Abstract

We propose different fronthaul systems for facilitating future mobile networks based on the seamless convergence of fiber-optic and wireless systems in the millimeter-wave (mmWave) bands. First, a flexible and high-performance wireless fronthaul system is proposed through an encapsulation of radio signals onto a converged fiber–mmWave system. A simultaneous transmission of three radio signals over the system is successfully demonstrated. Second, a high-performance optical self-heterodyne system is proposed and demonstrated for the generation and transmission of radio access signals in high-frequency bands. Third, a high-spectral-efficiency optical fronthaul system for the simultaneous transmission of multiple radio signals in different frequency bands is proposed using a subcarrier-multiplexing intermediate-frequency-over-fiber system. Satisfactory performance is experimentally confirmed for the transmission of three different radio signals in the microwave and low- and high-mmWave bands. The proposed systems can overcome the challenges and bottlenecks of the current mobile fronthaul systems and can be useful in different usage scenarios of 5G and beyond networks.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. 3GPP TR 38.913 V14.2.0: “Study on Scenarios and Requirements for Next Generation Access Technologies,”  2017.
  2. Draft new report ITU-R M. [IMT-2020.SUBMISSION]: “Requirements, evaluation criteria and submission templates for the development of IMT-2020,”  2017.
  3. [Online]. Available: http://www.5gtf.net/
  4. J. Leeet al., “Spectrum for 5G: Global status, challenges, and enabling technologies,” IEEE Commun. Mag., vol. 56, no. 3, pp. 12–18, 2018.
  5. I. F. Akyidizet al., “Combating the distance problem in the millimeter wave and terahertz frequency bands,” IEEE Commun. Mag., vol. 56, no. 3, pp. 102–108,  2018.
  6. C.-L. Iet al., “RAN revolution with NGFI (xhaul) for 5G,” J. Lightw. Technol., vol. 36, no. 2, pp. 541–550,  2018.
  7. K. Miyamotoet al., “Split-phy processing architecture to realize base station coordination and transmission bandwidth reduction in mobile fronthaul,” presented at the Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2015, Paper M2J.4.
  8. P. T. Datet al., “Radio-over-fiber-based seamless fiber-wireless convergence for small cell and linear cell networks,” presented at the Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, Paper M4J.5.
  9. A. Kannoet al., “Radio-on-terahertz over fiber system for future mobile fronthauling,” in Proc. IEEE Global Telecommun. Conf., 2014, pp. 2218–2222.
  10. M. Xuet al., “Bidirectional fiber-wireless access technology for 5G mobile spectral aggregation and cell densification,” J. Opt. Commun. Netw., vol. 8, no. 12, pp. B104–B110, 2016.
  11. P. T. Datet al., “Radio-on-radio-over-fiber: Efficient fronthauling for small cells and moving cells,” IEEE Wireless Commun., vol. 22, no. 5, pp. 67–75,  2015.
  12. A. Ghosh, “5G new radio (NR): Physical layer overview and performance,” in Proc. IEEE Commun. Theory Workshop,  2018.
  13. M. Zhuet al., “Radio-over-fiber access architecture for integrated broadband wireless services,” J. Lightw. Technol., vol. 31, no. 23, pp. 3614–3620,  2013.
  14. J. Jameset al., “Nonlinearity and noise effects in multi-level signal millimeter-wave over fiber transmission using single and dual wavelength modulation,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3189–3198,  2010.
  15. T. Kawanishiet al., “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 1, pp. 79–91,  2007.
  16. A. Kannoet al., “Evaluation of frequency fluctuation in fiber-wireless link with direct iq down-converter,” presented at the Eur. Conf. Opt. Commun., 2014, Cannes, France, Paper We.3.6.3.
  17. P. T. Datet al., “High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave,” J. Lightw. Technol., vol. 32, no. 20, pp. 3910–3923,  2014.
  18. P. T. Datet al., “Full-duplex transmission of LTE-A carrier aggregation signal over a bidirectional seamless fiber-millimeter-wave system,” J. Lightw. Technol., vol. 34, no. 2, pp. 691–700,  2016.
  19. P. T. Datet al., “High-speed and low-latency front-haul system for heterogeneous wireless networks using seamless fiber-millimeter-wave,” in Proc. IEEE Int. Conf. Commun., London, U.K.,  2015, pp. 994–999.
  20. B. L. Dang and I. Niemegeers, “Analysis of IEEE 802.11 in radio over fiber home networks,” in Proc. IEEE Conf. Local Comput. Netw.,  2005, pp. 744–747.
  21. K. Kitayama, “Ultimate performance of optical DSB signal-based millimeter-wave fiber-radio system: Effect of laser phase noise,” J. Lightw. Technol., vol. 17, no. 10, pp. 1774–1781, 1999.
  22. J. Beas, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Commun. Surv. Tuts., vol. 15, no. 4, pp. 1593–1619,  2013.
  23. Y. Tianet al., “60 GHz analog radio-over-fiber fronthaul investigations,” J. Lightw Technol., vol. 35, no. 19, pp. 4304–4310,  2017.
  24. D. Zibaret al., “High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 810–812,  2011.
  25. C.-T. Linet al., “2 × 2 MIMO radio-over-fiber system at 60 GHz employing frequency domain equalization,” Opt. Express, vol. 20, no. 1, pp. 562–567,  2012.
  26. E. P. Martinet al., “25-Gb/s OFDM 60-GHz radio over fiber system based on a gain switched laser,” J. Lightw. Technol., vol. 33, no. 8, pp. 1635–1643,  2015.
  27. X. Liet al., “Long-distance wireless mmwave signal delivery at w-band,” J. Lightw. Technol., vol. 34, no. 2, pp. 661–668,  2016.
  28. A. Kannoet al., “Coherent radio-over-fiber and millimeter-wave radio seamless transmission system for resilient access networks,” IEEE Photon. J., vol. 4, no. 6, pp. 2196–2204,  2012.
  29. J. Zhanget al., “Full-duplex quasi-gapless carrier-aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 989–996,  2017.
  30. U. Gliese, S. Norskov, and T. Nielsen, “Chromatic dispersion in fiberoptic microwave and millimeter-wave links,” IEEE Trans Microw. Theory Techn., vol. 44, no. 10, pp. 1716–1724,  1996.
  31. X. Panget al., “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75–110 GHz),” Opt. Express, vol. 19, no. 25, pp. 24944–24949, 2011.
  32. R. Khayatzadehet al., “Impact of phase noise in 60-GHz radio-over-fiber communication system based on passively mode-locked laser,” J. Lightw. Technol., vol. 32, no. 20, pp. 3529–3535,  2014.
  33. T. Nagatsumaet al., “Terahertz wireless communications based on photonics technologies,” Opt. Express, vol. 21, no. 20, pp. 23736–23747,  2013.
  34. P. T. Datet al., “190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and F-OFDM signals,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 926–928.
  35. G-K. Changet al., “1–100 GHz microwave photonics link technologies for next-generation WiFi and 5G wireless communications,” in Proc. IEEE Int. Topical Meet. Microw. Photon., 2013, pp. 5–8.
  36. P. T. Datet al., “Simultaneous transmission of multi-RATs and mobile fronthaul in the MMW bands over an IFoF system,” presented at the Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W1C.4.
  37. K. Ikedaet al., “Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength,” J. Lightw. Technol., vol. 21, no. 12, pp. 3194–3202,  2003.
  38. Y.-T. Hsuehet al., “Generation and transport of independent 2.4 GHz (Wi-Fi), 5.8 GHz (WiMAX), and 60-GHz optical millimeter-wave signals on a single wavelength for converged wireless over fiber access networks,” presented at the Opt. Fiber Commun. Conf., San Diego, CA, USA, 2009, Paper OTuJ1.
  39. M. Sunget al., “Demonstration of IFoF-based mobile fronthaul in 5G prototype with 28-GHz millimeter wave,” J. Lightw. Technol., vol. 36, no. 2, pp. 601–609,  2018.
  40. L. Giorgiet al., “Subcarrier multiplexing RF plans for analog radio over fiber in heterogeneous networks,” J. Lightw. Technol., vol. 34, no. 16, pp. 3859–3866,  2016.

2018 (4)

J. Leeet al., “Spectrum for 5G: Global status, challenges, and enabling technologies,” IEEE Commun. Mag., vol. 56, no. 3, pp. 12–18, 2018.

I. F. Akyidizet al., “Combating the distance problem in the millimeter wave and terahertz frequency bands,” IEEE Commun. Mag., vol. 56, no. 3, pp. 102–108,  2018.

C.-L. Iet al., “RAN revolution with NGFI (xhaul) for 5G,” J. Lightw. Technol., vol. 36, no. 2, pp. 541–550,  2018.

M. Sunget al., “Demonstration of IFoF-based mobile fronthaul in 5G prototype with 28-GHz millimeter wave,” J. Lightw. Technol., vol. 36, no. 2, pp. 601–609,  2018.

2017 (2)

J. Zhanget al., “Full-duplex quasi-gapless carrier-aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 989–996,  2017.

Y. Tianet al., “60 GHz analog radio-over-fiber fronthaul investigations,” J. Lightw Technol., vol. 35, no. 19, pp. 4304–4310,  2017.

2016 (4)

P. T. Datet al., “Full-duplex transmission of LTE-A carrier aggregation signal over a bidirectional seamless fiber-millimeter-wave system,” J. Lightw. Technol., vol. 34, no. 2, pp. 691–700,  2016.

M. Xuet al., “Bidirectional fiber-wireless access technology for 5G mobile spectral aggregation and cell densification,” J. Opt. Commun. Netw., vol. 8, no. 12, pp. B104–B110, 2016.

X. Liet al., “Long-distance wireless mmwave signal delivery at w-band,” J. Lightw. Technol., vol. 34, no. 2, pp. 661–668,  2016.

L. Giorgiet al., “Subcarrier multiplexing RF plans for analog radio over fiber in heterogeneous networks,” J. Lightw. Technol., vol. 34, no. 16, pp. 3859–3866,  2016.

2015 (2)

P. T. Datet al., “Radio-on-radio-over-fiber: Efficient fronthauling for small cells and moving cells,” IEEE Wireless Commun., vol. 22, no. 5, pp. 67–75,  2015.

E. P. Martinet al., “25-Gb/s OFDM 60-GHz radio over fiber system based on a gain switched laser,” J. Lightw. Technol., vol. 33, no. 8, pp. 1635–1643,  2015.

2014 (2)

P. T. Datet al., “High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave,” J. Lightw. Technol., vol. 32, no. 20, pp. 3910–3923,  2014.

R. Khayatzadehet al., “Impact of phase noise in 60-GHz radio-over-fiber communication system based on passively mode-locked laser,” J. Lightw. Technol., vol. 32, no. 20, pp. 3529–3535,  2014.

2013 (3)

T. Nagatsumaet al., “Terahertz wireless communications based on photonics technologies,” Opt. Express, vol. 21, no. 20, pp. 23736–23747,  2013.

J. Beas, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Commun. Surv. Tuts., vol. 15, no. 4, pp. 1593–1619,  2013.

M. Zhuet al., “Radio-over-fiber access architecture for integrated broadband wireless services,” J. Lightw. Technol., vol. 31, no. 23, pp. 3614–3620,  2013.

2012 (2)

C.-T. Linet al., “2 × 2 MIMO radio-over-fiber system at 60 GHz employing frequency domain equalization,” Opt. Express, vol. 20, no. 1, pp. 562–567,  2012.

A. Kannoet al., “Coherent radio-over-fiber and millimeter-wave radio seamless transmission system for resilient access networks,” IEEE Photon. J., vol. 4, no. 6, pp. 2196–2204,  2012.

2011 (2)

X. Panget al., “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75–110 GHz),” Opt. Express, vol. 19, no. 25, pp. 24944–24949, 2011.

D. Zibaret al., “High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 810–812,  2011.

2010 (1)

J. Jameset al., “Nonlinearity and noise effects in multi-level signal millimeter-wave over fiber transmission using single and dual wavelength modulation,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3189–3198,  2010.

2007 (1)

T. Kawanishiet al., “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 1, pp. 79–91,  2007.

2003 (1)

K. Ikedaet al., “Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength,” J. Lightw. Technol., vol. 21, no. 12, pp. 3194–3202,  2003.

1999 (1)

K. Kitayama, “Ultimate performance of optical DSB signal-based millimeter-wave fiber-radio system: Effect of laser phase noise,” J. Lightw. Technol., vol. 17, no. 10, pp. 1774–1781, 1999.

Akyidiz, I. F.

I. F. Akyidizet al., “Combating the distance problem in the millimeter wave and terahertz frequency bands,” IEEE Commun. Mag., vol. 56, no. 3, pp. 102–108,  2018.

Beas, J.

J. Beas, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Commun. Surv. Tuts., vol. 15, no. 4, pp. 1593–1619,  2013.

Chang, G-K.

G-K. Changet al., “1–100 GHz microwave photonics link technologies for next-generation WiFi and 5G wireless communications,” in Proc. IEEE Int. Topical Meet. Microw. Photon., 2013, pp. 5–8.

Dang, B. L.

B. L. Dang and I. Niemegeers, “Analysis of IEEE 802.11 in radio over fiber home networks,” in Proc. IEEE Conf. Local Comput. Netw.,  2005, pp. 744–747.

Dat, P. T.

P. T. Datet al., “Full-duplex transmission of LTE-A carrier aggregation signal over a bidirectional seamless fiber-millimeter-wave system,” J. Lightw. Technol., vol. 34, no. 2, pp. 691–700,  2016.

P. T. Datet al., “Radio-on-radio-over-fiber: Efficient fronthauling for small cells and moving cells,” IEEE Wireless Commun., vol. 22, no. 5, pp. 67–75,  2015.

P. T. Datet al., “High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave,” J. Lightw. Technol., vol. 32, no. 20, pp. 3910–3923,  2014.

P. T. Datet al., “High-speed and low-latency front-haul system for heterogeneous wireless networks using seamless fiber-millimeter-wave,” in Proc. IEEE Int. Conf. Commun., London, U.K.,  2015, pp. 994–999.

P. T. Datet al., “Radio-over-fiber-based seamless fiber-wireless convergence for small cell and linear cell networks,” presented at the Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, Paper M4J.5.

P. T. Datet al., “Simultaneous transmission of multi-RATs and mobile fronthaul in the MMW bands over an IFoF system,” presented at the Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W1C.4.

P. T. Datet al., “190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and F-OFDM signals,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 926–928.

Ghosh, A.

A. Ghosh, “5G new radio (NR): Physical layer overview and performance,” in Proc. IEEE Commun. Theory Workshop,  2018.

Giorgi, L.

L. Giorgiet al., “Subcarrier multiplexing RF plans for analog radio over fiber in heterogeneous networks,” J. Lightw. Technol., vol. 34, no. 16, pp. 3859–3866,  2016.

Gliese, U.

U. Gliese, S. Norskov, and T. Nielsen, “Chromatic dispersion in fiberoptic microwave and millimeter-wave links,” IEEE Trans Microw. Theory Techn., vol. 44, no. 10, pp. 1716–1724,  1996.

Hsueh, Y.-T.

Y.-T. Hsuehet al., “Generation and transport of independent 2.4 GHz (Wi-Fi), 5.8 GHz (WiMAX), and 60-GHz optical millimeter-wave signals on a single wavelength for converged wireless over fiber access networks,” presented at the Opt. Fiber Commun. Conf., San Diego, CA, USA, 2009, Paper OTuJ1.

I, C.-L.

C.-L. Iet al., “RAN revolution with NGFI (xhaul) for 5G,” J. Lightw. Technol., vol. 36, no. 2, pp. 541–550,  2018.

Ikeda, K.

K. Ikedaet al., “Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength,” J. Lightw. Technol., vol. 21, no. 12, pp. 3194–3202,  2003.

James, J.

J. Jameset al., “Nonlinearity and noise effects in multi-level signal millimeter-wave over fiber transmission using single and dual wavelength modulation,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3189–3198,  2010.

Kanno, A.

A. Kannoet al., “Coherent radio-over-fiber and millimeter-wave radio seamless transmission system for resilient access networks,” IEEE Photon. J., vol. 4, no. 6, pp. 2196–2204,  2012.

A. Kannoet al., “Radio-on-terahertz over fiber system for future mobile fronthauling,” in Proc. IEEE Global Telecommun. Conf., 2014, pp. 2218–2222.

A. Kannoet al., “Evaluation of frequency fluctuation in fiber-wireless link with direct iq down-converter,” presented at the Eur. Conf. Opt. Commun., 2014, Cannes, France, Paper We.3.6.3.

Kawanishi, T.

T. Kawanishiet al., “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 1, pp. 79–91,  2007.

Khayatzadeh, R.

R. Khayatzadehet al., “Impact of phase noise in 60-GHz radio-over-fiber communication system based on passively mode-locked laser,” J. Lightw. Technol., vol. 32, no. 20, pp. 3529–3535,  2014.

Kitayama, K.

K. Kitayama, “Ultimate performance of optical DSB signal-based millimeter-wave fiber-radio system: Effect of laser phase noise,” J. Lightw. Technol., vol. 17, no. 10, pp. 1774–1781, 1999.

Lee, J.

J. Leeet al., “Spectrum for 5G: Global status, challenges, and enabling technologies,” IEEE Commun. Mag., vol. 56, no. 3, pp. 12–18, 2018.

Li, X.

X. Liet al., “Long-distance wireless mmwave signal delivery at w-band,” J. Lightw. Technol., vol. 34, no. 2, pp. 661–668,  2016.

Lin, C.-T.

Martin, E. P.

E. P. Martinet al., “25-Gb/s OFDM 60-GHz radio over fiber system based on a gain switched laser,” J. Lightw. Technol., vol. 33, no. 8, pp. 1635–1643,  2015.

Miyamoto, K.

K. Miyamotoet al., “Split-phy processing architecture to realize base station coordination and transmission bandwidth reduction in mobile fronthaul,” presented at the Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2015, Paper M2J.4.

Nagatsuma, T.

Nielsen, T.

U. Gliese, S. Norskov, and T. Nielsen, “Chromatic dispersion in fiberoptic microwave and millimeter-wave links,” IEEE Trans Microw. Theory Techn., vol. 44, no. 10, pp. 1716–1724,  1996.

Niemegeers, I.

B. L. Dang and I. Niemegeers, “Analysis of IEEE 802.11 in radio over fiber home networks,” in Proc. IEEE Conf. Local Comput. Netw.,  2005, pp. 744–747.

Norskov, S.

U. Gliese, S. Norskov, and T. Nielsen, “Chromatic dispersion in fiberoptic microwave and millimeter-wave links,” IEEE Trans Microw. Theory Techn., vol. 44, no. 10, pp. 1716–1724,  1996.

Pang, X.

Sung, M.

M. Sunget al., “Demonstration of IFoF-based mobile fronthaul in 5G prototype with 28-GHz millimeter wave,” J. Lightw. Technol., vol. 36, no. 2, pp. 601–609,  2018.

Tian, Y.

Y. Tianet al., “60 GHz analog radio-over-fiber fronthaul investigations,” J. Lightw Technol., vol. 35, no. 19, pp. 4304–4310,  2017.

Xu, M.

Zhang, J.

J. Zhanget al., “Full-duplex quasi-gapless carrier-aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 989–996,  2017.

Zhu, M.

M. Zhuet al., “Radio-over-fiber access architecture for integrated broadband wireless services,” J. Lightw. Technol., vol. 31, no. 23, pp. 3614–3620,  2013.

Zibar, D.

D. Zibaret al., “High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 810–812,  2011.

IEEE Commun. Mag. (2)

J. Leeet al., “Spectrum for 5G: Global status, challenges, and enabling technologies,” IEEE Commun. Mag., vol. 56, no. 3, pp. 12–18, 2018.

I. F. Akyidizet al., “Combating the distance problem in the millimeter wave and terahertz frequency bands,” IEEE Commun. Mag., vol. 56, no. 3, pp. 102–108,  2018.

IEEE Commun. Surv. Tuts. (1)

J. Beas, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Commun. Surv. Tuts., vol. 15, no. 4, pp. 1593–1619,  2013.

IEEE J. Sel. Topics Quantum Electron. (1)

T. Kawanishiet al., “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 1, pp. 79–91,  2007.

IEEE Photon. J. (1)

A. Kannoet al., “Coherent radio-over-fiber and millimeter-wave radio seamless transmission system for resilient access networks,” IEEE Photon. J., vol. 4, no. 6, pp. 2196–2204,  2012.

IEEE Photon. Technol. Lett. (1)

D. Zibaret al., “High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 810–812,  2011.

IEEE Trans. Microw. Theory Techn. (1)

J. Jameset al., “Nonlinearity and noise effects in multi-level signal millimeter-wave over fiber transmission using single and dual wavelength modulation,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3189–3198,  2010.

IEEE Wireless Commun. (1)

P. T. Datet al., “Radio-on-radio-over-fiber: Efficient fronthauling for small cells and moving cells,” IEEE Wireless Commun., vol. 22, no. 5, pp. 67–75,  2015.

J. Lightw Technol. (1)

Y. Tianet al., “60 GHz analog radio-over-fiber fronthaul investigations,” J. Lightw Technol., vol. 35, no. 19, pp. 4304–4310,  2017.

J. Lightw. Technol. (12)

E. P. Martinet al., “25-Gb/s OFDM 60-GHz radio over fiber system based on a gain switched laser,” J. Lightw. Technol., vol. 33, no. 8, pp. 1635–1643,  2015.

X. Liet al., “Long-distance wireless mmwave signal delivery at w-band,” J. Lightw. Technol., vol. 34, no. 2, pp. 661–668,  2016.

J. Zhanget al., “Full-duplex quasi-gapless carrier-aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 989–996,  2017.

M. Sunget al., “Demonstration of IFoF-based mobile fronthaul in 5G prototype with 28-GHz millimeter wave,” J. Lightw. Technol., vol. 36, no. 2, pp. 601–609,  2018.

L. Giorgiet al., “Subcarrier multiplexing RF plans for analog radio over fiber in heterogeneous networks,” J. Lightw. Technol., vol. 34, no. 16, pp. 3859–3866,  2016.

R. Khayatzadehet al., “Impact of phase noise in 60-GHz radio-over-fiber communication system based on passively mode-locked laser,” J. Lightw. Technol., vol. 32, no. 20, pp. 3529–3535,  2014.

K. Ikedaet al., “Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength,” J. Lightw. Technol., vol. 21, no. 12, pp. 3194–3202,  2003.

K. Kitayama, “Ultimate performance of optical DSB signal-based millimeter-wave fiber-radio system: Effect of laser phase noise,” J. Lightw. Technol., vol. 17, no. 10, pp. 1774–1781, 1999.

C.-L. Iet al., “RAN revolution with NGFI (xhaul) for 5G,” J. Lightw. Technol., vol. 36, no. 2, pp. 541–550,  2018.

M. Zhuet al., “Radio-over-fiber access architecture for integrated broadband wireless services,” J. Lightw. Technol., vol. 31, no. 23, pp. 3614–3620,  2013.

P. T. Datet al., “High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave,” J. Lightw. Technol., vol. 32, no. 20, pp. 3910–3923,  2014.

P. T. Datet al., “Full-duplex transmission of LTE-A carrier aggregation signal over a bidirectional seamless fiber-millimeter-wave system,” J. Lightw. Technol., vol. 34, no. 2, pp. 691–700,  2016.

J. Opt. Commun. Netw. (1)

Opt. Express (3)

Other (15)

Y.-T. Hsuehet al., “Generation and transport of independent 2.4 GHz (Wi-Fi), 5.8 GHz (WiMAX), and 60-GHz optical millimeter-wave signals on a single wavelength for converged wireless over fiber access networks,” presented at the Opt. Fiber Commun. Conf., San Diego, CA, USA, 2009, Paper OTuJ1.

U. Gliese, S. Norskov, and T. Nielsen, “Chromatic dispersion in fiberoptic microwave and millimeter-wave links,” IEEE Trans Microw. Theory Techn., vol. 44, no. 10, pp. 1716–1724,  1996.

P. T. Datet al., “190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and F-OFDM signals,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 926–928.

G-K. Changet al., “1–100 GHz microwave photonics link technologies for next-generation WiFi and 5G wireless communications,” in Proc. IEEE Int. Topical Meet. Microw. Photon., 2013, pp. 5–8.

P. T. Datet al., “Simultaneous transmission of multi-RATs and mobile fronthaul in the MMW bands over an IFoF system,” presented at the Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper W1C.4.

P. T. Datet al., “High-speed and low-latency front-haul system for heterogeneous wireless networks using seamless fiber-millimeter-wave,” in Proc. IEEE Int. Conf. Commun., London, U.K.,  2015, pp. 994–999.

B. L. Dang and I. Niemegeers, “Analysis of IEEE 802.11 in radio over fiber home networks,” in Proc. IEEE Conf. Local Comput. Netw.,  2005, pp. 744–747.

A. Kannoet al., “Evaluation of frequency fluctuation in fiber-wireless link with direct iq down-converter,” presented at the Eur. Conf. Opt. Commun., 2014, Cannes, France, Paper We.3.6.3.

K. Miyamotoet al., “Split-phy processing architecture to realize base station coordination and transmission bandwidth reduction in mobile fronthaul,” presented at the Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, 2015, Paper M2J.4.

P. T. Datet al., “Radio-over-fiber-based seamless fiber-wireless convergence for small cell and linear cell networks,” presented at the Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, Paper M4J.5.

A. Kannoet al., “Radio-on-terahertz over fiber system for future mobile fronthauling,” in Proc. IEEE Global Telecommun. Conf., 2014, pp. 2218–2222.

A. Ghosh, “5G new radio (NR): Physical layer overview and performance,” in Proc. IEEE Commun. Theory Workshop,  2018.

3GPP TR 38.913 V14.2.0: “Study on Scenarios and Requirements for Next Generation Access Technologies,”  2017.

Draft new report ITU-R M. [IMT-2020.SUBMISSION]: “Requirements, evaluation criteria and submission templates for the development of IMT-2020,”  2017.

[Online]. Available: http://www.5gtf.net/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.