Abstract

We developed an optical processing platform that handles over 100 space-division-multiplexed signals in the C-band. The device consists of free-space optics based on liquid crystal on silicon (LCOS) with a waveguide frontend. Thanks to the holographic wavefront modulation by the LCOS spatial light modulator, the device arbitrarily manipulates the optical amplitude and phase in the space and spectral domains simultaneously. This ability enables us to create various optical processing functions such as tunable wavelength filtering, variable optical attenuation, and flexible delay line interferometry with arbitrary spatial and wavelength channel dependence. These functions are highly suitable for large-scale optical performance monitoring (OPM). As an application, we demonstrate OPM for 100 spatial channels over the C-band. The constructed OPM can monitor not only the power spectrum but also the optical signal-to-noise ratio (OSNR) by setting different LCOS phase patterns. We achieved channel power monitoring and OSNR monitoring with 1.8- and 1.9-dB accuracy over 100 spatial channels.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Tomkos, Y. Miyamoto, G. Wellbrock, and P. J. Winzer, “Spatially and spectrally flexible elastic optical networking,” IEEE Commun. Mag., vol. 53, no. 2, pp. 20–22, 2015.
  2. T. Morioka, “New generation optical infrastructure technologies: EXAT initiative towards 2020 and beyond,” in Proc. Optoelectron. Commun. Conf., Hong Kong, 2009, Paper FT4.
  3. P. J. Winzer, “Optical networking beyond WDM,” IEEE Photon. J., vol. 4, no. 2, pp. 647–651, 2012.
  4. T. Kobayashiet al., “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper Th5B.1.
  5. T. Mizuno, H. Takara, K. Shibahara, A. Sano, and Y. Miyamoto, “Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems,” J. Lightw. Technol., vol. 34, no. 6, pp. 1484–1493, 2016.
  6. K. Shibahara, T. Mizuno, D. Lee, and Y. Miyamoto, “Processing techniques enabling long-haul dense SDM transmissions,” J. Lightw. Technol., vol. 36, no. 2, pp. 336–348, 2018.
  7. B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous singlemode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper PDP.3.1.
  8. R. Ryfet al., “10-mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper PDP.3.3.
  9. S. Odaet al., “Optical performance monitoring for dynamic and flexible photonic networks,” Proc. SPIE, vol. 9388, pp. 1–9, 2015.
  10. Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, “Optical performance monitoring: A review of current and future technologies,” J. Lightw. Technol., vol. 34, no. 2, pp. 525–543, 2016.
  11. S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, pp. 926–944, 2009.
  12. Y. Liet al., “Transparent software-defined exchange (tSDX) with real-time OSNR-based impairment-aware wavelength path provisioning across multi-domain optical networks,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper Th5A.2.
  13. T. Tanakaet al., “Demonstration of single-mode multicore fiber transport network with crosstalk-aware in-service optical path control,” J. Lightw. Technol. vol. 36, no. 7, pp. 1451–1457, 2018.
  14. Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach–Zehnder interferometer,” Microw. Opt. Technol. Lett., vol. 30, no. 1, pp. 63–65, 2001.
  15. J. Schröder, O. Brasier, T. D. Vo, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “Simultaneous multi-channel OSNR monitoring with a wavelength selective switch,” Opt. Express, vol. 18, pp. 22299–22304, 2010.
  16. M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Paper Th2A.11.
  17. Z. J. Qiuet al., “Guideline of choosing optical delay time to optimize the performance of an interferometry-based in-band OSNR monitor,” Opt. Lett., vol. 41, pp. 4178–4181, 2016.
  18. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun.,vol. 284, pp. 3669–3692, 2011.
  19. E. Frumker and Y. Silberberg, “Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator,” Opt. Lett., vol. 32, pp. 1384–1386, 2007.
  20. X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.
  21. J. Schr¨oder, M. A. F. Roelens, L. B. Du, A. J. Lowery, S. Frisken, and B. J. Eggleton, “An optical FPGA: Reconfigurable simultaneous multioutput spectral pulse-shaping for linear optical processing,” Opt. Express, vol. 21, no. 1, pp. 690–697, 2013.
  22. G. N. Baxteret al., “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2006, Paper OTuF2.
  23. M. A. F. Roelenset al., “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol., vol. 26, no. 1, pp. 73–77, 2008.
  24. K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.
  25. K. Senoet al., “Demonstration of channelized tunable optical dispersion compensator based on arrayedwaveguide grating and liquid crystal on silicon,” Opt. Express, vol. 18, pp. 18565–18579, 2010.
  26. D. Sinefeld, S. B. Ezra, and D. M. Marom, “Nyquist-WDM filter shaping with a high-resolution colorless photonic spectral processor,” Opt. Lett., vol. 38, no. 17, pp. 3268–3271, 2013.
  27. M. Nakajimaet al., “Multilane photonic spectral processor integrated in spatial and planar optical circuit for space division multiplexing network,” J. Lightw. Technol., vol. 36, no. 2, pp. 309–317, 2018.
  28. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon., vol. 4, pp. 760–766, 2010.
  29. L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica, vol. 2, pp. 854–859, 2015.
  30. Y. Sakuraiet al., “LCOS-based wavelength blocker array with channel-by-channel variable center wavelength and bandwidth,” IEEE Photon. Technol. Lett., vol. 23, no. 14, pp. 989–991, 2011.
  31. N. K. Fontaineet al., “Programmable gain equalizer for multicore fiber amplifiers,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, 2014, Paper Th5C.5.
  32. M. Nakajimaet al., “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper W1E.2.
  33. Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.
  34. K. Senoet al., “Spatial beam transformer for wavelength selective switch consisting of silica-based planar lightwave circuit,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2012, Paper JTh2A.5.
  35. K. Suzukiet al., “Wavelength selective switch for multi-core fiber based space division multiplexed network with core-by-core switching capability,” in Proc. 21st Optoelectron. Commun. Conf./Int. Conf. Photon. Switching, Niigata, Japan, 2016, Paper WF1-2.
  36. Y. Sakamaki, K. Shikama, Y. Ikuma, and K. Suzuki, “Wavelength selective switch array employing silica-based waveguide frontend with integrated polarization diversity optics” Opt. Express, vol. 25, pp. 19946–19957, 2017.
  37. B. Chomcyz, Planning Fiber Optic Networks. New York, NY, USA: McGraw-Hill, 2009.
  38. J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett., vol. 13, no. 1, pp. 88–90, 2001.
  39. R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett., vol. 18, no. 3, pp. 469–471, 2006.
  40. Y. Yu, B. Zhang, and C. Yu, “Optical signal to noise ratio monitoring using single channel sampling technique,” Opt. Express, vol. 22, pp. 6874–6880, 2014.
  41. J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” J. Lightw. Technol., vol. 35, no. 4, pp. 868–875, 2017.
  42. A. Annoni and F. Morichetti, “Enhancing the sensitivity of interferometer based in-band OSNR monitoring by narrow band filtering,” J. Lightw. Technol., vol. 31, no. 9, pp. 1447–1453, 2013.
  43. J.-Y. Yang, Y. Akasaka, and M. Sekiya, “Investigation of interferometric in-band OSNR monitor for monitoring nyquist-shaped 400G DP-QPSK superchannels,” in Proc. 2014 Photon. Conf., San Diego, CA, USA, 2014, pp. 304–305.

2018 (3)

K. Shibahara, T. Mizuno, D. Lee, and Y. Miyamoto, “Processing techniques enabling long-haul dense SDM transmissions,” J. Lightw. Technol., vol. 36, no. 2, pp. 336–348, 2018.

T. Tanakaet al., “Demonstration of single-mode multicore fiber transport network with crosstalk-aware in-service optical path control,” J. Lightw. Technol. vol. 36, no. 7, pp. 1451–1457, 2018.

M. Nakajimaet al., “Multilane photonic spectral processor integrated in spatial and planar optical circuit for space division multiplexing network,” J. Lightw. Technol., vol. 36, no. 2, pp. 309–317, 2018.

2017 (3)

Y. Sakamaki, K. Shikama, Y. Ikuma, and K. Suzuki, “Wavelength selective switch array employing silica-based waveguide frontend with integrated polarization diversity optics” Opt. Express, vol. 25, pp. 19946–19957, 2017.

J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” J. Lightw. Technol., vol. 35, no. 4, pp. 868–875, 2017.

K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.

2016 (4)

T. Mizuno, H. Takara, K. Shibahara, A. Sano, and Y. Miyamoto, “Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems,” J. Lightw. Technol., vol. 34, no. 6, pp. 1484–1493, 2016.

Z. J. Qiuet al., “Guideline of choosing optical delay time to optimize the performance of an interferometry-based in-band OSNR monitor,” Opt. Lett., vol. 41, pp. 4178–4181, 2016.

Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, “Optical performance monitoring: A review of current and future technologies,” J. Lightw. Technol., vol. 34, no. 2, pp. 525–543, 2016.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

2015 (3)

L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica, vol. 2, pp. 854–859, 2015.

S. Odaet al., “Optical performance monitoring for dynamic and flexible photonic networks,” Proc. SPIE, vol. 9388, pp. 1–9, 2015.

I. Tomkos, Y. Miyamoto, G. Wellbrock, and P. J. Winzer, “Spatially and spectrally flexible elastic optical networking,” IEEE Commun. Mag., vol. 53, no. 2, pp. 20–22, 2015.

2014 (1)

2013 (3)

2012 (1)

P. J. Winzer, “Optical networking beyond WDM,” IEEE Photon. J., vol. 4, no. 2, pp. 647–651, 2012.

2011 (2)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun.,vol. 284, pp. 3669–3692, 2011.

Y. Sakuraiet al., “LCOS-based wavelength blocker array with channel-by-channel variable center wavelength and bandwidth,” IEEE Photon. Technol. Lett., vol. 23, no. 14, pp. 989–991, 2011.

2010 (4)

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon., vol. 4, pp. 760–766, 2010.

J. Schröder, O. Brasier, T. D. Vo, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “Simultaneous multi-channel OSNR monitoring with a wavelength selective switch,” Opt. Express, vol. 18, pp. 22299–22304, 2010.

K. Senoet al., “Demonstration of channelized tunable optical dispersion compensator based on arrayedwaveguide grating and liquid crystal on silicon,” Opt. Express, vol. 18, pp. 18565–18579, 2010.

2009 (1)

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, pp. 926–944, 2009.

2008 (1)

M. A. F. Roelenset al., “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol., vol. 26, no. 1, pp. 73–77, 2008.

2007 (1)

2006 (1)

R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett., vol. 18, no. 3, pp. 469–471, 2006.

2001 (2)

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett., vol. 13, no. 1, pp. 88–90, 2001.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach–Zehnder interferometer,” Microw. Opt. Technol. Lett., vol. 30, no. 1, pp. 63–65, 2001.

Adams, R.

R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett., vol. 18, no. 3, pp. 469–471, 2006.

Akasaka, Y.

J.-Y. Yang, Y. Akasaka, and M. Sekiya, “Investigation of interferometric in-band OSNR monitor for monitoring nyquist-shaped 400G DP-QPSK superchannels,” in Proc. 2014 Photon. Conf., San Diego, CA, USA, 2014, pp. 304–305.

Annoni, A.

A. Annoni and F. Morichetti, “Enhancing the sensitivity of interferometer based in-band OSNR monitoring by narrow band filtering,” J. Lightw. Technol., vol. 31, no. 9, pp. 1447–1453, 2013.

Azodolmolky, S.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, pp. 926–944, 2009.

Baxter, G. N.

G. N. Baxteret al., “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2006, Paper OTuF2.

Boller, K.-J.

Brasier, O.

Careglio, D.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, pp. 926–944, 2009.

Chen, Z.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach–Zehnder interferometer,” Microw. Opt. Technol. Lett., vol. 30, no. 1, pp. 63–65, 2001.

Chomcyz, B.

B. Chomcyz, Planning Fiber Optic Networks. New York, NY, USA: McGraw-Hill, 2009.

Chung, Y. C.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett., vol. 13, no. 1, pp. 88–90, 2001.

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon., vol. 4, pp. 760–766, 2010.

Diniz, J. C. M.

J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” J. Lightw. Technol., vol. 35, no. 4, pp. 868–875, 2017.

Dong, Z.

Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, “Optical performance monitoring: A review of current and future technologies,” J. Lightw. Technol., vol. 34, no. 2, pp. 525–543, 2016.

Du, L. B.

Eggleton, B. J.

Ezra, S. B.

Fontaine, N. K.

N. K. Fontaineet al., “Programmable gain equalizer for multicore fiber amplifiers,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, 2014, Paper Th5C.5.

Frisken, S.

Frumker, E.

Fu, L.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach–Zehnder interferometer,” Microw. Opt. Technol. Lett., vol. 30, no. 1, pp. 63–65, 2001.

Hashimoto, E.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

Hashimoto, T.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Paper Th2A.11.

Hoekman, M.

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.

Ikuma, Y.

K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.

Y. Sakamaki, K. Shikama, Y. Ikuma, and K. Suzuki, “Wavelength selective switch array employing silica-based waveguide frontend with integrated polarization diversity optics” Opt. Express, vol. 25, pp. 19946–19957, 2017.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

Jones, R.

J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” J. Lightw. Technol., vol. 35, no. 4, pp. 868–875, 2017.

Jung, D. K.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett., vol. 13, no. 1, pp. 88–90, 2001.

Khan, F. N.

Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, “Optical performance monitoring: A review of current and future technologies,” J. Lightw. Technol., vol. 34, no. 2, pp. 525–543, 2016.

Kim, C. H.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett., vol. 13, no. 1, pp. 88–90, 2001.

Klinkowski, M.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, pp. 926–944, 2009.

Kobayashi, T.

T. Kobayashiet al., “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper Th5B.1.

Lau,

Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, “Optical performance monitoring: A review of current and future technologies,” J. Lightw. Technol., vol. 34, no. 2, pp. 525–543, 2016.

Lee, D.

K. Shibahara, T. Mizuno, D. Lee, and Y. Miyamoto, “Processing techniques enabling long-haul dense SDM transmissions,” J. Lightw. Technol., vol. 36, no. 2, pp. 336–348, 2018.

Lee, J. H.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett., vol. 13, no. 1, pp. 88–90, 2001.

Li, Y.

Y. Liet al., “Transparent software-defined exchange (tSDX) with real-time OSNR-based impairment-aware wavelength path provisioning across multi-domain optical networks,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper Th5A.2.

Lowery, A. J.

Lu, C.

Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, “Optical performance monitoring: A review of current and future technologies,” J. Lightw. Technol., vol. 34, no. 2, pp. 525–543, 2016.

Marin, E.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, pp. 926–944, 2009.

Marom, D. M.

Minasian, R. A.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.

Miyamoto, Y.

K. Shibahara, T. Mizuno, D. Lee, and Y. Miyamoto, “Processing techniques enabling long-haul dense SDM transmissions,” J. Lightw. Technol., vol. 36, no. 2, pp. 336–348, 2018.

T. Mizuno, H. Takara, K. Shibahara, A. Sano, and Y. Miyamoto, “Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems,” J. Lightw. Technol., vol. 34, no. 6, pp. 1484–1493, 2016.

I. Tomkos, Y. Miyamoto, G. Wellbrock, and P. J. Winzer, “Spatially and spectrally flexible elastic optical networking,” IEEE Commun. Mag., vol. 53, no. 2, pp. 20–22, 2015.

Mizuno, T.

K. Shibahara, T. Mizuno, D. Lee, and Y. Miyamoto, “Processing techniques enabling long-haul dense SDM transmissions,” J. Lightw. Technol., vol. 36, no. 2, pp. 336–348, 2018.

T. Mizuno, H. Takara, K. Shibahara, A. Sano, and Y. Miyamoto, “Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems,” J. Lightw. Technol., vol. 34, no. 6, pp. 1484–1493, 2016.

Morichetti, F.

A. Annoni and F. Morichetti, “Enhancing the sensitivity of interferometer based in-band OSNR monitoring by narrow band filtering,” J. Lightw. Technol., vol. 31, no. 9, pp. 1447–1453, 2013.

Morioka, T.

T. Morioka, “New generation optical infrastructure technologies: EXAT initiative towards 2020 and beyond,” in Proc. Optoelectron. Commun. Conf., Hong Kong, 2009, Paper FT4.

Moriwaki, O.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

Nakajima, M.

M. Nakajimaet al., “Multilane photonic spectral processor integrated in spatial and planar optical circuit for space division multiplexing network,” J. Lightw. Technol., vol. 36, no. 2, pp. 309–317, 2018.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Paper Th2A.11.

M. Nakajimaet al., “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper W1E.2.

Nemoto, N.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Paper Th2A.11.

Ng, T. T.

R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett., vol. 18, no. 3, pp. 469–471, 2006.

Oda, S.

S. Odaet al., “Optical performance monitoring for dynamic and flexible photonic networks,” Proc. SPIE, vol. 9388, pp. 1–9, 2015.

Piels, M.

J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” J. Lightw. Technol., vol. 35, no. 4, pp. 868–875, 2017.

Puttnam, B. J.

B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous singlemode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper PDP.3.1.

Qiu, Z. J.

Rochette, M.

R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett., vol. 18, no. 3, pp. 469–471, 2006.

Roelens, M. A. F.

Roeloffzen, C. G. H.

Ryf, R.

R. Ryfet al., “10-mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper PDP.3.3.

Sakamaki, Y.

Sakurai, Y.

Y. Sakuraiet al., “LCOS-based wavelength blocker array with channel-by-channel variable center wavelength and bandwidth,” IEEE Photon. Technol. Lett., vol. 23, no. 14, pp. 989–991, 2011.

Sano, A.

T. Mizuno, H. Takara, K. Shibahara, A. Sano, and Y. Miyamoto, “Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems,” J. Lightw. Technol., vol. 34, no. 6, pp. 1484–1493, 2016.

Schr¨oder, J.

Schröder, J.

Sekiya, M.

J.-Y. Yang, Y. Akasaka, and M. Sekiya, “Investigation of interferometric in-band OSNR monitor for monitoring nyquist-shaped 400G DP-QPSK superchannels,” in Proc. 2014 Photon. Conf., San Diego, CA, USA, 2014, pp. 304–305.

Seno, K.

K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.

K. Senoet al., “Demonstration of channelized tunable optical dispersion compensator based on arrayedwaveguide grating and liquid crystal on silicon,” Opt. Express, vol. 18, pp. 18565–18579, 2010.

K. Senoet al., “Spatial beam transformer for wavelength selective switch consisting of silica-based planar lightwave circuit,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2012, Paper JTh2A.5.

Shibahara, K.

K. Shibahara, T. Mizuno, D. Lee, and Y. Miyamoto, “Processing techniques enabling long-haul dense SDM transmissions,” J. Lightw. Technol., vol. 36, no. 2, pp. 336–348, 2018.

T. Mizuno, H. Takara, K. Shibahara, A. Sano, and Y. Miyamoto, “Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems,” J. Lightw. Technol., vol. 34, no. 6, pp. 1484–1493, 2016.

Shikama, K.

Silberberg, Y.

Sinefeld, D.

Solé Pareta, J.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, pp. 926–944, 2009.

Sui, Q.

Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, “Optical performance monitoring: A review of current and future technologies,” J. Lightw. Technol., vol. 34, no. 2, pp. 525–543, 2016.

Suzuki, K.

K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.

Y. Sakamaki, K. Shikama, Y. Ikuma, and K. Suzuki, “Wavelength selective switch array employing silica-based waveguide frontend with integrated polarization diversity optics” Opt. Express, vol. 25, pp. 19946–19957, 2017.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

K. Suzukiet al., “Wavelength selective switch for multi-core fiber based space division multiplexed network with core-by-core switching capability,” in Proc. 21st Optoelectron. Commun. Conf./Int. Conf. Photon. Switching, Niigata, Japan, 2016, Paper WF1-2.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Paper Th2A.11.

Takahashi, T.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

Takara, H.

T. Mizuno, H. Takara, K. Shibahara, A. Sano, and Y. Miyamoto, “Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems,” J. Lightw. Technol., vol. 34, no. 6, pp. 1484–1493, 2016.

Tanaka, T.

T. Tanakaet al., “Demonstration of single-mode multicore fiber transport network with crosstalk-aware in-service optical path control,” J. Lightw. Technol. vol. 36, no. 7, pp. 1451–1457, 2018.

Tao, Z.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach–Zehnder interferometer,” Microw. Opt. Technol. Lett., vol. 30, no. 1, pp. 63–65, 2001.

Thrane, J.

J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” J. Lightw. Technol., vol. 35, no. 4, pp. 868–875, 2017.

Tomkos, I.

I. Tomkos, Y. Miyamoto, G. Wellbrock, and P. J. Winzer, “Spatially and spectrally flexible elastic optical networking,” IEEE Commun. Mag., vol. 53, no. 2, pp. 20–22, 2015.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, pp. 926–944, 2009.

Vo, T. D.

Wass, J.

J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” J. Lightw. Technol., vol. 35, no. 4, pp. 868–875, 2017.

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun.,vol. 284, pp. 3669–3692, 2011.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon., vol. 4, pp. 760–766, 2010.

Wellbrock, G.

I. Tomkos, Y. Miyamoto, G. Wellbrock, and P. J. Winzer, “Spatially and spectrally flexible elastic optical networking,” IEEE Commun. Mag., vol. 53, no. 2, pp. 20–22, 2015.

Winzer, P. J.

I. Tomkos, Y. Miyamoto, G. Wellbrock, and P. J. Winzer, “Spatially and spectrally flexible elastic optical networking,” IEEE Commun. Mag., vol. 53, no. 2, pp. 20–22, 2015.

P. J. Winzer, “Optical networking beyond WDM,” IEEE Photon. J., vol. 4, no. 2, pp. 647–651, 2012.

Wu, D.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach–Zehnder interferometer,” Microw. Opt. Technol. Lett., vol. 30, no. 1, pp. 63–65, 2001.

Xu, A.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach–Zehnder interferometer,” Microw. Opt. Technol. Lett., vol. 30, no. 1, pp. 63–65, 2001.

Yamaguchi, J.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Paper Th2A.11.

Yamaguchi, K.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Paper Th2A.11.

Yang, J.-Y.

J.-Y. Yang, Y. Akasaka, and M. Sekiya, “Investigation of interferometric in-band OSNR monitor for monitoring nyquist-shaped 400G DP-QPSK superchannels,” in Proc. 2014 Photon. Conf., San Diego, CA, USA, 2014, pp. 304–305.

Yi, X.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.

Yu, C.

Yu, Y.

Zhang, B.

Zhong, K.

Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, “Optical performance monitoring: A review of current and future technologies,” J. Lightw. Technol., vol. 34, no. 2, pp. 525–543, 2016.

Zhuang, L.

Zibar, D.

J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” J. Lightw. Technol., vol. 35, no. 4, pp. 868–875, 2017.

Comput. Netw. (1)

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, pp. 926–944, 2009.

IEEE Commun. Mag. (1)

I. Tomkos, Y. Miyamoto, G. Wellbrock, and P. J. Winzer, “Spatially and spectrally flexible elastic optical networking,” IEEE Commun. Mag., vol. 53, no. 2, pp. 20–22, 2015.

IEEE Photon. J. (1)

P. J. Winzer, “Optical networking beyond WDM,” IEEE Photon. J., vol. 4, no. 2, pp. 647–651, 2012.

IEEE Photon. Technol. Lett. (3)

Y. Sakuraiet al., “LCOS-based wavelength blocker array with channel-by-channel variable center wavelength and bandwidth,” IEEE Photon. Technol. Lett., vol. 23, no. 14, pp. 989–991, 2011.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett., vol. 13, no. 1, pp. 88–90, 2001.

R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett., vol. 18, no. 3, pp. 469–471, 2006.

IEEE Trans. Microw. Theory Techn. (1)

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3088–3093, 2010.

J. Lightw. Technol. (10)

M. A. F. Roelenset al., “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol., vol. 26, no. 1, pp. 73–77, 2008.

K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightw. Technol., vol. 35, no. 4, pp. 596–606, 2017.

M. Nakajimaet al., “Multilane photonic spectral processor integrated in spatial and planar optical circuit for space division multiplexing network,” J. Lightw. Technol., vol. 36, no. 2, pp. 309–317, 2018.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

T. Mizuno, H. Takara, K. Shibahara, A. Sano, and Y. Miyamoto, “Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems,” J. Lightw. Technol., vol. 34, no. 6, pp. 1484–1493, 2016.

K. Shibahara, T. Mizuno, D. Lee, and Y. Miyamoto, “Processing techniques enabling long-haul dense SDM transmissions,” J. Lightw. Technol., vol. 36, no. 2, pp. 336–348, 2018.

Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, “Optical performance monitoring: A review of current and future technologies,” J. Lightw. Technol., vol. 34, no. 2, pp. 525–543, 2016.

T. Tanakaet al., “Demonstration of single-mode multicore fiber transport network with crosstalk-aware in-service optical path control,” J. Lightw. Technol. vol. 36, no. 7, pp. 1451–1457, 2018.

J. Thrane, J. Wass, M. Piels, J. C. M. Diniz, R. Jones, and D. Zibar, “Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals,” J. Lightw. Technol., vol. 35, no. 4, pp. 868–875, 2017.

A. Annoni and F. Morichetti, “Enhancing the sensitivity of interferometer based in-band OSNR monitoring by narrow band filtering,” J. Lightw. Technol., vol. 31, no. 9, pp. 1447–1453, 2013.

Microw. Opt. Technol. Lett. (1)

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach–Zehnder interferometer,” Microw. Opt. Technol. Lett., vol. 30, no. 1, pp. 63–65, 2001.

Nature Photon. (1)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon., vol. 4, pp. 760–766, 2010.

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun.,vol. 284, pp. 3669–3692, 2011.

Opt. Express (5)

Opt. Lett. (3)

Optica (1)

Proc. SPIE (1)

S. Odaet al., “Optical performance monitoring for dynamic and flexible photonic networks,” Proc. SPIE, vol. 9388, pp. 1–9, 2015.

Other (13)

Y. Liet al., “Transparent software-defined exchange (tSDX) with real-time OSNR-based impairment-aware wavelength path provisioning across multi-domain optical networks,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper Th5A.2.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Paper Th2A.11.

B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous singlemode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper PDP.3.1.

R. Ryfet al., “10-mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in Proc. Eur. Conf. Exhib. Opt. Commun., Valencia, Spain, 2015, Paper PDP.3.3.

T. Kobayashiet al., “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper Th5B.1.

T. Morioka, “New generation optical infrastructure technologies: EXAT initiative towards 2020 and beyond,” in Proc. Optoelectron. Commun. Conf., Hong Kong, 2009, Paper FT4.

N. K. Fontaineet al., “Programmable gain equalizer for multicore fiber amplifiers,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, 2014, Paper Th5C.5.

M. Nakajimaet al., “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper W1E.2.

B. Chomcyz, Planning Fiber Optic Networks. New York, NY, USA: McGraw-Hill, 2009.

K. Senoet al., “Spatial beam transformer for wavelength selective switch consisting of silica-based planar lightwave circuit,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2012, Paper JTh2A.5.

K. Suzukiet al., “Wavelength selective switch for multi-core fiber based space division multiplexed network with core-by-core switching capability,” in Proc. 21st Optoelectron. Commun. Conf./Int. Conf. Photon. Switching, Niigata, Japan, 2016, Paper WF1-2.

G. N. Baxteret al., “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2006, Paper OTuF2.

J.-Y. Yang, Y. Akasaka, and M. Sekiya, “Investigation of interferometric in-band OSNR monitor for monitoring nyquist-shaped 400G DP-QPSK superchannels,” in Proc. 2014 Photon. Conf., San Diego, CA, USA, 2014, pp. 304–305.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.