Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 2,
  • pp. 665-672
  • (2019)

Performance of Bandwidth Extension Techniques for High-Speed Short-Range IM/DD Links

Not Accessible

Your library or personal account may give you access

Abstract

In recent years, advanced modulation formats for short-range high-speed communications have been increasingly discussed to achieve the transmission rates needed to satisfy the future demand of broadband services. A key parameter in such applications is the use of low-cost optical components, which mainly means the use of intensity modulation (IM) and direct detection (DD) schemes. In order to exploit the available bandwidth offered by the latest optical components, high-speed data converters (DAC and ADC) are required. However, the available bandwidth of DACs and ADCs is generally smaller, than that of their optical counterparts, resulting in a capacity bottleneck. This issue can be addressed by bandwidth extension techniques, which enable the full use of the optical components. In this paper, two high-speed systems are presented and experimentally analyzed for an optical link based on IM/DD, utilizing a bandwidth extension technique based on electrical up/down-conversion and passive signal combining. The experiment for the first system uses two independent subsignals, with a total bandwidth beyond 40 GHz and enables transmission rates up to 180 Gb/s. Different aspects of the system are highlighted including general performance, transmission distance, use of different modulation formats, and the influence of important components. For the second system, the experiment consists of the generation of a spectrally continuous pulse amplitude modulation signal with the help of two subsignals and its transmission over an optical IM/DD link. The challenges and requirements for the hardware and software are discussed and the impact of power and phase mismatches between both subsignals is investigated as well.

© 2019 IEEE

PDF Article
More Like This
Gradient-descent noise whitening techniques for short-reach IM-DD optical interconnects with severe bandwidth limitation

Qi Wu, Zhaopeng Xu, Yixiao Zhu, Honglin Ji, Yu Yang, Gang Qiao, Lulu Liu, Shangcheng Wang, Junpeng Liang, Jinlong Wei, Zhixue He, Qunbi Zhuge, and Weisheng Hu
Opt. Express 32(2) 1715-1727 (2024)

Digital-to-analog converters for high-speed optical communications using frequency interleaving: impairments and characteristics

Christian Schmidt, Christoph Kottke, Ronald Freund, Friedel Gerfers, and Volker Jungnickel
Opt. Express 26(6) 6758-6770 (2018)

Chromatic dispersion mitigation using a SEFDM-based diversity technique for IM/DD long reach optical links

Baoxian Yu, Changjian Guo, Sen Zhang, Tianjian Zuo, Lei Liu, Alan Pak Tao Lau, Chao Lu, and Han Zhang
Opt. Express 27(26) 38579-38592 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.