Abstract

This paper proposes a self-taught anomaly detection framework for optical networks. The proposed framework makes use of a hybrid unsupervised and supervised machine learning scheme. First, it employs an unsupervised data clustering module (DCM) to analyze the patterns of monitoring data. The DCM enables a self-learning capability that eliminates the requirement of prior knowledge of abnormal network behaviors and therefore can potentially detect unforeseen anomalies. Second, we introduce a self-taught mechanism that transfers the patterns learned by the DCM to a supervised data regression and classification module (DRCM). The DRCM, whose complexity is mainly related to the scale of the applied supervised learning model, can potentially facilitate more scalable and time-efficient online anomaly detection by avoiding excessively traversing the original dataset. We designed the DCM and DRCM based on the density-based clustering algorithm and the deep neural network structure, respectively. Evaluations with experimental data from two use cases (i.e., single-point detection and end-to-end detection) demonstrate that up to $99\%$ anomaly detection accuracy can be achieved with a false positive rate below $1\%$ .

© 2019 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription