Abstract

In this paper, results are presented from a long-term outdoor field trial using a rate-adaptive, LED-based optical wireless link over 100 m rooftop-to-rooftop distance. The optical link is installed in parallel to a 60 GHz link, enabling a direct comparison of both technologies for the same conditions by logging signal-to-noise ratios, data rates, and weather conditions. A model for the optical link has been developed for performance prediction based on weather data. Besides studying particular weather events, an analysis was conducted for the whole statistics. Results indicate that availability of the optical link was higher than 99.99%, despite severe weather conditions due to fog, rain, and snow. Although both links offer several hundred megabit per second, the optical link has a higher data rate 99.8% of the time while the 60 GHz link has a more consistent performance. Correlation is weak in bad weather conditions, e.g., if the SNR is low for the 60 GHz link due to heavy rain, the SNR in the optical link is high as the fog is light at the same time. Further measurements verify low latencies in the millisecond to sub-millisecond range for the optical link. Results indicate that the optical link is a promising low-cost solution for fixed access applications such as the replacement of fiber on the last 100 m to the end user, also denoted as wireless-to-the-home, and as a backhaul for Wi-Fi and small mobile radio cells.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. NGMN Alliance, “NGMN 5G white paper,” Frankfurt, Germany, White Paper, 2015.
  2. 5GPPP, “5G key performance indicators.” 2014. [Online]. Available: https://5g-ppp.eu/kpis/, Accessed on: Jun. 20, 2018.
  3. M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, “5G backhaul challenges and emerging research directions: A survey,” IEEE Access, vol. 4, pp. 1743–1766, 2016.
  4. Z. Rothet al., “Vision and architecture supporting wireless GBit/sec/km2 capacity density deployments,” in Proc. Future Netw. Mobile Summit, pp. 1–7, 2010.
  5. V. Jungnickelet al., “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51, 2014.
  6. S. Tombaz, P. Monti, F. Farias, M. Fiorani, L. Wosinska, and J. Zander, “Is backhaul becoming a bottleneck for green wireless access networks?,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 4029–4035.
  7. Huawei Press, “Huawei launches first urban 5G ‘wireless to the home’ CPE trial in North America,” Huawei Press, Shenzhen, China, 2018. [Online]. Available: https://www.huawei.com/en/press-events/news/2018/2/first-urban-5G-Wireless-Home-CPE-trial. Accessed on: Jul. 16, 2018.
  8. Deutsche Telekom, “A new way to build and deploy telecom infrastructure,” Deutsche Telekom, Bonn, Germany. [Online]. Available: https://www.telekom.com/en/blog/group/article/a-new-way-to-build-and-deploy-telecom-infrastructure-507960. Accessed on: Jul. 18, 2018.
  9. U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantitative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J., vol. 18, no. 4, pp. 105–128, 2014.
  10. China Mobile, “C-RAN: The road towards green RAN,” Beijing, China, White Paper Version 2.5, pp. 15–16, 2011.
  11. Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation, Alcatel Lucent, and Nokia Networks, “CPRI Specification V7.0 (2015-10-09),” Common Public Radio Interface Specification, 2015.
  12. D. Harutyunyan, R. Riggio, and F. B. K. Create-net, “Flexible functional split in 5G networks,” IEEE Trans. Netw. Serv. Manage., vol. 15, no. 3, pp. 961–975, 2017.
  13. A. Aijaz, H. Aghvami, and M. Amani, “A survey on mobile data offloading: Technical and business perspectives,” IEEE Wireless Commun., vol. 20, no. 2, pp. 104–112, 2013.
  14. H. Ishii, Y. Kishiyama, and H. Takahashi, “A novel architecture for LTE-B:C-plane/U-plane split and phantom cell concept,” in Proc. IEEE Globecom Workshops, 2012, pp. 624–630.
  15. D. Wübbenet al., “Benefits and impact of cloud computing on 5G signal processing: Flexible centralization through cloud-RAN,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 35–44, 2014.
  16. L. Grobeet al., “High-speed visible light communication systems,” IEEE Commun. Mag., vol. 51, no. 12, pp. 60–66, 2013.
  17. S. Shaoet al., “Design of a visible-light-communication enhanced WiFi system,” IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 10, pp. 960–973, 2015.
  18. P. W. Berengueret al., “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.
  19. C. Leeet al., “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express, vol. 25, no. 15, pp. 17 480–17 487, 2017.
  20. Y. Wang, X. Huang, L. Tao, and N. Chi, “1.8 Gb/s WDM VLC over 50-meter outdoor free space transmission employing CAP modulation and receiver diversity technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 7–9.
  21. Y. Wang, X. Huang, J. Shi, Y. Wang, and N. Chi, “Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology,” Opt. Eng., vol. 55, no. 5, 2016, Art. no. 056104.
  22. J. Yoo, J. Jang, J. Kwon, H. Kim, D. Song, and S.- Jung, “Demonstration of vehicular visible light communication based on LED headlamp,” Int. J. Automot. Technol., vol. 17, no. 2, pp. 347–352, 2016.
  23. H. Kaushal, G. Kaddoum, V. K. K. Jain, and S. Kar, “Experimental investigation of optimum beam size for FSO uplink,” Opt. Commun., vol. 400, pp. 106–114, 2017.
  24. H. Kaushal and G. Kaddoum, “Applications of lasers for tactical military operations,” IEEE Access, vol. 5, pp. 20736–20753, 2017.
  25. H. Kaushal and G. Kaddoum, “Free space optical communication: Challenges and mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 57–96, 2015.
  26. “Ronja by Twibright Labs,” 2006. [Online]. Available: http://ronja.twibright.com/. Accessed on: 2018.
  27. “Koruza–Light-speed networking,” [Online]. Available: http://www.koruza.net/. Accessed on: 2018.
  28. D. Schulzet al., “Long-term outdoor measurements using a rate-adaptive hybrid optical wireless/60 GHz link over 100 m,” in Proc. Int. Conf. Transparent Opt. Netw., 2017, pp. 1–4.
  29. D. Schulz, J. Hohmann, J. Hilt, P. Hellwig, R. Freund, and V. Jungnickel, “Measurement based correlation analysis of a hybrid optical wireless/60 GHz link,” in Proc. Global LIFI Congr., 2018, pp. 1–4.
  30. D. Schulzet al., “Optical wireless LED link for the backhaul of small cells,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.
  31. 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz (Release 15),” 3GPP, Sophia Antipolis, France, Tech. Rep. TR 38.901, 2018.
  32. L. Thiele, M. Peter, and V. Jungnickel, “Statistics of the Ricean k-factor at 5.2 GHz in an urban macro-cell scenario,” in Proc. IEEE 17th Int. Symp. Pers. Indoor Mob. Radio Commun., 2006, pp. 1–5.
  33. M. A. Naboulsi and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng., vol. 43, no. 2, pp. 319–329, 2004.
  34. P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection. New York, NY, USA: Wiley, 1962.
  35. I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol. 4214, pp. 26–37, 2001.
  36. P. Bouguer, Essai d'optique, Sur la gradation de la lumière, Bibliothèque nationale de France, Paris, 1729.
  37. A. Beer, “Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten,” Ann. Der Phys. Und Chemie, vol. 86, pp. 78–88, 1852.
  38. A. Prokes, “Modeling of atmospheric turbulence effect on terrestrial FSO link,” Radioengineering, vol. 18, no. 1, pp. 42–47, 2009.
  39. I. I. Kim, “Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm,” Proc. SPIE, vol. 3850, pp. 49–62, 1999.
  40. T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast., vol. 54, no. 2, pp. 257–268, Jun. 2008.
  41. P. W. Berengueret al., “Real-time optical wireless communication: Field-trial in an industrial production environment,” in Proc. ECOC, 2018, pp. 1–3.
  42. Siklu, “EtherHaul hundred series,” Siklu, Fort Lee, NJ, USA, 2018. [Online]. Available: https://www.siklu.com/product/etherhaul-hundred-series/. Accessed on: Oct. 9, 2018.

2018 (1)

P. W. Berengueret al., “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.

2017 (3)

C. Leeet al., “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express, vol. 25, no. 15, pp. 17 480–17 487, 2017.

H. Kaushal, G. Kaddoum, V. K. K. Jain, and S. Kar, “Experimental investigation of optimum beam size for FSO uplink,” Opt. Commun., vol. 400, pp. 106–114, 2017.

H. Kaushal and G. Kaddoum, “Applications of lasers for tactical military operations,” IEEE Access, vol. 5, pp. 20736–20753, 2017.

2016 (3)

Y. Wang, X. Huang, J. Shi, Y. Wang, and N. Chi, “Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology,” Opt. Eng., vol. 55, no. 5, 2016, Art. no. 056104.

J. Yoo, J. Jang, J. Kwon, H. Kim, D. Song, and S.- Jung, “Demonstration of vehicular visible light communication based on LED headlamp,” Int. J. Automot. Technol., vol. 17, no. 2, pp. 347–352, 2016.

M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, “5G backhaul challenges and emerging research directions: A survey,” IEEE Access, vol. 4, pp. 1743–1766, 2016.

2015 (1)

Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation, Alcatel Lucent, and Nokia Networks, “CPRI Specification V7.0 (2015-10-09),” Common Public Radio Interface Specification, 2015.

2014 (3)

V. Jungnickelet al., “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51, 2014.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantitative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J., vol. 18, no. 4, pp. 105–128, 2014.

D. Wübbenet al., “Benefits and impact of cloud computing on 5G signal processing: Flexible centralization through cloud-RAN,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 35–44, 2014.

2013 (2)

L. Grobeet al., “High-speed visible light communication systems,” IEEE Commun. Mag., vol. 51, no. 12, pp. 60–66, 2013.

A. Aijaz, H. Aghvami, and M. Amani, “A survey on mobile data offloading: Technical and business perspectives,” IEEE Wireless Commun., vol. 20, no. 2, pp. 104–112, 2013.

2009 (1)

A. Prokes, “Modeling of atmospheric turbulence effect on terrestrial FSO link,” Radioengineering, vol. 18, no. 1, pp. 42–47, 2009.

2008 (1)

T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast., vol. 54, no. 2, pp. 257–268, Jun. 2008.

2004 (1)

M. A. Naboulsi and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng., vol. 43, no. 2, pp. 319–329, 2004.

1999 (1)

I. I. Kim, “Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm,” Proc. SPIE, vol. 3850, pp. 49–62, 1999.

1852 (1)

A. Beer, “Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten,” Ann. Der Phys. Und Chemie, vol. 86, pp. 78–88, 1852.

Aghvami, H.

A. Aijaz, H. Aghvami, and M. Amani, “A survey on mobile data offloading: Technical and business perspectives,” IEEE Wireless Commun., vol. 20, no. 2, pp. 104–112, 2013.

Aijaz, A.

A. Aijaz, H. Aghvami, and M. Amani, “A survey on mobile data offloading: Technical and business perspectives,” IEEE Wireless Commun., vol. 20, no. 2, pp. 104–112, 2013.

Amani, M.

A. Aijaz, H. Aghvami, and M. Amani, “A survey on mobile data offloading: Technical and business perspectives,” IEEE Wireless Commun., vol. 20, no. 2, pp. 104–112, 2013.

Beer, A.

A. Beer, “Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten,” Ann. Der Phys. Und Chemie, vol. 86, pp. 78–88, 1852.

Berenguer, P. W.

P. W. Berengueret al., “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.

P. W. Berengueret al., “Real-time optical wireless communication: Field-trial in an industrial production environment,” in Proc. ECOC, 2018, pp. 1–3.

Bouguer, P.

P. Bouguer, Essai d'optique, Sur la gradation de la lumière, Bibliothèque nationale de France, Paris, 1729.

Chi, N.

Y. Wang, X. Huang, J. Shi, Y. Wang, and N. Chi, “Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology,” Opt. Eng., vol. 55, no. 5, 2016, Art. no. 056104.

Y. Wang, X. Huang, L. Tao, and N. Chi, “1.8 Gb/s WDM VLC over 50-meter outdoor free space transmission employing CAP modulation and receiver diversity technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 7–9.

Create-net, F. B. K.

D. Harutyunyan, R. Riggio, and F. B. K. Create-net, “Flexible functional split in 5G networks,” IEEE Trans. Netw. Serv. Manage., vol. 15, no. 3, pp. 961–975, 2017.

de Fornel, F.

M. A. Naboulsi and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng., vol. 43, no. 2, pp. 319–329, 2004.

Doll, M.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantitative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J., vol. 18, no. 4, pp. 105–128, 2014.

Dötsch, U.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantitative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J., vol. 18, no. 4, pp. 105–128, 2014.

Farias, F.

S. Tombaz, P. Monti, F. Farias, M. Fiorani, L. Wosinska, and J. Zander, “Is backhaul becoming a bottleneck for green wireless access networks?,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 4029–4035.

Fiorani, M.

S. Tombaz, P. Monti, F. Farias, M. Fiorani, L. Wosinska, and J. Zander, “Is backhaul becoming a bottleneck for green wireless access networks?,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 4029–4035.

Freund, R.

D. Schulz, J. Hohmann, J. Hilt, P. Hellwig, R. Freund, and V. Jungnickel, “Measurement based correlation analysis of a hybrid optical wireless/60 GHz link,” in Proc. Global LIFI Congr., 2018, pp. 1–4.

Grobe, L.

L. Grobeet al., “High-speed visible light communication systems,” IEEE Commun. Mag., vol. 51, no. 12, pp. 60–66, 2013.

Harutyunyan, D.

D. Harutyunyan, R. Riggio, and F. B. K. Create-net, “Flexible functional split in 5G networks,” IEEE Trans. Netw. Serv. Manage., vol. 15, no. 3, pp. 961–975, 2017.

Hellwig, P.

D. Schulz, J. Hohmann, J. Hilt, P. Hellwig, R. Freund, and V. Jungnickel, “Measurement based correlation analysis of a hybrid optical wireless/60 GHz link,” in Proc. Global LIFI Congr., 2018, pp. 1–4.

Hilt, J.

D. Schulz, J. Hohmann, J. Hilt, P. Hellwig, R. Freund, and V. Jungnickel, “Measurement based correlation analysis of a hybrid optical wireless/60 GHz link,” in Proc. Global LIFI Congr., 2018, pp. 1–4.

Hohmann, J.

D. Schulz, J. Hohmann, J. Hilt, P. Hellwig, R. Freund, and V. Jungnickel, “Measurement based correlation analysis of a hybrid optical wireless/60 GHz link,” in Proc. Global LIFI Congr., 2018, pp. 1–4.

Huang, X.

Y. Wang, X. Huang, J. Shi, Y. Wang, and N. Chi, “Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology,” Opt. Eng., vol. 55, no. 5, 2016, Art. no. 056104.

Y. Wang, X. Huang, L. Tao, and N. Chi, “1.8 Gb/s WDM VLC over 50-meter outdoor free space transmission employing CAP modulation and receiver diversity technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 7–9.

Imran, M. A.

M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, “5G backhaul challenges and emerging research directions: A survey,” IEEE Access, vol. 4, pp. 1743–1766, 2016.

Ishii, H.

H. Ishii, Y. Kishiyama, and H. Takahashi, “A novel architecture for LTE-B:C-plane/U-plane split and phantom cell concept,” in Proc. IEEE Globecom Workshops, 2012, pp. 624–630.

Jaber, M.

M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, “5G backhaul challenges and emerging research directions: A survey,” IEEE Access, vol. 4, pp. 1743–1766, 2016.

Jain, V. K. K.

H. Kaushal, G. Kaddoum, V. K. K. Jain, and S. Kar, “Experimental investigation of optimum beam size for FSO uplink,” Opt. Commun., vol. 400, pp. 106–114, 2017.

Jang, J.

J. Yoo, J. Jang, J. Kwon, H. Kim, D. Song, and S.- Jung, “Demonstration of vehicular visible light communication based on LED headlamp,” Int. J. Automot. Technol., vol. 17, no. 2, pp. 347–352, 2016.

Jiang, T.

T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast., vol. 54, no. 2, pp. 257–268, Jun. 2008.

Jung, S.-

J. Yoo, J. Jang, J. Kwon, H. Kim, D. Song, and S.- Jung, “Demonstration of vehicular visible light communication based on LED headlamp,” Int. J. Automot. Technol., vol. 17, no. 2, pp. 347–352, 2016.

Jungnickel, V.

V. Jungnickelet al., “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51, 2014.

D. Schulz, J. Hohmann, J. Hilt, P. Hellwig, R. Freund, and V. Jungnickel, “Measurement based correlation analysis of a hybrid optical wireless/60 GHz link,” in Proc. Global LIFI Congr., 2018, pp. 1–4.

L. Thiele, M. Peter, and V. Jungnickel, “Statistics of the Ricean k-factor at 5.2 GHz in an urban macro-cell scenario,” in Proc. IEEE 17th Int. Symp. Pers. Indoor Mob. Radio Commun., 2006, pp. 1–5.

Kaddoum, G.

H. Kaushal, G. Kaddoum, V. K. K. Jain, and S. Kar, “Experimental investigation of optimum beam size for FSO uplink,” Opt. Commun., vol. 400, pp. 106–114, 2017.

H. Kaushal and G. Kaddoum, “Applications of lasers for tactical military operations,” IEEE Access, vol. 5, pp. 20736–20753, 2017.

H. Kaushal and G. Kaddoum, “Free space optical communication: Challenges and mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 57–96, 2015.

Kar, S.

H. Kaushal, G. Kaddoum, V. K. K. Jain, and S. Kar, “Experimental investigation of optimum beam size for FSO uplink,” Opt. Commun., vol. 400, pp. 106–114, 2017.

Kaushal, H.

H. Kaushal and G. Kaddoum, “Applications of lasers for tactical military operations,” IEEE Access, vol. 5, pp. 20736–20753, 2017.

H. Kaushal, G. Kaddoum, V. K. K. Jain, and S. Kar, “Experimental investigation of optimum beam size for FSO uplink,” Opt. Commun., vol. 400, pp. 106–114, 2017.

H. Kaushal and G. Kaddoum, “Free space optical communication: Challenges and mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 57–96, 2015.

Kim, H.

J. Yoo, J. Jang, J. Kwon, H. Kim, D. Song, and S.- Jung, “Demonstration of vehicular visible light communication based on LED headlamp,” Int. J. Automot. Technol., vol. 17, no. 2, pp. 347–352, 2016.

Kim, I. I.

I. I. Kim, “Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm,” Proc. SPIE, vol. 3850, pp. 49–62, 1999.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol. 4214, pp. 26–37, 2001.

Kishiyama, Y.

H. Ishii, Y. Kishiyama, and H. Takahashi, “A novel architecture for LTE-B:C-plane/U-plane split and phantom cell concept,” in Proc. IEEE Globecom Workshops, 2012, pp. 624–630.

Korevaar, E. J.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol. 4214, pp. 26–37, 2001.

Kruse, P. W.

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection. New York, NY, USA: Wiley, 1962.

Kwon, J.

J. Yoo, J. Jang, J. Kwon, H. Kim, D. Song, and S.- Jung, “Demonstration of vehicular visible light communication based on LED headlamp,” Int. J. Automot. Technol., vol. 17, no. 2, pp. 347–352, 2016.

Lee, C.

C. Leeet al., “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express, vol. 25, no. 15, pp. 17 480–17 487, 2017.

Mayer, H.-P.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantitative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J., vol. 18, no. 4, pp. 105–128, 2014.

McArthur, B.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol. 4214, pp. 26–37, 2001.

McGlauchlin, L. D.

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection. New York, NY, USA: Wiley, 1962.

McQuistan, R. B.

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection. New York, NY, USA: Wiley, 1962.

Monti, P.

S. Tombaz, P. Monti, F. Farias, M. Fiorani, L. Wosinska, and J. Zander, “Is backhaul becoming a bottleneck for green wireless access networks?,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 4029–4035.

Naboulsi, A.

M. A. Naboulsi and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng., vol. 43, no. 2, pp. 319–329, 2004.

Peter, M.

L. Thiele, M. Peter, and V. Jungnickel, “Statistics of the Ricean k-factor at 5.2 GHz in an urban macro-cell scenario,” in Proc. IEEE 17th Int. Symp. Pers. Indoor Mob. Radio Commun., 2006, pp. 1–5.

Prokes, A.

A. Prokes, “Modeling of atmospheric turbulence effect on terrestrial FSO link,” Radioengineering, vol. 18, no. 1, pp. 42–47, 2009.

Riggio, R.

D. Harutyunyan, R. Riggio, and F. B. K. Create-net, “Flexible functional split in 5G networks,” IEEE Trans. Netw. Serv. Manage., vol. 15, no. 3, pp. 961–975, 2017.

Roth, Z.

Z. Rothet al., “Vision and architecture supporting wireless GBit/sec/km2 capacity density deployments,” in Proc. Future Netw. Mobile Summit, pp. 1–7, 2010.

Schaich, F.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantitative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J., vol. 18, no. 4, pp. 105–128, 2014.

Schulz, D.

D. Schulzet al., “Optical wireless LED link for the backhaul of small cells,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.

D. Schulzet al., “Long-term outdoor measurements using a rate-adaptive hybrid optical wireless/60 GHz link over 100 m,” in Proc. Int. Conf. Transparent Opt. Netw., 2017, pp. 1–4.

D. Schulz, J. Hohmann, J. Hilt, P. Hellwig, R. Freund, and V. Jungnickel, “Measurement based correlation analysis of a hybrid optical wireless/60 GHz link,” in Proc. Global LIFI Congr., 2018, pp. 1–4.

Segel, J.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantitative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J., vol. 18, no. 4, pp. 105–128, 2014.

Sehier, P.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantitative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J., vol. 18, no. 4, pp. 105–128, 2014.

Shao, S.

S. Shaoet al., “Design of a visible-light-communication enhanced WiFi system,” IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 10, pp. 960–973, 2015.

Shi, J.

Y. Wang, X. Huang, J. Shi, Y. Wang, and N. Chi, “Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology,” Opt. Eng., vol. 55, no. 5, 2016, Art. no. 056104.

Song, D.

J. Yoo, J. Jang, J. Kwon, H. Kim, D. Song, and S.- Jung, “Demonstration of vehicular visible light communication based on LED headlamp,” Int. J. Automot. Technol., vol. 17, no. 2, pp. 347–352, 2016.

Tafazolli, R.

M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, “5G backhaul challenges and emerging research directions: A survey,” IEEE Access, vol. 4, pp. 1743–1766, 2016.

Takahashi, H.

H. Ishii, Y. Kishiyama, and H. Takahashi, “A novel architecture for LTE-B:C-plane/U-plane split and phantom cell concept,” in Proc. IEEE Globecom Workshops, 2012, pp. 624–630.

Tao, L.

Y. Wang, X. Huang, L. Tao, and N. Chi, “1.8 Gb/s WDM VLC over 50-meter outdoor free space transmission employing CAP modulation and receiver diversity technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 7–9.

Thiele, L.

L. Thiele, M. Peter, and V. Jungnickel, “Statistics of the Ricean k-factor at 5.2 GHz in an urban macro-cell scenario,” in Proc. IEEE 17th Int. Symp. Pers. Indoor Mob. Radio Commun., 2006, pp. 1–5.

Tombaz, S.

S. Tombaz, P. Monti, F. Farias, M. Fiorani, L. Wosinska, and J. Zander, “Is backhaul becoming a bottleneck for green wireless access networks?,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 4029–4035.

Tukmanov, A.

M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, “5G backhaul challenges and emerging research directions: A survey,” IEEE Access, vol. 4, pp. 1743–1766, 2016.

Wang, Y.

Y. Wang, X. Huang, J. Shi, Y. Wang, and N. Chi, “Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology,” Opt. Eng., vol. 55, no. 5, 2016, Art. no. 056104.

Y. Wang, X. Huang, J. Shi, Y. Wang, and N. Chi, “Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology,” Opt. Eng., vol. 55, no. 5, 2016, Art. no. 056104.

Y. Wang, X. Huang, L. Tao, and N. Chi, “1.8 Gb/s WDM VLC over 50-meter outdoor free space transmission employing CAP modulation and receiver diversity technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 7–9.

Wosinska, L.

S. Tombaz, P. Monti, F. Farias, M. Fiorani, L. Wosinska, and J. Zander, “Is backhaul becoming a bottleneck for green wireless access networks?,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 4029–4035.

Wu, Y.

T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast., vol. 54, no. 2, pp. 257–268, Jun. 2008.

Wübben, D.

D. Wübbenet al., “Benefits and impact of cloud computing on 5G signal processing: Flexible centralization through cloud-RAN,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 35–44, 2014.

Yoo, J.

J. Yoo, J. Jang, J. Kwon, H. Kim, D. Song, and S.- Jung, “Demonstration of vehicular visible light communication based on LED headlamp,” Int. J. Automot. Technol., vol. 17, no. 2, pp. 347–352, 2016.

Zander, J.

S. Tombaz, P. Monti, F. Farias, M. Fiorani, L. Wosinska, and J. Zander, “Is backhaul becoming a bottleneck for green wireless access networks?,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 4029–4035.

Ann. Der Phys. Und Chemie (1)

A. Beer, “Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten,” Ann. Der Phys. Und Chemie, vol. 86, pp. 78–88, 1852.

Bell Labs Tech. J. (1)

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantitative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J., vol. 18, no. 4, pp. 105–128, 2014.

Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation, Alcatel Lucent, and Nokia Networks (1)

Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation, Alcatel Lucent, and Nokia Networks, “CPRI Specification V7.0 (2015-10-09),” Common Public Radio Interface Specification, 2015.

IEEE Access (2)

M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, “5G backhaul challenges and emerging research directions: A survey,” IEEE Access, vol. 4, pp. 1743–1766, 2016.

H. Kaushal and G. Kaddoum, “Applications of lasers for tactical military operations,” IEEE Access, vol. 5, pp. 20736–20753, 2017.

IEEE Commun. Mag. (2)

V. Jungnickelet al., “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51, 2014.

L. Grobeet al., “High-speed visible light communication systems,” IEEE Commun. Mag., vol. 51, no. 12, pp. 60–66, 2013.

IEEE J. Sel. Areas Commun. (1)

P. W. Berengueret al., “Optical wireless MIMO experiments in an industrial environment,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 185–193, 2018.

IEEE Signal Process. Mag. (1)

D. Wübbenet al., “Benefits and impact of cloud computing on 5G signal processing: Flexible centralization through cloud-RAN,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 35–44, 2014.

IEEE Trans. Broadcast. (1)

T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast., vol. 54, no. 2, pp. 257–268, Jun. 2008.

IEEE Wireless Commun. (1)

A. Aijaz, H. Aghvami, and M. Amani, “A survey on mobile data offloading: Technical and business perspectives,” IEEE Wireless Commun., vol. 20, no. 2, pp. 104–112, 2013.

Int. J. Automot. Technol. (1)

J. Yoo, J. Jang, J. Kwon, H. Kim, D. Song, and S.- Jung, “Demonstration of vehicular visible light communication based on LED headlamp,” Int. J. Automot. Technol., vol. 17, no. 2, pp. 347–352, 2016.

Opt. Commun. (1)

H. Kaushal, G. Kaddoum, V. K. K. Jain, and S. Kar, “Experimental investigation of optimum beam size for FSO uplink,” Opt. Commun., vol. 400, pp. 106–114, 2017.

Opt. Eng. (2)

Y. Wang, X. Huang, J. Shi, Y. Wang, and N. Chi, “Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology,” Opt. Eng., vol. 55, no. 5, 2016, Art. no. 056104.

M. A. Naboulsi and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng., vol. 43, no. 2, pp. 319–329, 2004.

Opt. Express (1)

C. Leeet al., “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express, vol. 25, no. 15, pp. 17 480–17 487, 2017.

Proc. SPIE (1)

I. I. Kim, “Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm,” Proc. SPIE, vol. 3850, pp. 49–62, 1999.

Radioengineering (1)

A. Prokes, “Modeling of atmospheric turbulence effect on terrestrial FSO link,” Radioengineering, vol. 18, no. 1, pp. 42–47, 2009.

Other (24)

P. W. Berengueret al., “Real-time optical wireless communication: Field-trial in an industrial production environment,” in Proc. ECOC, 2018, pp. 1–3.

Siklu, “EtherHaul hundred series,” Siklu, Fort Lee, NJ, USA, 2018. [Online]. Available: https://www.siklu.com/product/etherhaul-hundred-series/. Accessed on: Oct. 9, 2018.

Y. Wang, X. Huang, L. Tao, and N. Chi, “1.8 Gb/s WDM VLC over 50-meter outdoor free space transmission employing CAP modulation and receiver diversity technology,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 7–9.

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection. New York, NY, USA: Wiley, 1962.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol. 4214, pp. 26–37, 2001.

P. Bouguer, Essai d'optique, Sur la gradation de la lumière, Bibliothèque nationale de France, Paris, 1729.

H. Kaushal and G. Kaddoum, “Free space optical communication: Challenges and mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 57–96, 2015.

“Ronja by Twibright Labs,” 2006. [Online]. Available: http://ronja.twibright.com/. Accessed on: 2018.

“Koruza–Light-speed networking,” [Online]. Available: http://www.koruza.net/. Accessed on: 2018.

D. Schulzet al., “Long-term outdoor measurements using a rate-adaptive hybrid optical wireless/60 GHz link over 100 m,” in Proc. Int. Conf. Transparent Opt. Netw., 2017, pp. 1–4.

D. Schulz, J. Hohmann, J. Hilt, P. Hellwig, R. Freund, and V. Jungnickel, “Measurement based correlation analysis of a hybrid optical wireless/60 GHz link,” in Proc. Global LIFI Congr., 2018, pp. 1–4.

D. Schulzet al., “Optical wireless LED link for the backhaul of small cells,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.

3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz (Release 15),” 3GPP, Sophia Antipolis, France, Tech. Rep. TR 38.901, 2018.

L. Thiele, M. Peter, and V. Jungnickel, “Statistics of the Ricean k-factor at 5.2 GHz in an urban macro-cell scenario,” in Proc. IEEE 17th Int. Symp. Pers. Indoor Mob. Radio Commun., 2006, pp. 1–5.

H. Ishii, Y. Kishiyama, and H. Takahashi, “A novel architecture for LTE-B:C-plane/U-plane split and phantom cell concept,” in Proc. IEEE Globecom Workshops, 2012, pp. 624–630.

S. Shaoet al., “Design of a visible-light-communication enhanced WiFi system,” IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 10, pp. 960–973, 2015.

D. Harutyunyan, R. Riggio, and F. B. K. Create-net, “Flexible functional split in 5G networks,” IEEE Trans. Netw. Serv. Manage., vol. 15, no. 3, pp. 961–975, 2017.

China Mobile, “C-RAN: The road towards green RAN,” Beijing, China, White Paper Version 2.5, pp. 15–16, 2011.

S. Tombaz, P. Monti, F. Farias, M. Fiorani, L. Wosinska, and J. Zander, “Is backhaul becoming a bottleneck for green wireless access networks?,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 4029–4035.

Huawei Press, “Huawei launches first urban 5G ‘wireless to the home’ CPE trial in North America,” Huawei Press, Shenzhen, China, 2018. [Online]. Available: https://www.huawei.com/en/press-events/news/2018/2/first-urban-5G-Wireless-Home-CPE-trial. Accessed on: Jul. 16, 2018.

Deutsche Telekom, “A new way to build and deploy telecom infrastructure,” Deutsche Telekom, Bonn, Germany. [Online]. Available: https://www.telekom.com/en/blog/group/article/a-new-way-to-build-and-deploy-telecom-infrastructure-507960. Accessed on: Jul. 18, 2018.

Z. Rothet al., “Vision and architecture supporting wireless GBit/sec/km2 capacity density deployments,” in Proc. Future Netw. Mobile Summit, pp. 1–7, 2010.

NGMN Alliance, “NGMN 5G white paper,” Frankfurt, Germany, White Paper, 2015.

5GPPP, “5G key performance indicators.” 2014. [Online]. Available: https://5g-ppp.eu/kpis/, Accessed on: Jun. 20, 2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.