Abstract

We report a Nested Antiresonant Nodeless hollow-core Fiber (NANF) operating in the first antiresonant passband. The fiber has an ultrawide operational bandwidth of 700 nm, spanning the 1240–1940 nm wavelength range that includes the O-, S-, C- and L- telecoms bands. It has a minimum loss of 6.6 dB/km at 1550 nm, a loss ≤7 dB/km between 1465–1655 nm and ≤10 dB/km between 1297–1860 nm. By splicing together two structurally matched fibers and by adding single mode fiber (SMF) pigtails at both ends we have produced a ∼1 km long span. The concatenated and connectorized fiber has an insertion loss of approximately 10 dB all the way from 1300 nm to 1550 nm, and an effectively single mode behavior across the whole spectral range. To test its data transmission performance, we demonstrate 50-Gb/s OOK data transmission across the O-to L-bands without the need for optical amplification, with bit-error-rates (BERs) lower than the 7% forward error correction (FEC) limit. With the help of optical amplification, 100-Gb/s PAM4 transmission with BER lower than the KP4 FEC limit was also achieved in the O/E and C/L bands, with relatively uniform performance for all wavelengths. Our results confirm the excellent modal purity of the fabricated fiber across a broad spectral range, and highlight its potential for wideband, low nonlinearity, low latency data transmission.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Polettiet al., “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nature Photon., vol. 7, no. 4, pp. 279–284, 2013.
  2. B. J. Manganet al., “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber Commun. Conf., 2004, Paper PDP5A.2.F.
  3. C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett., vol. 41, no. 1, pp. 27–29, 2005.
  4. N. V. Wheeleret al., “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in Proc. OFC/NFOEC, 2012, Paper PDP5A.2.F.
  5. V. A. J. M. Sleifferet al., “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightw. Technol., vol. 32, no. 4, pp. 854–863,  2014.
  6. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express, vol. 21, no. 8, pp. 9514–9519, 2013.
  7. B. Debordet al., “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica, vol. 4, no. 2, pp. 209–217, 2017.
  8. J. R. Hayeset al., “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, Paper PDP TH5A.3.
  9. S. Gaoet al., “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nature Commun., vol. 9, no. 1, 2018, Art. no. .
  10. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express, vol. 22, no. 20, pp. 23807–23828, 2014.
  11. T. D. Bradleyet al., “Record low-loss 1.3dB/km data transmitting antiresonant hollow core fibre,” in Proc. Eur. Conf. Opt. Commun., 2018, pp. 1–3.
  12. G. T. Jasionet al., “Virtual draw of tubular hollow-core fibers,” in Proc. Frontiers Optics /Laser Sci., 2018, Paper FW6B.3.
  13. H. Sakret al., “Ultrawide bandwidth hollow core fiber for interband short reach data transmission,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper PDP Th4A.1.
  14. J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express, vol. 23, no. 2, pp. 1289–1299, 2015.
  15. E. N. Fokoua, Y. Chen, D. J. Richardson, and F. Poletti, “Microbending effects in hollow-core photonic bandgap fibers,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 327–329.
  16. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express, vol. 18, no. 22, pp. 23133–23146, 2010.
  17. H. Sakret al., “Record low loss hollow core fiber for the 1 μm region,” in Proc. Conf. Lasers Electro-Optics /Europe Eur. Quantum Electron. Conf., 2019, Paper CE_5_5.
  18. Y. Honget al., “Beyond 100-Gb/s/λ direct-detection transmission over the S+C+L-bands in an ultra-wide bandwidth hollow core fibre,” in Proc. ECOC, 2019, Paper Th.2.E.5.
  19. Z. Liuet al., “Nonlinearity-free coherent transmission in hollow-core antiresonant fiber,” J. Lightw. Technol., vol. 37, no. 3, pp. 909–916, Feb. 2019.
  20. T. K. Chan and W. I. Way, “112 Gb/s PAM4 transmission over 40 km SSMF using 1.3 μm gain-clamped semiconductor optical amplifier,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, Paper Th3A.4.
  21. Z. Wang and A. Ghiasi, “400GE lane configurations v.s. FEC options,” in Proc. IEEE 802.3 Plenary Meeting, Jul. 2013. [Online]. Available: http://www.ieee802.org/3/400GSG/public/13_07/wang_400_01_0713.pdf
  22. E. M. Dianov, “Bismuth-doped optical fibers: A challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl., vol. 1, 2012, pp. 1–7, Art. no. .
  23. N. K. Thipparapu, Y. Wang, A. A. Umnikov, P. Barua, D. J. Richardson, and J. K. Sahu, “40 dB gain all fiber bismuth-doped amplifier operating in the O-band,” Opt. Lett., vol. 44, no. 9, pp. 2248–2251, 2019.
  24. B. N. Samsonet al., “Thulium-doped silicate fiber amplifier at 1460-1520 nm,” in Proc. Opt. Amplifiers Appli., 2001, pp. 247–248.
  25. S. Aozasa and M. Yamada, “E-band thulium doped fibre amplifier,” Electron. Lett., vol. 55, no. 6, pp. 333–334, 2019.

2019 (3)

Z. Liuet al., “Nonlinearity-free coherent transmission in hollow-core antiresonant fiber,” J. Lightw. Technol., vol. 37, no. 3, pp. 909–916, Feb. 2019.

N. K. Thipparapu, Y. Wang, A. A. Umnikov, P. Barua, D. J. Richardson, and J. K. Sahu, “40 dB gain all fiber bismuth-doped amplifier operating in the O-band,” Opt. Lett., vol. 44, no. 9, pp. 2248–2251, 2019.

S. Aozasa and M. Yamada, “E-band thulium doped fibre amplifier,” Electron. Lett., vol. 55, no. 6, pp. 333–334, 2019.

2018 (1)

S. Gaoet al., “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nature Commun., vol. 9, no. 1, 2018, Art. no. .

2017 (1)

2015 (1)

2014 (2)

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express, vol. 22, no. 20, pp. 23807–23828, 2014.

V. A. J. M. Sleifferet al., “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightw. Technol., vol. 32, no. 4, pp. 854–863,  2014.

2013 (2)

2012 (1)

E. M. Dianov, “Bismuth-doped optical fibers: A challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl., vol. 1, 2012, pp. 1–7, Art. no. .

2010 (1)

2005 (1)

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett., vol. 41, no. 1, pp. 27–29, 2005.

Abokhamis, M. S.

Aozasa, S.

S. Aozasa and M. Yamada, “E-band thulium doped fibre amplifier,” Electron. Lett., vol. 55, no. 6, pp. 333–334, 2019.

Baddela, N. K.

Barua, P.

Biriukov, A. S.

Bradley, T. D.

T. D. Bradleyet al., “Record low-loss 1.3dB/km data transmitting antiresonant hollow core fibre,” in Proc. Eur. Conf. Opt. Commun., 2018, pp. 1–3.

Chan, T. K.

T. K. Chan and W. I. Way, “112 Gb/s PAM4 transmission over 40 km SSMF using 1.3 μm gain-clamped semiconductor optical amplifier,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, Paper Th3A.4.

Chen, Y.

E. N. Fokoua, Y. Chen, D. J. Richardson, and F. Poletti, “Microbending effects in hollow-core photonic bandgap fibers,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 327–329.

Debord, B.

Dianov, E. M.

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express, vol. 21, no. 8, pp. 9514–9519, 2013.

E. M. Dianov, “Bismuth-doped optical fibers: A challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl., vol. 1, 2012, pp. 1–7, Art. no. .

Fokoua, E. N.

E. N. Fokoua, Y. Chen, D. J. Richardson, and F. Poletti, “Microbending effects in hollow-core photonic bandgap fibers,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 327–329.

Gao, S.

S. Gaoet al., “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nature Commun., vol. 9, no. 1, 2018, Art. no. .

Ghiasi, A.

Z. Wang and A. Ghiasi, “400GE lane configurations v.s. FEC options,” in Proc. IEEE 802.3 Plenary Meeting, Jul. 2013. [Online]. Available: http://www.ieee802.org/3/400GSG/public/13_07/wang_400_01_0713.pdf

Hansen, T. P.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett., vol. 41, no. 1, pp. 27–29, 2005.

Hayes, J. R.

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express, vol. 23, no. 2, pp. 1289–1299, 2015.

J. R. Hayeset al., “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, Paper PDP TH5A.3.

Hong, Y.

Y. Honget al., “Beyond 100-Gb/s/λ direct-detection transmission over the S+C+L-bands in an ultra-wide bandwidth hollow core fibre,” in Proc. ECOC, 2019, Paper Th.2.E.5.

Jasion, G. T.

G. T. Jasionet al., “Virtual draw of tubular hollow-core fibers,” in Proc. Frontiers Optics /Laser Sci., 2018, Paper FW6B.3.

Jeppesen, P.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett., vol. 41, no. 1, pp. 27–29, 2005.

Kolyadin, A. N.

Kosolapov, A. F.

Liu, Z.

Z. Liuet al., “Nonlinearity-free coherent transmission in hollow-core antiresonant fiber,” J. Lightw. Technol., vol. 37, no. 3, pp. 909–916, Feb. 2019.

Mangan, B. J.

B. J. Manganet al., “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber Commun. Conf., 2004, Paper PDP5A.2.F.

Peucheret, C.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett., vol. 41, no. 1, pp. 27–29, 2005.

Plotnichenko, V. G.

Poletti, F.

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express, vol. 23, no. 2, pp. 1289–1299, 2015.

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express, vol. 22, no. 20, pp. 23807–23828, 2014.

F. Polettiet al., “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nature Photon., vol. 7, no. 4, pp. 279–284, 2013.

E. N. Fokoua, Y. Chen, D. J. Richardson, and F. Poletti, “Microbending effects in hollow-core photonic bandgap fibers,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 327–329.

Pryamikov, A. D.

Richardson, D. J.

Sahu, J. K.

Sakr, H.

H. Sakret al., “Record low loss hollow core fiber for the 1 μm region,” in Proc. Conf. Lasers Electro-Optics /Europe Eur. Quantum Electron. Conf., 2019, Paper CE_5_5.

H. Sakret al., “Ultrawide bandwidth hollow core fiber for interband short reach data transmission,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper PDP Th4A.1.

Samson, B. N.

B. N. Samsonet al., “Thulium-doped silicate fiber amplifier at 1460-1520 nm,” in Proc. Opt. Amplifiers Appli., 2001, pp. 247–248.

Setti, V.

Sleiffer, V. A. J. M.

V. A. J. M. Sleifferet al., “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightw. Technol., vol. 32, no. 4, pp. 854–863,  2014.

Thipparapu, N. K.

Umnikov, A. A.

Vincetti, L.

Wang, Y.

Wang, Z.

Z. Wang and A. Ghiasi, “400GE lane configurations v.s. FEC options,” in Proc. IEEE 802.3 Plenary Meeting, Jul. 2013. [Online]. Available: http://www.ieee802.org/3/400GSG/public/13_07/wang_400_01_0713.pdf

Way, W. I.

T. K. Chan and W. I. Way, “112 Gb/s PAM4 transmission over 40 km SSMF using 1.3 μm gain-clamped semiconductor optical amplifier,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, Paper Th3A.4.

Wheeler, N. V.

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express, vol. 23, no. 2, pp. 1289–1299, 2015.

N. V. Wheeleret al., “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in Proc. OFC/NFOEC, 2012, Paper PDP5A.2.F.

Yamada, M.

S. Aozasa and M. Yamada, “E-band thulium doped fibre amplifier,” Electron. Lett., vol. 55, no. 6, pp. 333–334, 2019.

Zsigri, B.

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett., vol. 41, no. 1, pp. 27–29, 2005.

Electron. Lett. (2)

C. Peucheret, B. Zsigri, T. P. Hansen, and P. Jeppesen, “10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm,” Electron. Lett., vol. 41, no. 1, pp. 27–29, 2005.

S. Aozasa and M. Yamada, “E-band thulium doped fibre amplifier,” Electron. Lett., vol. 55, no. 6, pp. 333–334, 2019.

J. Lightw. Technol. (2)

Z. Liuet al., “Nonlinearity-free coherent transmission in hollow-core antiresonant fiber,” J. Lightw. Technol., vol. 37, no. 3, pp. 909–916, Feb. 2019.

V. A. J. M. Sleifferet al., “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightw. Technol., vol. 32, no. 4, pp. 854–863,  2014.

Light Sci. Appl. (1)

E. M. Dianov, “Bismuth-doped optical fibers: A challenging active medium for near-IR lasers and optical amplifiers,” Light Sci. Appl., vol. 1, 2012, pp. 1–7, Art. no. .

Nature Commun. (1)

S. Gaoet al., “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nature Commun., vol. 9, no. 1, 2018, Art. no. .

Nature Photon. (1)

F. Polettiet al., “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nature Photon., vol. 7, no. 4, pp. 279–284, 2013.

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Other (12)

J. R. Hayeset al., “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, Paper PDP TH5A.3.

B. J. Manganet al., “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Proc. Opt. Fiber Commun. Conf., 2004, Paper PDP5A.2.F.

N. V. Wheeleret al., “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in Proc. OFC/NFOEC, 2012, Paper PDP5A.2.F.

H. Sakret al., “Record low loss hollow core fiber for the 1 μm region,” in Proc. Conf. Lasers Electro-Optics /Europe Eur. Quantum Electron. Conf., 2019, Paper CE_5_5.

Y. Honget al., “Beyond 100-Gb/s/λ direct-detection transmission over the S+C+L-bands in an ultra-wide bandwidth hollow core fibre,” in Proc. ECOC, 2019, Paper Th.2.E.5.

E. N. Fokoua, Y. Chen, D. J. Richardson, and F. Poletti, “Microbending effects in hollow-core photonic bandgap fibers,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 327–329.

T. D. Bradleyet al., “Record low-loss 1.3dB/km data transmitting antiresonant hollow core fibre,” in Proc. Eur. Conf. Opt. Commun., 2018, pp. 1–3.

G. T. Jasionet al., “Virtual draw of tubular hollow-core fibers,” in Proc. Frontiers Optics /Laser Sci., 2018, Paper FW6B.3.

H. Sakret al., “Ultrawide bandwidth hollow core fiber for interband short reach data transmission,” in Proc. Opt. Fiber Commun. Conf., 2019, Paper PDP Th4A.1.

B. N. Samsonet al., “Thulium-doped silicate fiber amplifier at 1460-1520 nm,” in Proc. Opt. Amplifiers Appli., 2001, pp. 247–248.

T. K. Chan and W. I. Way, “112 Gb/s PAM4 transmission over 40 km SSMF using 1.3 μm gain-clamped semiconductor optical amplifier,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, Paper Th3A.4.

Z. Wang and A. Ghiasi, “400GE lane configurations v.s. FEC options,” in Proc. IEEE 802.3 Plenary Meeting, Jul. 2013. [Online]. Available: http://www.ieee802.org/3/400GSG/public/13_07/wang_400_01_0713.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.