Abstract
© 2018 OAPA
PDF Article© 2018 OAPA
PDF Article
D. Carraraet al., “Hybrid III-V/silicon photonic integrated circuits for high bitrates telecommunication applications,” Proc. SPIE, Integr. Opt. Devices Mater. Technol. XXI, vol. 10106, 2017, Art. no. 101060G.
D. Fitsioset al., “Dual SOA-MZI wavelength converters based on III-V hybrid integration on a μm-scale Si platform,” IEEE Photon. Technol. Lett., vol. 26, no. 6, pp. 560–563, 2014.
S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.
K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.
T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.
D. Carraraet al., “Hybrid III-V/silicon photonic integrated circuits for high bitrates telecommunication applications,” Proc. SPIE, Integr. Opt. Devices Mater. Technol. XXI, vol. 10106, 2017, Art. no. 101060G.
F. E. Doanyet al., “A four-channel silicon photonic carrier with flip-chip integrated semiconductor optical amplifier (SOA) array providing > 10-dB gain,” in Proc. 66th Int. Conf. Electron. Compon. Technol, 2016, pp. 1061–1068.
D. Fitsioset al., “Dual SOA-MZI wavelength converters based on III-V hybrid integration on a μm-scale Si platform,” IEEE Photon. Technol. Lett., vol. 26, no. 6, pp. 560–563, 2014.
T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.
T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.
T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.
R. Konoikeet al., “Lossless operation of SOA-integrated silicon photonics switch for 8 × 32-Gbaud 16-QAM WDM signals,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Th4B.6.
K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.
T. Matsumotoet al., “In-line optical amplification for Si waveguides on 1 × 8 splitter and selector by flip-chip bonded InP-SOAs,” in Proc. Int. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper Th1C.1.
T. Matsumotoet al., “In-line optical amplification for silicon photonics platform by flip-chip bonded InP-SOAs,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Tu2A.4.
K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.
S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.
T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.
L. Schareset al., “Etched-facet semiconductor optical amplifiers for gain-integrated photonic switch fabrics,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper Mo.3.2.1.
K. Suzukiet al., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Th4B.5.
T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.
K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.
K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.
S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.
D. Fitsioset al., “Dual SOA-MZI wavelength converters based on III-V hybrid integration on a μm-scale Si platform,” IEEE Photon. Technol. Lett., vol. 26, no. 6, pp. 560–563, 2014.
K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.
T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.
D. Carraraet al., “Hybrid III-V/silicon photonic integrated circuits for high bitrates telecommunication applications,” Proc. SPIE, Integr. Opt. Devices Mater. Technol. XXI, vol. 10106, 2017, Art. no. 101060G.
K. Suzukiet al., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Th4B.5.
T. Matsumotoet al., “In-line optical amplification for Si waveguides on 1 × 8 splitter and selector by flip-chip bonded InP-SOAs,” in Proc. Int. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper Th1C.1.
T. Matsumotoet al., “In-line optical amplification for silicon photonics platform by flip-chip bonded InP-SOAs,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Tu2A.4.
R. Konoikeet al., “Lossless operation of SOA-integrated silicon photonics switch for 8 × 32-Gbaud 16-QAM WDM signals,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Th4B.6.
F. E. Doanyet al., “A four-channel silicon photonic carrier with flip-chip integrated semiconductor optical amplifier (SOA) array providing > 10-dB gain,” in Proc. 66th Int. Conf. Electron. Compon. Technol, 2016, pp. 1061–1068.
L. Schareset al., “Etched-facet semiconductor optical amplifiers for gain-integrated photonic switch fabrics,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper Mo.3.2.1.
OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.