Niigata, Japan, 2016, Paper PD2-3.
  11. K. Suzuki, “Low-insertion-loss and power-efficient 32×32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Lightw. Technol., vol. 37, no. 1, pp. 116–122, 2019.
  12. L. Lu, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers,” Opt. Express, vol. 24, no. 9, pp. 9295–9307, 2016.
  13. H. Matsuura, “Accelerating switching speed of thermo-optic MZI silicon-photonic switches with ‘turbo pulse’ in PWM control,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper W4E.3.
  14. G. P. Agrawal, Lightwave Technology: Components and Devices. Hoboken, NJ, USA: Wiley, 2004.
  15. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.
  16. S. Nakamura, “Compact and low-loss 8 × 8 silicon photonic switch module for transponder aggregators in CDC-ROADM application,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2015, Paper M2B.6.
  17. C. Browning, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper Th1B.6.
  18. S. Han, T. J. Seok, C.-K. Kim, R. S. Muller, and M. C. Wu, “Multicast silicon photonic MEMS switches with gap-adjustable directional couplers,” Opt. Express, vol. 27, no. 13, pp. 17561–17569, 2019.
  19. T. Matsumoto, “Hybrid-integration of SOA on silicon photonics platform based on flip-chip bonding,” J. Lightw. Technol., vol. 37, no. 2, pp. 307–313, 2019.
  20. R. Konoike, “SOA-integrated silicon photonics switch and its lossless multi-stage transmission of high-capacity WDM signals,” J. Lightw. Technol., vol. 37, no. 1, pp. 123–130, 2019.
  21. R. Konoike, “8 × 8 silicon photonics multicast switch with on-chip integrated 2 × 4-Ch SOAs,” in Proc. Eur. Conf. Opt. Commun., Dublin, Ireland, 2019, Paper M.2.A.5.
  22. Y. Ma, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express, vol. 21, no. 24, pp. 9502–9507, 2013.
  23. K. Suzuki, “2.5 dB Loss, 110-nm operating bandwidth, and low power consumption strictly-non-blocking 8 × 8 Si Switch,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.1.C.2.
  24. R. Konoike, “Ultra-compact silicon photonics switch with high-density thermo-optic heaters,” Opt. Express, vol. 27, no. 7, pp. 10332–10342, 2019.
  25. J. Renaudier, “107 Tb/s transmission of 103-nm bandwidth over 3 x 100 km SSMF using ultra-wideband hybrid Raman/SOA repeaters,” in Proc. Opt. Fiber Commun., San Diego, CA, USA, 2019, Paper Tu3F.2.
  26. H. Yun, “Ultra-broadband 2 × 2 adiabatic 3 dB coupler using subwavelength-grating-assisted silicon-on-insulator strip waveguides,” Opt. Lett., vol. 43, no. 8, pp. 1935–1938, 2018.

2019 (5)

S. Han, T. J. Seok, C.-K. Kim, R. S. Muller, and M. C. Wu, “Multicast silicon photonic MEMS switches with gap-adjustable directional couplers,” Opt. Express, vol. 27, no. 13, pp. 17561–17569, 2019.

T. Matsumoto, “Hybrid-integration of SOA on silicon photonics platform based on flip-chip bonding,” J. Lightw. Technol., vol. 37, no. 2, pp. 307–313, 2019.

R. Konoike, “SOA-integrated silicon photonics switch and its lossless multi-stage transmission of high-capacity WDM signals,” J. Lightw. Technol., vol. 37, no. 1, pp. 123–130, 2019.

K. Suzuki, “Low-insertion-loss and power-efficient 32×32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Lightw. Technol., vol. 37, no. 1, pp. 116–122, 2019.

R. Konoike, “Ultra-compact silicon photonics switch with high-density thermo-optic heaters,” Opt. Express, vol. 27, no. 7, pp. 10332–10342, 2019.

2018 (1)

2017 (1)

2016 (2)

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale and simple-configuration optical switch enabled by asymmetric-port-count subswitches,” IEEE Photon. J., vol. 8, no. 2, 2016, Art. no. .

L. Lu, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers,” Opt. Express, vol. 24, no. 9, pp. 9295–9307, 2016.

2014 (1)

2013 (1)

Y. Ma, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express, vol. 21, no. 24, pp. 9502–9507, 2013.

2011 (1)

Agrawal, G. P.

G. P. Agrawal, Lightwave Technology: Components and Devices. Hoboken, NJ, USA: Wiley, 2004.

Browning, C.

C. Browning, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper Th1B.6.

Han, S.

Hasegawa, H.

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale and simple-configuration optical switch enabled by asymmetric-port-count subswitches,” IEEE Photon. J., vol. 8, no. 2, 2016, Art. no. .

Itoh, M.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Jensen, R.

R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, pp. 1–3, Paper Mo.2.D.2.

Kim, C.-K.

Konoike, R.

R. Konoike, “SOA-integrated silicon photonics switch and its lossless multi-stage transmission of high-capacity WDM signals,” J. Lightw. Technol., vol. 37, no. 1, pp. 123–130, 2019.

R. Konoike, “Ultra-compact silicon photonics switch with high-density thermo-optic heaters,” Opt. Express, vol. 27, no. 7, pp. 10332–10342, 2019.

R. Konoike, “8 × 8 silicon photonics multicast switch with on-chip integrated 2 × 4-Ch SOAs,” in Proc. Eur. Conf. Opt. Commun., Dublin, Ireland, 2019, Paper M.2.A.5.

Lord, A.

R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, pp. 1–3, Paper Mo.2.D.2.

Lu, L.

Ma, Y.

Y. Ma, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express, vol. 21, no. 24, pp. 9502–9507, 2013.

Matsumoto, T.

T. Matsumoto, “Hybrid-integration of SOA on silicon photonics platform based on flip-chip bonding,” J. Lightw. Technol., vol. 37, no. 2, pp. 307–313, 2019.

Matsuura, H.

H. Matsuura, “Accelerating switching speed of thermo-optic MZI silicon-photonic switches with ‘turbo pulse’ in PWM control,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper W4E.3.

Mori, Y.

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale and simple-configuration optical switch enabled by asymmetric-port-count subswitches,” IEEE Photon. J., vol. 8, no. 2, 2016, Art. no. .

Muller, R. S.

Nakamura, S.

S. Nakamura, “Compact and low-loss 8 × 8 silicon photonic switch module for transponder aggregators in CDC-ROADM application,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2015, Paper M2B.6.

Ooba, N.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Parsons, N.

R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, pp. 1–3, Paper Mo.2.D.2.

Renaudier, J.

J. Renaudier, “107 Tb/s transmission of 103-nm bandwidth over 3 x 100 km SSMF using ultra-wideband hybrid Raman/SOA repeaters,” in Proc. Opt. Fiber Commun., San Diego, CA, USA, 2019, Paper Tu3F.2.

Sakamaki, Y.

Sato, K.

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale and simple-configuration optical switch enabled by asymmetric-port-count subswitches,” IEEE Photon. J., vol. 8, no. 2, 2016, Art. no. .

Seok, T. J.

Shibata, T.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Sohma, S.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Suzuki, K.

K. Suzuki, “Low-insertion-loss and power-efficient 32×32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Lightw. Technol., vol. 37, no. 1, pp. 116–122, 2019.

K. Suzuki, “Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches,” Opt. Express, vol. 25, no. 7, pp. 7538–7546, 2017.

K. Suzuki, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express, vol. 22, no. 4, pp. 3887–3894, 2014.

K. Suzuki, “2.5 dB Loss, 110-nm operating bandwidth, and low power consumption strictly-non-blocking 8 × 8 Si Switch,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.1.C.2.

Takahashi, H.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Tanizawa, K.

K. Tanizawa, “Silicon photonic 32 × 32 strictly-non-blocking blade switch and its full path characterization,” in Proc. OptoElectronics Commun. Conf., Niigata, Japan, 2016, Paper PD2-3.

Tibuleac, S.

S. Tibuleac, “ROADM network design issues,” in Proc. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2009, Paper NMD1.

Ueda, K.

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale and simple-configuration optical switch enabled by asymmetric-port-count subswitches,” IEEE Photon. J., vol. 8, no. 2, 2016, Art. no. .

K. Ueda, “Novel intra- and inter-datacenter converged network exploiting space- and wavelength- dimensional switches,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper M3K.2.

Watanabe, T.

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale and simple-configuration optical switch enabled by asymmetric-port-count subswitches,” IEEE Photon. J., vol. 8, no. 2, 2016, Art. no. .

T. Watanabe, “Compact PLC-based transponder aggregator for colorless and directionless ROADM,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2011, Paper OTuD3.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

Way, W. I.

W. I. Way, “Optimum architecture for M × N multicast switch-based colorless, directionless, contentionless, and flexible-grid ROADM,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, Paper NW3F.5.

Wu, M. C.

Yun, H.

IEEE Photon. J. (1)

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale and simple-configuration optical switch enabled by asymmetric-port-count subswitches,” IEEE Photon. J., vol. 8, no. 2, 2016, Art. no. .

J. Lightw. Technol. (3)

K. Suzuki, “Low-insertion-loss and power-efficient 32×32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Lightw. Technol., vol. 37, no. 1, pp. 116–122, 2019.

T. Matsumoto, “Hybrid-integration of SOA on silicon photonics platform based on flip-chip bonding,” J. Lightw. Technol., vol. 37, no. 2, pp. 307–313, 2019.

R. Konoike, “SOA-integrated silicon photonics switch and its lossless multi-stage transmission of high-capacity WDM signals,” J. Lightw. Technol., vol. 37, no. 1, pp. 123–130, 2019.

Opt. Express (7)

Opt. Lett. (1)

Other (14)

J. Renaudier, “107 Tb/s transmission of 103-nm bandwidth over 3 x 100 km SSMF using ultra-wideband hybrid Raman/SOA repeaters,” in Proc. Opt. Fiber Commun., San Diego, CA, USA, 2019, Paper Tu3F.2.

W. I. Way, “Optimum architecture for M × N multicast switch-based colorless, directionless, contentionless, and flexible-grid ROADM,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, Paper NW3F.5.

R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” in Proc. Eur. Conf. Opt. Commun., Torino, Italy, 2010, pp. 1–3, Paper Mo.2.D.2.

S. Tibuleac, “ROADM network design issues,” in Proc. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2009, Paper NMD1.

K. Tanizawa, “Silicon photonic 32 × 32 strictly-non-blocking blade switch and its full path characterization,” in Proc. OptoElectronics Commun. Conf., Niigata, Japan, 2016, Paper PD2-3.

K. Ueda, “Novel intra- and inter-datacenter converged network exploiting space- and wavelength- dimensional switches,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper M3K.2.

T. Watanabe, “Compact PLC-based transponder aggregator for colorless and directionless ROADM,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2011, Paper OTuD3.

H. Matsuura, “Accelerating switching speed of thermo-optic MZI silicon-photonic switches with ‘turbo pulse’ in PWM control,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper W4E.3.

G. P. Agrawal, Lightwave Technology: Components and Devices. Hoboken, NJ, USA: Wiley, 2004.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in Proc. Eur. Conf. Opt. Commun., Cannes, France, 2006, Paper Tu.4.4.3.

S. Nakamura, “Compact and low-loss 8 × 8 silicon photonic switch module for transponder aggregators in CDC-ROADM application,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2015, Paper M2B.6.

C. Browning, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper Th1B.6.

K. Suzuki, “2.5 dB Loss, 110-nm operating bandwidth, and low power consumption strictly-non-blocking 8 × 8 Si Switch,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, 2017, Paper Tu.1.C.2.

R. Konoike, “8 × 8 silicon photonics multicast switch with on-chip integrated 2 × 4-Ch SOAs,” in Proc. Eur. Conf. Opt. Commun., Dublin, Ireland, 2019, Paper M.2.A.5.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.