Abstract

We fabricate silicon waveguide spirals and a ring resonator to generate photon pairs based on a spontaneous four-wave mixing. The coincidence-to-accidental-ratio (CAR) of photon pairs from the silicon waveguides is measured up to 400 after a noise-filtering by using the combination of bandpass filters and pump-rejection filters. The CAR is enhanced up to 700 by adding on-chip pump-rejection MZIs. We observe the CAR of the photon pairs from a silicon spiral is highly depending on the wavelength detuning from the pump wavelength. We discuss the noise sources related to the degradation of the CAR based on our experimental results.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Silverstone, D. Bonneau, J. L. O'Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, 2016, Art. no. .
  2. Q. Lin and G. P. Agrawal, “Silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett., vol. 31, pp. 3140–3141, 2006.
  3. J. E. Sharpinget al., “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express, vol. 14, pp. 12388–12393, 2006.
  4. H. Takesueet al., “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett., vol. 91, 2007, Art. no. .
  5. K. Haradaet al., “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express, vol. 16, pp. 20368–20373, 2008.
  6. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, vol. 17, pp. 16550–16570, 2009.
  7. K. Guoet al., “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express, vol. 10, 2017, Art. no. .
  8. C. Ma, X. Wang, V. Anant, A. D. Beyer, M. D. Shaw, and S. Mookherjea, “Silicon photonic entangled photon-pair and heralded single photon generation with CAR > 12,000 and g(2)(0) < 0.006,” Opt. Express, vol. 25, pp. 32995–33006, 2017.
  9. N. Matsudaet al., “On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform,” Opt. Express, vol. 22, pp. 22831–22840, 2014.
  10. N. C. Harriset al., “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X, vol. 4, 2014, Art. no. .
  11. C. M. Gentryet al., “Monolithic source of entangled photons with integrated pump rejection,” in Proc. Conf. Lasers Electro-Opt., 2018, Paper Jth4C.3.
  12. C. M. Wilkeset al., “60 dB high-extinction auto-configured Mach–Zehnder interferometer,” Opt. Lett., vol. 41, pp. 5318–5321, 2016.
  13. M. Piekareket al., “High-extinction ratio integrated photonic filters for silicon quantum photonics,” Opt. Lett., vol. 42, pp. 815–818, 2017.
  14. D. Perez-Galachoet al., “Optical pump-rejection filter based on silicon sub-wavelength engineered photonic structures,” Opt. Lett., vol. 42, pp. 1468–1471, 2017.
  15. J. Carolanet al., “Universal linear optics,” Science, vol. 349, pp. 711–716, 2015.
  16. I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, and M. G. Thompson, “On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics,” Opt. Express, vol. 26, pp. 20379–20395, 2018.
  17. X. Qianget al., “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nature Photon., vol. 12, pp. 534–539, 2018.
  18. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A, vol. 75, 2007, Art. no. .
  19. N. A. Peterset al., “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys., vol. 11, 2009, Art. no. .
  20. A. S. Clark, M. J. Collins, A. C. Judge, E. C. Magi, C. Xiong, and B. J. Eggleton, “Raman scattering effects on correlated photon-pair generation in chalcogenide,” Opt. Express, vol. 20, pp. 16807–16814, 2012).
  21. S. Clemmenet al., “Low-power inelastic light scattering at small detunings in silicon wire waveguides at telecom wavelengths,” J. Opt. Soc. Amer. B, vol. 29, pp. 1977–1982, 2012.
  22. E. A. Dauleret al., “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng., vol. 53, 2014, Art. no. .

2018 (2)

2017 (4)

2016 (2)

J. W. Silverstone, D. Bonneau, J. L. O'Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, 2016, Art. no. .

C. M. Wilkeset al., “60 dB high-extinction auto-configured Mach–Zehnder interferometer,” Opt. Lett., vol. 41, pp. 5318–5321, 2016.

2015 (1)

J. Carolanet al., “Universal linear optics,” Science, vol. 349, pp. 711–716, 2015.

2014 (3)

N. Matsudaet al., “On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform,” Opt. Express, vol. 22, pp. 22831–22840, 2014.

N. C. Harriset al., “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X, vol. 4, 2014, Art. no. .

E. A. Dauleret al., “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng., vol. 53, 2014, Art. no. .

2012 (2)

A. S. Clark, M. J. Collins, A. C. Judge, E. C. Magi, C. Xiong, and B. J. Eggleton, “Raman scattering effects on correlated photon-pair generation in chalcogenide,” Opt. Express, vol. 20, pp. 16807–16814, 2012).

S. Clemmenet al., “Low-power inelastic light scattering at small detunings in silicon wire waveguides at telecom wavelengths,” J. Opt. Soc. Amer. B, vol. 29, pp. 1977–1982, 2012.

2009 (2)

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, vol. 17, pp. 16550–16570, 2009.

N. A. Peterset al., “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys., vol. 11, 2009, Art. no. .

2008 (1)

2007 (2)

H. Takesueet al., “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett., vol. 91, 2007, Art. no. .

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A, vol. 75, 2007, Art. no. .

2006 (2)

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A, vol. 75, 2007, Art. no. .

Q. Lin and G. P. Agrawal, “Silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett., vol. 31, pp. 3140–3141, 2006.

Anant, V.

Baets, R. G.

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, vol. 17, pp. 16550–16570, 2009.

Beyer, A. D.

Bogaerts, W.

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, vol. 17, pp. 16550–16570, 2009.

Bonneau, D.

I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, and M. G. Thompson, “On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics,” Opt. Express, vol. 26, pp. 20379–20395, 2018.

J. W. Silverstone, D. Bonneau, J. L. O'Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, 2016, Art. no. .

Carolan, J.

J. Carolanet al., “Universal linear optics,” Science, vol. 349, pp. 711–716, 2015.

Clark, A. S.

Clemmen, S.

S. Clemmenet al., “Low-power inelastic light scattering at small detunings in silicon wire waveguides at telecom wavelengths,” J. Opt. Soc. Amer. B, vol. 29, pp. 1977–1982, 2012.

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, vol. 17, pp. 16550–16570, 2009.

Collins, M. J.

Dauler, E. A.

E. A. Dauleret al., “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng., vol. 53, 2014, Art. no. .

Eggleton, B. J.

Emplit, Ph.

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, vol. 17, pp. 16550–16570, 2009.

Faruque, I. I.

Gentry, C. M.

C. M. Gentryet al., “Monolithic source of entangled photons with integrated pump rejection,” in Proc. Conf. Lasers Electro-Opt., 2018, Paper Jth4C.3.

Guo, K.

K. Guoet al., “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express, vol. 10, 2017, Art. no. .

Harada, K.

Harris, N. C.

N. C. Harriset al., “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X, vol. 4, 2014, Art. no. .

Huy, K. P.

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, vol. 17, pp. 16550–16570, 2009.

Judge, A. C.

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A, vol. 75, 2007, Art. no. .

Q. Lin and G. P. Agrawal, “Silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett., vol. 31, pp. 3140–3141, 2006.

Ma, C.

Magi, E. C.

Massar, S.

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express, vol. 17, pp. 16550–16570, 2009.

Matsuda, N.

Mookherjea, S.

O'Brien, J. L.

J. W. Silverstone, D. Bonneau, J. L. O'Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, 2016, Art. no. .

Perez-Galacho, D.

Peters, N. A.

N. A. Peterset al., “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys., vol. 11, 2009, Art. no. .

Piekarek, M.

Qiang, X.

X. Qianget al., “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nature Photon., vol. 12, pp. 534–539, 2018.

Rarity, J. G.

Sharping, J. E.

Shaw, M. D.

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, J. L. O'Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, 2016, Art. no. .

Sinclair, G. F.

Takesue, H.

H. Takesueet al., “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett., vol. 91, 2007, Art. no. .

Thompson, M. G.

I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, and M. G. Thompson, “On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics,” Opt. Express, vol. 26, pp. 20379–20395, 2018.

J. W. Silverstone, D. Bonneau, J. L. O'Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, 2016, Art. no. .

Wang, X.

Wilkes, C. M.

Xiong, C.

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A, vol. 75, 2007, Art. no. .

Appl. Phys. Express (1)

K. Guoet al., “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express, vol. 10, 2017, Art. no. .

Appl. Phys. Lett. (1)

H. Takesueet al., “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett., vol. 91, 2007, Art. no. .

IEEE J. Sel. Topics Quantum Electron. (1)

J. W. Silverstone, D. Bonneau, J. L. O'Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 22, no. 6, 2016, Art. no. .

J. Opt. Soc. Amer. B (1)

S. Clemmenet al., “Low-power inelastic light scattering at small detunings in silicon wire waveguides at telecom wavelengths,” J. Opt. Soc. Amer. B, vol. 29, pp. 1977–1982, 2012.

Nature Photon. (1)

X. Qianget al., “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nature Photon., vol. 12, pp. 534–539, 2018.

New J. Phys. (1)

N. A. Peterset al., “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys., vol. 11, 2009, Art. no. .

Opt. Eng. (1)

E. A. Dauleret al., “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng., vol. 53, 2014, Art. no. .

Opt. Express (7)

Opt. Lett. (4)

Phys. Rev. A (1)

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A, vol. 75, 2007, Art. no. .

Phys. Rev. X (1)

N. C. Harriset al., “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X, vol. 4, 2014, Art. no. .

Science (1)

J. Carolanet al., “Universal linear optics,” Science, vol. 349, pp. 711–716, 2015.

Other (1)

C. M. Gentryet al., “Monolithic source of entangled photons with integrated pump rejection,” in Proc. Conf. Lasers Electro-Opt., 2018, Paper Jth4C.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.