Abstract

We present a newly developed two-dimensional photodetector array (2D-PDA) device and its application for short-range free-space optical (FSO) communication using a wavelength-division multiplexed beam. The 2D-PDA enables direct optical coupling to the FSO beam, simplifying the optical alignment process needed for 10-μm single-mode fiber coupling and reducing the need for beam-tracking function. In the wavelength-division multiplexing (WDM) FSO communication demonstration, a four-wavelength 25-Gbaud parallel beam filtered by a 4-WDM filter through free space was successfully received by 4-pixels in the 2D-PDA. This paper discusses the design and fabrication in the 2D-PDA device, as well as the FSO communication demonstration using four combined WDM filters.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhu, M. Jiang, Z. Chen, and F. Zhang, “Terabit faster-than-Nyquist PDM 16-QAM WDM transmission with a net spectral efficiency of 7.96 b/s/Hz,” J. Lightw. Technol., vol. 36, no. 14, pp. 2912–2919, 2018.
  2. Z. Liet al., “Spectrally efficient 168 Gb/s/λ WDM 64-QAM single-sideband Nyquist-subcarrier modulation with Kramers–Kronig direct-detection receivers,” J. Lightw. Technol., vol. 36, no. 6, pp. 1340–1346, 2018.
  3. K. Igarashi, T. Tsuritani, and I. Morita, “Ultra-high-capacity transmission over few-mode multi-core fibers,” in Proc. 21st OptoElectron. Commun. Conf./Int. Conf. Photon. Switching, 2016, pp. 1–3.
  4. B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper PDPD.3.1.
  5. K. Takemura, M. Kurihara, T. Uemura, A. Ukita, K. Yashiki, and K. Kurata, “Chip-scale packaging of hybrid-integrated Si photonic transceiver: Optical I/O core,” in Proc. IEEE CPMT Symp. Jpn., 2015, pp. 191–194.
  6. H.-H. Park, S. H. Hwang, M. H. Cho, S.-K. Kang, and T.-W. Lee, “Fusion of fiber-optic and PCB technologies for in-board optical interconnection,” in Proc. Int. Conf. Photon. Switching, 2006, pp. 1–3.
  7. Finisar Product Guide, “Optical Transceivers.” 2018. [Online]. Available: https://jp.finisar.com/optical-transceivers
  8. Cisco 100GBASE QSFP-100G Modules Data Sheet. 2018. [Online]. Available: https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/datasheet-c78-736282.html
  9. Z. Jia, H.-C. Chien, J. Zhang, Y. Cai, and J. Yu, “Performance comparison of dual-carrier 400G with 8/16/32-QAM modulation formats,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1414–1417, 2015.
  10. J. Zhang, J. Yu, and H.-C. Chien, “EML-based IM/DD 400G (4x112.5 Gbit/s) PAM-4 over 80 km SSMF based on linear pre-equalization and nonlinear LUT pre-distortion for inter-DCI applications,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W4l.4.
  11. Statement: Release of the 59–64 GHz band. 2009. [Online]. Available: https://www.ofcom.org.uk/consultations-and-statements/category-1/59_64ghz
  12. J.-Y. Shin, E. G. Sirer, D. Kirovski, and H. Weatherspoon, “On the feasibility of completely wireless data centers,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst., 2012, pp. 3–14.
  13. K. Ramachandran, R. Kokku, R. Mahindra, and S. Rangarajan, “60 GHz data-center networking wireless = > worry less?” NEC Lab. Amer., Princeton, NJ, USA, Tech. Rep., 2008, pp. 1–11.
  14. H. Vardhan and R. Prakash, “Towards 60 GHz wireless switching interconnect,” in Proc. Int. Conf. Comput., Netw. Commun., Wireless Netw. Symp., 2013, pp. 549–598.
  15. NICT news, “Developing a new free-space optical communication terminal that realizes high-speed broadband communications,” no. 392, 2010. [Online]. Available: http://www.nict.go.jp/publication/NICT-News/1005/NICT_NEWS_1005_E.pdf
  16. K. Riesing, H. Yoon, and K. Cahoy, “A portable optical ground station for low-earth orbit satellite communications,” in Proc. IEEE Int. Conf. Space Opt. Syst. Appl., 2017, pp. 108–114.
  17. S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center networks,” in Proc. ACM Workshop Hot Topics Netw., 2009, pp. 1–6.
  18. A. S. Hamza, J. S. Deogun, and D. R. Alexander, “Free space optical data center architecture design with fully connected racks,” in Proc. IEEE Global Commun. Conf., 2014, pp. 2192–2197.
  19. Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, “A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications,” IEEE Commun. Surv. Tuts., vol. 20, no. 2, pp. 1104–1123, 2018.
  20. P. Liu, S. Liu, and M. Matsumoto, “Impact of tracking errors on dual diversity structure over the free space optics links,” in Proc. 3rd IEEE Workshop Opt. Wireless Commun., 2012, pp. 1188–1192.
  21. T. Umezawaet al., “High-speed two-dimensional photodetector array for 4-WDM 25-Gbaud FSO communication,” in Proc. Opt. Fiber Commun. Conf., 2018, Paper M3K.7.
  22. T. Umezawaet al., “10-GHz 32-pixel 2-D photodetector array for advanced optical fiber communications,” in Proc. CLEO: Sci. Innovations, 2017, Paper SF2I.1.
  23. T. Umezawa, T. Sakamoto, A. Kanno, N. Yamamoto, and T. Kawanishi, “High speed 2-D photodetector array for space and mode division multiplexing fiber communications,” J. Lightw. Technol., vol. 36, no. 17, pp. 3684–3692, 2018.

2018 (4)

Y. Zhu, M. Jiang, Z. Chen, and F. Zhang, “Terabit faster-than-Nyquist PDM 16-QAM WDM transmission with a net spectral efficiency of 7.96 b/s/Hz,” J. Lightw. Technol., vol. 36, no. 14, pp. 2912–2919, 2018.

Z. Liet al., “Spectrally efficient 168 Gb/s/λ WDM 64-QAM single-sideband Nyquist-subcarrier modulation with Kramers–Kronig direct-detection receivers,” J. Lightw. Technol., vol. 36, no. 6, pp. 1340–1346, 2018.

Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, “A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications,” IEEE Commun. Surv. Tuts., vol. 20, no. 2, pp. 1104–1123, 2018.

T. Umezawa, T. Sakamoto, A. Kanno, N. Yamamoto, and T. Kawanishi, “High speed 2-D photodetector array for space and mode division multiplexing fiber communications,” J. Lightw. Technol., vol. 36, no. 17, pp. 3684–3692, 2018.

2015 (1)

Z. Jia, H.-C. Chien, J. Zhang, Y. Cai, and J. Yu, “Performance comparison of dual-carrier 400G with 8/16/32-QAM modulation formats,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1414–1417, 2015.

Alexander, D. R.

A. S. Hamza, J. S. Deogun, and D. R. Alexander, “Free space optical data center architecture design with fully connected racks,” in Proc. IEEE Global Commun. Conf., 2014, pp. 2192–2197.

Ansari, N.

Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, “A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications,” IEEE Commun. Surv. Tuts., vol. 20, no. 2, pp. 1104–1123, 2018.

Bahl, P.

S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center networks,” in Proc. ACM Workshop Hot Topics Netw., 2009, pp. 1–6.

Cahoy, K.

K. Riesing, H. Yoon, and K. Cahoy, “A portable optical ground station for low-earth orbit satellite communications,” in Proc. IEEE Int. Conf. Space Opt. Syst. Appl., 2017, pp. 108–114.

Cai, Y.

Z. Jia, H.-C. Chien, J. Zhang, Y. Cai, and J. Yu, “Performance comparison of dual-carrier 400G with 8/16/32-QAM modulation formats,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1414–1417, 2015.

Chen, Z.

Y. Zhu, M. Jiang, Z. Chen, and F. Zhang, “Terabit faster-than-Nyquist PDM 16-QAM WDM transmission with a net spectral efficiency of 7.96 b/s/Hz,” J. Lightw. Technol., vol. 36, no. 14, pp. 2912–2919, 2018.

Chien, H.-C.

Z. Jia, H.-C. Chien, J. Zhang, Y. Cai, and J. Yu, “Performance comparison of dual-carrier 400G with 8/16/32-QAM modulation formats,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1414–1417, 2015.

J. Zhang, J. Yu, and H.-C. Chien, “EML-based IM/DD 400G (4x112.5 Gbit/s) PAM-4 over 80 km SSMF based on linear pre-equalization and nonlinear LUT pre-distortion for inter-DCI applications,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W4l.4.

Cho, M. H.

H.-H. Park, S. H. Hwang, M. H. Cho, S.-K. Kang, and T.-W. Lee, “Fusion of fiber-optic and PCB technologies for in-board optical interconnection,” in Proc. Int. Conf. Photon. Switching, 2006, pp. 1–3.

Deogun, J. S.

A. S. Hamza, J. S. Deogun, and D. R. Alexander, “Free space optical data center architecture design with fully connected racks,” in Proc. IEEE Global Commun. Conf., 2014, pp. 2192–2197.

Feng, J.

Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, “A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications,” IEEE Commun. Surv. Tuts., vol. 20, no. 2, pp. 1104–1123, 2018.

Hamza, A. S.

A. S. Hamza, J. S. Deogun, and D. R. Alexander, “Free space optical data center architecture design with fully connected racks,” in Proc. IEEE Global Commun. Conf., 2014, pp. 2192–2197.

Hwang, S. H.

H.-H. Park, S. H. Hwang, M. H. Cho, S.-K. Kang, and T.-W. Lee, “Fusion of fiber-optic and PCB technologies for in-board optical interconnection,” in Proc. Int. Conf. Photon. Switching, 2006, pp. 1–3.

Igarashi, K.

K. Igarashi, T. Tsuritani, and I. Morita, “Ultra-high-capacity transmission over few-mode multi-core fibers,” in Proc. 21st OptoElectron. Commun. Conf./Int. Conf. Photon. Switching, 2016, pp. 1–3.

Jia, Z.

Z. Jia, H.-C. Chien, J. Zhang, Y. Cai, and J. Yu, “Performance comparison of dual-carrier 400G with 8/16/32-QAM modulation formats,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1414–1417, 2015.

Jiang, M.

Y. Zhu, M. Jiang, Z. Chen, and F. Zhang, “Terabit faster-than-Nyquist PDM 16-QAM WDM transmission with a net spectral efficiency of 7.96 b/s/Hz,” J. Lightw. Technol., vol. 36, no. 14, pp. 2912–2919, 2018.

Kandula, S.

S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center networks,” in Proc. ACM Workshop Hot Topics Netw., 2009, pp. 1–6.

Kang, S.-K.

H.-H. Park, S. H. Hwang, M. H. Cho, S.-K. Kang, and T.-W. Lee, “Fusion of fiber-optic and PCB technologies for in-board optical interconnection,” in Proc. Int. Conf. Photon. Switching, 2006, pp. 1–3.

Kanno, A.

T. Umezawa, T. Sakamoto, A. Kanno, N. Yamamoto, and T. Kawanishi, “High speed 2-D photodetector array for space and mode division multiplexing fiber communications,” J. Lightw. Technol., vol. 36, no. 17, pp. 3684–3692, 2018.

Kawanishi, T.

T. Umezawa, T. Sakamoto, A. Kanno, N. Yamamoto, and T. Kawanishi, “High speed 2-D photodetector array for space and mode division multiplexing fiber communications,” J. Lightw. Technol., vol. 36, no. 17, pp. 3684–3692, 2018.

Kaymak, Y.

Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, “A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications,” IEEE Commun. Surv. Tuts., vol. 20, no. 2, pp. 1104–1123, 2018.

Kirovski, D.

J.-Y. Shin, E. G. Sirer, D. Kirovski, and H. Weatherspoon, “On the feasibility of completely wireless data centers,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst., 2012, pp. 3–14.

Kokku, R.

K. Ramachandran, R. Kokku, R. Mahindra, and S. Rangarajan, “60 GHz data-center networking wireless = > worry less?” NEC Lab. Amer., Princeton, NJ, USA, Tech. Rep., 2008, pp. 1–11.

Kurata, K.

K. Takemura, M. Kurihara, T. Uemura, A. Ukita, K. Yashiki, and K. Kurata, “Chip-scale packaging of hybrid-integrated Si photonic transceiver: Optical I/O core,” in Proc. IEEE CPMT Symp. Jpn., 2015, pp. 191–194.

Kurihara, M.

K. Takemura, M. Kurihara, T. Uemura, A. Ukita, K. Yashiki, and K. Kurata, “Chip-scale packaging of hybrid-integrated Si photonic transceiver: Optical I/O core,” in Proc. IEEE CPMT Symp. Jpn., 2015, pp. 191–194.

Lee, T.-W.

H.-H. Park, S. H. Hwang, M. H. Cho, S.-K. Kang, and T.-W. Lee, “Fusion of fiber-optic and PCB technologies for in-board optical interconnection,” in Proc. Int. Conf. Photon. Switching, 2006, pp. 1–3.

Li, Z.

Z. Liet al., “Spectrally efficient 168 Gb/s/λ WDM 64-QAM single-sideband Nyquist-subcarrier modulation with Kramers–Kronig direct-detection receivers,” J. Lightw. Technol., vol. 36, no. 6, pp. 1340–1346, 2018.

Liu, P.

P. Liu, S. Liu, and M. Matsumoto, “Impact of tracking errors on dual diversity structure over the free space optics links,” in Proc. 3rd IEEE Workshop Opt. Wireless Commun., 2012, pp. 1188–1192.

Liu, S.

P. Liu, S. Liu, and M. Matsumoto, “Impact of tracking errors on dual diversity structure over the free space optics links,” in Proc. 3rd IEEE Workshop Opt. Wireless Commun., 2012, pp. 1188–1192.

Mahindra, R.

K. Ramachandran, R. Kokku, R. Mahindra, and S. Rangarajan, “60 GHz data-center networking wireless = > worry less?” NEC Lab. Amer., Princeton, NJ, USA, Tech. Rep., 2008, pp. 1–11.

Matsumoto, M.

P. Liu, S. Liu, and M. Matsumoto, “Impact of tracking errors on dual diversity structure over the free space optics links,” in Proc. 3rd IEEE Workshop Opt. Wireless Commun., 2012, pp. 1188–1192.

Morita, I.

K. Igarashi, T. Tsuritani, and I. Morita, “Ultra-high-capacity transmission over few-mode multi-core fibers,” in Proc. 21st OptoElectron. Commun. Conf./Int. Conf. Photon. Switching, 2016, pp. 1–3.

Padhye, J.

S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center networks,” in Proc. ACM Workshop Hot Topics Netw., 2009, pp. 1–6.

Park, H.-H.

H.-H. Park, S. H. Hwang, M. H. Cho, S.-K. Kang, and T.-W. Lee, “Fusion of fiber-optic and PCB technologies for in-board optical interconnection,” in Proc. Int. Conf. Photon. Switching, 2006, pp. 1–3.

Prakash, R.

H. Vardhan and R. Prakash, “Towards 60 GHz wireless switching interconnect,” in Proc. Int. Conf. Comput., Netw. Commun., Wireless Netw. Symp., 2013, pp. 549–598.

Puttnam, B. J.

B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper PDPD.3.1.

Ramachandran, K.

K. Ramachandran, R. Kokku, R. Mahindra, and S. Rangarajan, “60 GHz data-center networking wireless = > worry less?” NEC Lab. Amer., Princeton, NJ, USA, Tech. Rep., 2008, pp. 1–11.

Rangarajan, S.

K. Ramachandran, R. Kokku, R. Mahindra, and S. Rangarajan, “60 GHz data-center networking wireless = > worry less?” NEC Lab. Amer., Princeton, NJ, USA, Tech. Rep., 2008, pp. 1–11.

Riesing, K.

K. Riesing, H. Yoon, and K. Cahoy, “A portable optical ground station for low-earth orbit satellite communications,” in Proc. IEEE Int. Conf. Space Opt. Syst. Appl., 2017, pp. 108–114.

Rojas-Cessa, R.

Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, “A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications,” IEEE Commun. Surv. Tuts., vol. 20, no. 2, pp. 1104–1123, 2018.

Sakamoto, T.

T. Umezawa, T. Sakamoto, A. Kanno, N. Yamamoto, and T. Kawanishi, “High speed 2-D photodetector array for space and mode division multiplexing fiber communications,” J. Lightw. Technol., vol. 36, no. 17, pp. 3684–3692, 2018.

Shin, J.-Y.

J.-Y. Shin, E. G. Sirer, D. Kirovski, and H. Weatherspoon, “On the feasibility of completely wireless data centers,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst., 2012, pp. 3–14.

Sirer, E. G.

J.-Y. Shin, E. G. Sirer, D. Kirovski, and H. Weatherspoon, “On the feasibility of completely wireless data centers,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst., 2012, pp. 3–14.

Takemura, K.

K. Takemura, M. Kurihara, T. Uemura, A. Ukita, K. Yashiki, and K. Kurata, “Chip-scale packaging of hybrid-integrated Si photonic transceiver: Optical I/O core,” in Proc. IEEE CPMT Symp. Jpn., 2015, pp. 191–194.

Tsuritani, T.

K. Igarashi, T. Tsuritani, and I. Morita, “Ultra-high-capacity transmission over few-mode multi-core fibers,” in Proc. 21st OptoElectron. Commun. Conf./Int. Conf. Photon. Switching, 2016, pp. 1–3.

Uemura, T.

K. Takemura, M. Kurihara, T. Uemura, A. Ukita, K. Yashiki, and K. Kurata, “Chip-scale packaging of hybrid-integrated Si photonic transceiver: Optical I/O core,” in Proc. IEEE CPMT Symp. Jpn., 2015, pp. 191–194.

Ukita, A.

K. Takemura, M. Kurihara, T. Uemura, A. Ukita, K. Yashiki, and K. Kurata, “Chip-scale packaging of hybrid-integrated Si photonic transceiver: Optical I/O core,” in Proc. IEEE CPMT Symp. Jpn., 2015, pp. 191–194.

Umezawa, T.

T. Umezawa, T. Sakamoto, A. Kanno, N. Yamamoto, and T. Kawanishi, “High speed 2-D photodetector array for space and mode division multiplexing fiber communications,” J. Lightw. Technol., vol. 36, no. 17, pp. 3684–3692, 2018.

T. Umezawaet al., “High-speed two-dimensional photodetector array for 4-WDM 25-Gbaud FSO communication,” in Proc. Opt. Fiber Commun. Conf., 2018, Paper M3K.7.

T. Umezawaet al., “10-GHz 32-pixel 2-D photodetector array for advanced optical fiber communications,” in Proc. CLEO: Sci. Innovations, 2017, Paper SF2I.1.

Vardhan, H.

H. Vardhan and R. Prakash, “Towards 60 GHz wireless switching interconnect,” in Proc. Int. Conf. Comput., Netw. Commun., Wireless Netw. Symp., 2013, pp. 549–598.

Weatherspoon, H.

J.-Y. Shin, E. G. Sirer, D. Kirovski, and H. Weatherspoon, “On the feasibility of completely wireless data centers,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst., 2012, pp. 3–14.

Yamamoto, N.

T. Umezawa, T. Sakamoto, A. Kanno, N. Yamamoto, and T. Kawanishi, “High speed 2-D photodetector array for space and mode division multiplexing fiber communications,” J. Lightw. Technol., vol. 36, no. 17, pp. 3684–3692, 2018.

Yashiki, K.

K. Takemura, M. Kurihara, T. Uemura, A. Ukita, K. Yashiki, and K. Kurata, “Chip-scale packaging of hybrid-integrated Si photonic transceiver: Optical I/O core,” in Proc. IEEE CPMT Symp. Jpn., 2015, pp. 191–194.

Yoon, H.

K. Riesing, H. Yoon, and K. Cahoy, “A portable optical ground station for low-earth orbit satellite communications,” in Proc. IEEE Int. Conf. Space Opt. Syst. Appl., 2017, pp. 108–114.

Yu, J.

Z. Jia, H.-C. Chien, J. Zhang, Y. Cai, and J. Yu, “Performance comparison of dual-carrier 400G with 8/16/32-QAM modulation formats,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1414–1417, 2015.

J. Zhang, J. Yu, and H.-C. Chien, “EML-based IM/DD 400G (4x112.5 Gbit/s) PAM-4 over 80 km SSMF based on linear pre-equalization and nonlinear LUT pre-distortion for inter-DCI applications,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W4l.4.

Zhang, F.

Y. Zhu, M. Jiang, Z. Chen, and F. Zhang, “Terabit faster-than-Nyquist PDM 16-QAM WDM transmission with a net spectral efficiency of 7.96 b/s/Hz,” J. Lightw. Technol., vol. 36, no. 14, pp. 2912–2919, 2018.

Zhang, J.

Z. Jia, H.-C. Chien, J. Zhang, Y. Cai, and J. Yu, “Performance comparison of dual-carrier 400G with 8/16/32-QAM modulation formats,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1414–1417, 2015.

J. Zhang, J. Yu, and H.-C. Chien, “EML-based IM/DD 400G (4x112.5 Gbit/s) PAM-4 over 80 km SSMF based on linear pre-equalization and nonlinear LUT pre-distortion for inter-DCI applications,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W4l.4.

Zhang, T.

Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, “A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications,” IEEE Commun. Surv. Tuts., vol. 20, no. 2, pp. 1104–1123, 2018.

Zhou, M.

Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, “A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications,” IEEE Commun. Surv. Tuts., vol. 20, no. 2, pp. 1104–1123, 2018.

Zhu, Y.

Y. Zhu, M. Jiang, Z. Chen, and F. Zhang, “Terabit faster-than-Nyquist PDM 16-QAM WDM transmission with a net spectral efficiency of 7.96 b/s/Hz,” J. Lightw. Technol., vol. 36, no. 14, pp. 2912–2919, 2018.

IEEE Commun. Surv. Tuts. (1)

Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, “A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications,” IEEE Commun. Surv. Tuts., vol. 20, no. 2, pp. 1104–1123, 2018.

IEEE Photon. Technol. Lett. (1)

Z. Jia, H.-C. Chien, J. Zhang, Y. Cai, and J. Yu, “Performance comparison of dual-carrier 400G with 8/16/32-QAM modulation formats,” IEEE Photon. Technol. Lett., vol. 27, no. 13, pp. 1414–1417, 2015.

J. Lightw. Technol. (3)

Y. Zhu, M. Jiang, Z. Chen, and F. Zhang, “Terabit faster-than-Nyquist PDM 16-QAM WDM transmission with a net spectral efficiency of 7.96 b/s/Hz,” J. Lightw. Technol., vol. 36, no. 14, pp. 2912–2919, 2018.

Z. Liet al., “Spectrally efficient 168 Gb/s/λ WDM 64-QAM single-sideband Nyquist-subcarrier modulation with Kramers–Kronig direct-detection receivers,” J. Lightw. Technol., vol. 36, no. 6, pp. 1340–1346, 2018.

T. Umezawa, T. Sakamoto, A. Kanno, N. Yamamoto, and T. Kawanishi, “High speed 2-D photodetector array for space and mode division multiplexing fiber communications,” J. Lightw. Technol., vol. 36, no. 17, pp. 3684–3692, 2018.

Other (18)

P. Liu, S. Liu, and M. Matsumoto, “Impact of tracking errors on dual diversity structure over the free space optics links,” in Proc. 3rd IEEE Workshop Opt. Wireless Commun., 2012, pp. 1188–1192.

T. Umezawaet al., “High-speed two-dimensional photodetector array for 4-WDM 25-Gbaud FSO communication,” in Proc. Opt. Fiber Commun. Conf., 2018, Paper M3K.7.

T. Umezawaet al., “10-GHz 32-pixel 2-D photodetector array for advanced optical fiber communications,” in Proc. CLEO: Sci. Innovations, 2017, Paper SF2I.1.

K. Igarashi, T. Tsuritani, and I. Morita, “Ultra-high-capacity transmission over few-mode multi-core fibers,” in Proc. 21st OptoElectron. Commun. Conf./Int. Conf. Photon. Switching, 2016, pp. 1–3.

B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper PDPD.3.1.

K. Takemura, M. Kurihara, T. Uemura, A. Ukita, K. Yashiki, and K. Kurata, “Chip-scale packaging of hybrid-integrated Si photonic transceiver: Optical I/O core,” in Proc. IEEE CPMT Symp. Jpn., 2015, pp. 191–194.

H.-H. Park, S. H. Hwang, M. H. Cho, S.-K. Kang, and T.-W. Lee, “Fusion of fiber-optic and PCB technologies for in-board optical interconnection,” in Proc. Int. Conf. Photon. Switching, 2006, pp. 1–3.

Finisar Product Guide, “Optical Transceivers.” 2018. [Online]. Available: https://jp.finisar.com/optical-transceivers

Cisco 100GBASE QSFP-100G Modules Data Sheet. 2018. [Online]. Available: https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/datasheet-c78-736282.html

J. Zhang, J. Yu, and H.-C. Chien, “EML-based IM/DD 400G (4x112.5 Gbit/s) PAM-4 over 80 km SSMF based on linear pre-equalization and nonlinear LUT pre-distortion for inter-DCI applications,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W4l.4.

Statement: Release of the 59–64 GHz band. 2009. [Online]. Available: https://www.ofcom.org.uk/consultations-and-statements/category-1/59_64ghz

J.-Y. Shin, E. G. Sirer, D. Kirovski, and H. Weatherspoon, “On the feasibility of completely wireless data centers,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst., 2012, pp. 3–14.

K. Ramachandran, R. Kokku, R. Mahindra, and S. Rangarajan, “60 GHz data-center networking wireless = > worry less?” NEC Lab. Amer., Princeton, NJ, USA, Tech. Rep., 2008, pp. 1–11.

H. Vardhan and R. Prakash, “Towards 60 GHz wireless switching interconnect,” in Proc. Int. Conf. Comput., Netw. Commun., Wireless Netw. Symp., 2013, pp. 549–598.

NICT news, “Developing a new free-space optical communication terminal that realizes high-speed broadband communications,” no. 392, 2010. [Online]. Available: http://www.nict.go.jp/publication/NICT-News/1005/NICT_NEWS_1005_E.pdf

K. Riesing, H. Yoon, and K. Cahoy, “A portable optical ground station for low-earth orbit satellite communications,” in Proc. IEEE Int. Conf. Space Opt. Syst. Appl., 2017, pp. 108–114.

S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center networks,” in Proc. ACM Workshop Hot Topics Netw., 2009, pp. 1–6.

A. S. Hamza, J. S. Deogun, and D. R. Alexander, “Free space optical data center architecture design with fully connected racks,” in Proc. IEEE Global Commun. Conf., 2014, pp. 2192–2197.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.