Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 9,
  • pp. 2120-2125
  • (2019)

Laser-Induced Dispersion With Stimulated Raman Scattering in Gas-Filled Optical Fiber

Not Accessible

Your library or personal account may give you access

Abstract

Laser-induced dispersion provides an all-optical means for dynamically controlling light propagation. Previous works on dispersion control with a laser beam make use of Kerr non-linearity, electromagnetic-induced transparency, and stimulated Brillouin scattering in optical fibers. Here we report, for the first time to our knowledge, optically controllable dispersion with stimulated Raman scattering in a gas-filled hollow-core optical fiber and show that flexible dispersion tuning can be achieved by varying optical pump power and wavelength as well as gas concentration and pressure in the hollow core. As an example of application, we demonstrated the use of such laser-induced dispersion for high-sensitivity hydrogen detection and achieved a normalized detection limit of 17.4 ppm/(m·W) with dynamic range over four orders of magnitude.

© 2019 IEEE

PDF Article
More Like This
Dominance of backward stimulated Raman scattering in gas-filled hollow-core photonic crystal fibers

Manoj K. Mridha, David Novoa, and Philip St.J. Russell
Optica 5(5) 570-576 (2018)

Intense stimulated Raman scattering in CO2-filled hollow-core fibers

Katarzyna Krupa, Kilian Baudin, Alexandre Parriaux, Gil Fanjoux, and Guy Millot
Opt. Lett. 44(21) 5318-5321 (2019)

High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering

Yulong Cui, Wei Huang, Zhixian Li, Zhiyue Zhou, and Zefeng Wang
Opt. Express 27(21) 30396-30404 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.