Abstract

A precise flip-chip bonding (FCB) technology for indium phosphide semiconductor optical amplifiers (InP-SOAs) on a silicon photonics platform within less than ±1-μm alignment accuracy was developed. For efficient optical coupling and a relaxed alignment tolerance, the mode field on both the InP-SOAs and the Si waveguides was expanded by spot-size converters (SSCs). On the InP-SOAs, width-tapered SSCs were used to obtain an isotropic mode-field having an approximately a 3-μm diameter. On the silicon photonics platform, dual-core SSCs were used to expand the same mode-field size of 3 μm as for the SSCs on SOAs. Using the FCB technology and the SSCs, an in-line optical amplification of 15 dB was achieved by in-line integrated SOAs with angled waveguides. The optical coupling losses were 7.7 dB, which included 5.1-dB excess losses by misalignment and a gap between InP-SOA and Si waveguides. A 4 × 4 Si switch with a hybrid-integrated 4-ch SOA array was fabricated, and achieved the first demonstration of a lossless Si switch.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.
  2. K. Suzukiet al., “Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches,” Opt. Express, vol. 25, no. 7, pp. 7538–7546, 2017.
  3. K. Suzukiet al., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Th4B.5.
  4. Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express, vol. 26, no. 12, pp. 16022–16043, 2018.
  5. D. Carraraet al., “Hybrid III-V/silicon photonic integrated circuits for high bitrates telecommunication applications,” Proc. SPIE, Integr. Opt. Devices Mater. Technol. XXI, vol. 10106, 2017, Art. no. 101060G.
  6. A. D. Grooteet al., “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express, vol. 24, no. 13, pp. 13754–13762, 2016.
  7. T. Matsumotoet al., “In-line optical amplification for Si waveguides on 1 × 8 splitter and selector by flip-chip bonded InP-SOAs,” in Proc. Int. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper Th1C.1.
  8. T. Matsumotoet al., “In-line optical amplification for silicon photonics platform by flip-chip bonded InP-SOAs,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Tu2A.4.
  9. R. Konoikeet al., “Lossless operation of SOA-integrated silicon photonics switch for 8 × 32-Gbaud 16-QAM WDM signals,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Th4B.6.
  10. F. E. Doanyet al., “A four-channel silicon photonic carrier with flip-chip integrated semiconductor optical amplifier (SOA) array providing > 10-dB gain,” in Proc. 66th Int. Conf. Electron. Compon. Technol, 2016, pp. 1061–1068.
  11. D. Fitsioset al., “Dual SOA-MZI wavelength converters based on III-V hybrid integration on a μm-scale Si platform,” IEEE Photon. Technol. Lett., vol. 26, no. 6, pp. 560–563, 2014.
  12. K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.
  13. L. Schareset al., “Etched-facet semiconductor optical amplifiers for gain-integrated photonic switch fabrics,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper Mo.3.2.1.
  14. T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.

2018 (1)

2017 (2)

D. Carraraet al., “Hybrid III-V/silicon photonic integrated circuits for high bitrates telecommunication applications,” Proc. SPIE, Integr. Opt. Devices Mater. Technol. XXI, vol. 10106, 2017, Art. no. 101060G.

K. Suzukiet al., “Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches,” Opt. Express, vol. 25, no. 7, pp. 7538–7546, 2017.

2016 (1)

2014 (1)

D. Fitsioset al., “Dual SOA-MZI wavelength converters based on III-V hybrid integration on a μm-scale Si platform,” IEEE Photon. Technol. Lett., vol. 26, no. 6, pp. 560–563, 2014.

2011 (1)

S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.

2005 (1)

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.

1999 (1)

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.

Bahadori, M.

Bergman, K.

Carrara, D.

D. Carraraet al., “Hybrid III-V/silicon photonic integrated circuits for high bitrates telecommunication applications,” Proc. SPIE, Integr. Opt. Devices Mater. Technol. XXI, vol. 10106, 2017, Art. no. 101060G.

Cheng, Q.

Doany, F. E.

F. E. Doanyet al., “A four-channel silicon photonic carrier with flip-chip integrated semiconductor optical amplifier (SOA) array providing > 10-dB gain,” in Proc. 66th Int. Conf. Electron. Compon. Technol, 2016, pp. 1061–1068.

Fitsios, D.

D. Fitsioset al., “Dual SOA-MZI wavelength converters based on III-V hybrid integration on a μm-scale Si platform,” IEEE Photon. Technol. Lett., vol. 26, no. 6, pp. 560–563, 2014.

Goh, T.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.

Groote, A. D.

Hattori, K.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.

Himeno, A.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.

Konoike, R.

R. Konoikeet al., “Lossless operation of SOA-integrated silicon photonics switch for 8 × 32-Gbaud 16-QAM WDM signals,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Th4B.6.

Kuramata, A.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.

Matsumoto, T.

T. Matsumotoet al., “In-line optical amplification for Si waveguides on 1 × 8 splitter and selector by flip-chip bonded InP-SOAs,” in Proc. Int. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper Th1C.1.

T. Matsumotoet al., “In-line optical amplification for silicon photonics platform by flip-chip bonded InP-SOAs,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Tu2A.4.

Morito, K.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.

Namiki, S.

S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.

Okuno, M.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.

Rumley, S.

Schares, L.

L. Schareset al., “Etched-facet semiconductor optical amplifiers for gain-integrated photonic switch fabrics,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper Mo.3.2.1.

Suzuki, K.

K. Suzukiet al., “Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches,” Opt. Express, vol. 25, no. 7, pp. 7538–7546, 2017.

K. Suzukiet al., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Th4B.5.

Takahashi, H.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.

Tanaka, S.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.

Tomabechi, S.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.

IEEE J. Sel. Topics Quantum Electron. (1)

S. Namikiet al., “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 2, pp. 446–457, 2011.

IEEE Photon. Technol. Lett. (2)

D. Fitsioset al., “Dual SOA-MZI wavelength converters based on III-V hybrid integration on a μm-scale Si platform,” IEEE Photon. Technol. Lett., vol. 26, no. 6, pp. 560–563, 2014.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 974–976, 2005.

J. Lightw. Technol. (1)

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightw. Technol., vol. 17, no. 7, pp. 1192–1199, 1999.

Opt. Express (3)

Proc. SPIE, Integr. Opt. Devices Mater. Technol. XXI (1)

D. Carraraet al., “Hybrid III-V/silicon photonic integrated circuits for high bitrates telecommunication applications,” Proc. SPIE, Integr. Opt. Devices Mater. Technol. XXI, vol. 10106, 2017, Art. no. 101060G.

Other (6)

K. Suzukiet al., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Th4B.5.

T. Matsumotoet al., “In-line optical amplification for Si waveguides on 1 × 8 splitter and selector by flip-chip bonded InP-SOAs,” in Proc. Int. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper Th1C.1.

T. Matsumotoet al., “In-line optical amplification for silicon photonics platform by flip-chip bonded InP-SOAs,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Tu2A.4.

R. Konoikeet al., “Lossless operation of SOA-integrated silicon photonics switch for 8 × 32-Gbaud 16-QAM WDM signals,” in Proc. Int. Conf. Opt. Fiber Commun., San Diego, CA, USA, 2018, Paper Th4B.6.

F. E. Doanyet al., “A four-channel silicon photonic carrier with flip-chip integrated semiconductor optical amplifier (SOA) array providing > 10-dB gain,” in Proc. 66th Int. Conf. Electron. Compon. Technol, 2016, pp. 1061–1068.

L. Schareset al., “Etched-facet semiconductor optical amplifiers for gain-integrated photonic switch fabrics,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper Mo.3.2.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.