Abstract

Integrated ferroelectric plasmonic modulators featuring large bandwidths, broad optical operation range, resilience to high temperature and ultracompact footprint are introduced. Measurements show a modulation bandwidth of 70 GHz and a temperature stability up to 250 °C. Mach–Zehnder interferometer modulators with 10-μm-long phase shifters were operated at 116 Gbit/s PAM-4 and 72 Gbit/s NRZ. Wide and open eye diagrams with extinction ratios beyond 15 dB were found. The fast and robust devices are apt to an employment in industrial environments.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Milleret al., “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173–2176,  1984.
  2. Y. Ogisoet al., “Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure,” J. Lightw. Technol., vol. 35, no. 8, pp. 1450–1455,  2017.
  3. R. A. Soref and J. P. Lorenzo, “Single-crystal silicon: A new material for 1.3 and 1.6 μm integrated-optical components,” Electron. Lett., vol. 21, no. 21, pp. 953–954, 1985.
  4. J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 Gbaud 16 QAM and 70 Gbaud32 QAM,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Tu2E.
  5. X. Chen, S. Chandrasekhar, G. R. S. Olsson, J. Cho, A. Adamiecki, and P. Winzer, “Generation and intradyne detection of single-wavelength 1.61-Tb/s using an all-electronic digital band interleaved transmitter,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Th4C.
  6. E. L. Wootenet al., “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 69–82,  2000.
  7. J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express, vol. 16, no. 6, pp. 4177–4191, 2008.
  8. J. Leutholdet al., “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6,  2013, Art. no. 3401413.
  9. L. Alloattiet al., “100 GHz silicon–organic hybrid modulator,” Light: Sci. Appl., vol. 3, no. 5, 2014, Paper no. e173.
  10. S. Wolfet al., “Coherent modulation up to 100 GBd 16 QAM using silicon-organic hybrid (SOH) devices,” Opt. Express, vol. 26, no. 1, pp. 220–232,  2018.
  11. H. Hu, L. Gui, R. Ricken, and W. Sohler, “Towards nonlinear photonic wires in lithium niobate,” Proc. SPIE, vol. 7604, 2010, Paper no. 76040R.
  12. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev., vol. 12, 2018, Paper no. 1700256.
  13. A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4,  2018, Art. no. 3400114.
  14. M. Zhanget al., “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, San Diego, CA, USA, 2018, Paper no. Th4A.5.
  15. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express, vol. 26, no. 2, pp. 1547–1555,  2018.
  16. M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photon. J., vol. 10, no. 1,  2018, Art. no. 6600410.
  17. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express, vol. 21, no. 21, pp. 25573–25581, 2013.
  18. S. Abel and J. Fompeyrine, “Electro-optically active oxides on silicon for photonics,” in Thin Films on Silicon (Materials and Energy), vol. 8. Singapore: World Scientific, 2016, pp. 455–501.
  19. M. Zgoniket al., “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B, vol. 50, no. 9, pp. 5941–5949, 1994.
  20. S. Abelet al., “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nature Commun., vol. 4, pp. 1671–1671, 2013.
  21. C. Xionget al., “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett., vol. 14, no. 3, pp. 1419–1425, 2014.
  22. S. Abelet al., “A hybrid barium titanate-silicon photonics platform for ultra-efficient electro-optic tuning,” J. Lightw. Technol., vol. 34, no. 8, pp. 1688–1693,  2015.
  23. A. Messneret al., “Integrated ferroelectric plasmonic optical modulator,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, Los Angeles, CA, USA, 2017, Paper no. Th5C.7.
  24. F. Elteset al., “A novel 25 Gbps electro-optic Pockels modulator integrated on an advanced Si photonic platform,” in Proc. 2017 IEEE Int. Electron Devices Meeting, 2017, pp. 24.5.1–24.5.4.
  25. W. Heniet al., “Silicon-organic and plasmonic-organic hybrid photonics,” ACS Photon., vol. 4, no. 7, pp. 1576–1590, 2017.
  26. C. Haffneret al., “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379,  2016.
  27. C. Haffneret al., “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, no. 8, pp. 525–528, 2015.
  28. M. Ayataet al., “High-speed plasmonic modulator in a single metal layer,” Science, vol. 358, no. 6363, pp. 630–632,  2017.
  29. C. Haffneret al., “Low-loss plasmon-assisted electro-optic modulator,” Nature, vol. 556, no. 7702, pp. 483–486, 2018.
  30. W. Heniet al., “100 GBd plasmonic IQ modulator,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2018, Paper no. SM1I.4.
  31. S. Ummethalaet al., “Terahertz-to-optical conversion using a plasmonic modulator,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2018, Paper no. STu3D.4.
  32. C. Hoessbacheret al., “Plasmonic modulator with > 170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express, vol. 25, no. 3, pp. 1762–1762, 2017.
  33. B. Baeuerleet al., “Driver-less sub 1 Vpp operation of a plasmonic-organic hybrid modulator at 100 GBd NRZ,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper M3G.
  34. R. Waldhaeusl, B. Schnabel, E. B. Kley, and A. Bra¨uer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–623, 1997.
  35. J. Leutholdet al., “Plasmonic communications: Light on a wire,” Opt. Photon. News, vol. 24, pp. 28–35,  2013.
  36. S. Abelet al., “Electro-optical properties of barium titanate films epitaxially grown on silicon,” Proc. SPIE, vol. 8263, 2012, Paper no. 82630Y.
  37. T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett., vol. 83, no. 25, pp. 5274–5276,  2003.
  38. A. Rosaet al., “Barium titanate (BaTiO3) RF characterization for application in electro-optic modulators,” Opt. Mater. Express, vol. 7, no. 12, pp. 4328–4336, 2017.
  39. A. Melikyanet al., “High-speed plasmonic phase modulators,” Nature Photon., vol. 8, no. 3, pp. 229–233,  2014.
  40. A. Emboraset al., “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, pp. 276–283,  2015.
  41. N. Daixet al., “Towards large size substrates for III-V co-integration made by direct wafer bonding on Si,” APL Mater., vol. 2, no. 8, 2014, Paper no. 086104.
  42. G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, “Structures of the ferroelectric phases of barium titanate,” J. Phys. Chem., vol. 97, no. 10, pp. 2368–2377, 1993.
  43. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed.Hoboken, NJ, USA: Wiley, 2007.
  44. P. Castera, D. Tulli, A. M. Gutierrez, and P. Sanchis, “Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon,” Opt. Express, vol. 23, no. 12, pp. 15332–15342, 2015.
  45. C. Dubourdieuet al., “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nature Nanotechnol., vol. 8, no. 10, pp. 748–54, 2013.
  46. P. Casteraet al., “Electro-optical modulation based on pockels effect in BaTiO3 with a multi-domain structure,” IEEE Photon. Technol. Lett., vol. 28, no. 9, pp. 990–993,  2016.
  47. P. Tang, A. L. Meier, D. J. Towner, and B. W. Wessels, “BaTiO3 thin-film waveguide modulator with a low voltage-length product at near-infrared wavelengths of 0.98 and 1.55 μm,” Opt. Lett., vol. 30, no. 3, pp. 254–254, 2005.
  48. P. Girouard, P. Chen, Y. K. Jeong, Z. Liu, S.-T. Ho, and B. W. Wessels, “χ(2) Modulator with 40 GHz modulation utilizing BaTiO3 photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 53, no. 4,  2017, Art. no. 5200110.
  49. J. F. Ihlefeld, D. T. Harris, R. Keech, J. L. Jones, J.-P. Maria, and S. Trolier-McKinstry, “Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations,” J. Amer. Ceram. Soc., vol. 99, no. 8, pp. 2537–2557, 2016.
  50. K. J. Kormondyet al., “Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics,” Nanotechnology, vol. 28, no. 7, 2017, Paper no. 075706.
  51. T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightw. Technol., vol. 35, no. 21, pp. 4663–4669, 2017.
  52. S. Yongqiang, Y. Lianshan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.
  53. S. Abelet al., “Large Pockelseffect in micro- and nanostructured barium titanate integrated on silicon,” Nature Mater., Nov. 12, 2018.
  54. K. M. Rabe, Physics of Ferroelectrics: A Modern Perspective. Berlin, Germany: Springer, 2007.
  55. S. H. Wemple and M. DiDomenico, “Electrooptical and nonlinear optical properties of crystals,” in Applied Solid State Science, vol. 3, R. Wolfe, Ed. Amsterdam, The Netherlands: Elsevier, 1972, pp. 263–383.
  56. K. Laabidi, M. D. Fontana, M. Maglione, B. Jannot, and K. A. Müller, “Indications of two separate relaxators in the subphonon region of tetragonal BaTiO3,” Europhys. Lett., vol. 26, no. 4, 1994, Paper no. 309.
  57. M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, and P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun., vol. 92, no. 10, pp. 827–830, 1994.
  58. C. Charlotte, S. Thiemo, B. Naoufal, H. Alexei, and G. Torsten, “Broadband characterization of congruent lithium niobate from mHz to optical frequencies,” J. Phys. D, Appl. Phys., vol. 50, no. 36, 2017, Paper no. 36LT01.
  59. W. J. Merz, “The electric and optical behavior of BaTiO3 single-domain crystals,” Phys. Rev., vol. 76, no. 8, pp. 1221–1225, 1949.
  60. K.-i. Sakayoriet al., “Curie temperature of BaTiO3,” Jpn. J. Appl. Phys., vol. 34, no. 9S, 1995, Paper no. 5443.
  61. G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, and M. Trassin, “Nanoscale design of polarization in ultrathin ferroelectric heterostructures,” Nature Commun., vol. 8, no. 1,  2017, Paper no. 1419.
  62. A. Messneret al., “Integrated ferroelectric BaTiO3/Si plasmonic modulator for 100 Gbit/s and beyond,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper no. M2I.6.
  63. L. E. Nelsonet al., “A robust real-time 100 G transceiver with soft-decision forward error correction [Invited],” J. Opt. Commun. Netw., vol. 4, no. 11, pp. B131–B141, 2012.

2018 (7)

S. Wolfet al., “Coherent modulation up to 100 GBd 16 QAM using silicon-organic hybrid (SOH) devices,” Opt. Express, vol. 26, no. 1, pp. 220–232,  2018.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev., vol. 12, 2018, Paper no. 1700256.

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4,  2018, Art. no. 3400114.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express, vol. 26, no. 2, pp. 1547–1555,  2018.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photon. J., vol. 10, no. 1,  2018, Art. no. 6600410.

C. Haffneret al., “Low-loss plasmon-assisted electro-optic modulator,” Nature, vol. 556, no. 7702, pp. 483–486, 2018.

S. Abelet al., “Large Pockelseffect in micro- and nanostructured barium titanate integrated on silicon,” Nature Mater., Nov. 12, 2018.

2017 (10)

K. J. Kormondyet al., “Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics,” Nanotechnology, vol. 28, no. 7, 2017, Paper no. 075706.

T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightw. Technol., vol. 35, no. 21, pp. 4663–4669, 2017.

C. Charlotte, S. Thiemo, B. Naoufal, H. Alexei, and G. Torsten, “Broadband characterization of congruent lithium niobate from mHz to optical frequencies,” J. Phys. D, Appl. Phys., vol. 50, no. 36, 2017, Paper no. 36LT01.

M. Ayataet al., “High-speed plasmonic modulator in a single metal layer,” Science, vol. 358, no. 6363, pp. 630–632,  2017.

G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, and M. Trassin, “Nanoscale design of polarization in ultrathin ferroelectric heterostructures,” Nature Commun., vol. 8, no. 1,  2017, Paper no. 1419.

C. Hoessbacheret al., “Plasmonic modulator with > 170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express, vol. 25, no. 3, pp. 1762–1762, 2017.

W. Heniet al., “Silicon-organic and plasmonic-organic hybrid photonics,” ACS Photon., vol. 4, no. 7, pp. 1576–1590, 2017.

A. Rosaet al., “Barium titanate (BaTiO3) RF characterization for application in electro-optic modulators,” Opt. Mater. Express, vol. 7, no. 12, pp. 4328–4336, 2017.

P. Girouard, P. Chen, Y. K. Jeong, Z. Liu, S.-T. Ho, and B. W. Wessels, “χ(2) Modulator with 40 GHz modulation utilizing BaTiO3 photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 53, no. 4,  2017, Art. no. 5200110.

Y. Ogisoet al., “Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure,” J. Lightw. Technol., vol. 35, no. 8, pp. 1450–1455,  2017.

2016 (3)

J. F. Ihlefeld, D. T. Harris, R. Keech, J. L. Jones, J.-P. Maria, and S. Trolier-McKinstry, “Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations,” J. Amer. Ceram. Soc., vol. 99, no. 8, pp. 2537–2557, 2016.

P. Casteraet al., “Electro-optical modulation based on pockels effect in BaTiO3 with a multi-domain structure,” IEEE Photon. Technol. Lett., vol. 28, no. 9, pp. 990–993,  2016.

C. Haffneret al., “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379,  2016.

2015 (4)

C. Haffneret al., “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, no. 8, pp. 525–528, 2015.

A. Emboraset al., “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, pp. 276–283,  2015.

P. Castera, D. Tulli, A. M. Gutierrez, and P. Sanchis, “Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon,” Opt. Express, vol. 23, no. 12, pp. 15332–15342, 2015.

S. Abelet al., “A hybrid barium titanate-silicon photonics platform for ultra-efficient electro-optic tuning,” J. Lightw. Technol., vol. 34, no. 8, pp. 1688–1693,  2015.

2014 (4)

C. Xionget al., “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett., vol. 14, no. 3, pp. 1419–1425, 2014.

L. Alloattiet al., “100 GHz silicon–organic hybrid modulator,” Light: Sci. Appl., vol. 3, no. 5, 2014, Paper no. e173.

N. Daixet al., “Towards large size substrates for III-V co-integration made by direct wafer bonding on Si,” APL Mater., vol. 2, no. 8, 2014, Paper no. 086104.

A. Melikyanet al., “High-speed plasmonic phase modulators,” Nature Photon., vol. 8, no. 3, pp. 229–233,  2014.

2013 (5)

J. Leutholdet al., “Plasmonic communications: Light on a wire,” Opt. Photon. News, vol. 24, pp. 28–35,  2013.

C. Dubourdieuet al., “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nature Nanotechnol., vol. 8, no. 10, pp. 748–54, 2013.

S. Abelet al., “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nature Commun., vol. 4, pp. 1671–1671, 2013.

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express, vol. 21, no. 21, pp. 25573–25581, 2013.

J. Leutholdet al., “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6,  2013, Art. no. 3401413.

2012 (2)

S. Abelet al., “Electro-optical properties of barium titanate films epitaxially grown on silicon,” Proc. SPIE, vol. 8263, 2012, Paper no. 82630Y.

L. E. Nelsonet al., “A robust real-time 100 G transceiver with soft-decision forward error correction [Invited],” J. Opt. Commun. Netw., vol. 4, no. 11, pp. B131–B141, 2012.

2010 (1)

H. Hu, L. Gui, R. Ricken, and W. Sohler, “Towards nonlinear photonic wires in lithium niobate,” Proc. SPIE, vol. 7604, 2010, Paper no. 76040R.

2008 (1)

2005 (1)

2003 (2)

T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett., vol. 83, no. 25, pp. 5274–5276,  2003.

S. Yongqiang, Y. Lianshan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

2000 (1)

E. L. Wootenet al., “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 69–82,  2000.

1997 (1)

R. Waldhaeusl, B. Schnabel, E. B. Kley, and A. Bra¨uer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–623, 1997.

1995 (1)

K.-i. Sakayoriet al., “Curie temperature of BaTiO3,” Jpn. J. Appl. Phys., vol. 34, no. 9S, 1995, Paper no. 5443.

1994 (3)

K. Laabidi, M. D. Fontana, M. Maglione, B. Jannot, and K. A. Müller, “Indications of two separate relaxators in the subphonon region of tetragonal BaTiO3,” Europhys. Lett., vol. 26, no. 4, 1994, Paper no. 309.

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, and P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun., vol. 92, no. 10, pp. 827–830, 1994.

M. Zgoniket al., “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B, vol. 50, no. 9, pp. 5941–5949, 1994.

1993 (1)

G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, “Structures of the ferroelectric phases of barium titanate,” J. Phys. Chem., vol. 97, no. 10, pp. 2368–2377, 1993.

1985 (1)

R. A. Soref and J. P. Lorenzo, “Single-crystal silicon: A new material for 1.3 and 1.6 μm integrated-optical components,” Electron. Lett., vol. 21, no. 21, pp. 953–954, 1985.

1984 (1)

D. A. B. Milleret al., “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173–2176,  1984.

1949 (1)

W. J. Merz, “The electric and optical behavior of BaTiO3 single-domain crystals,” Phys. Rev., vol. 76, no. 8, pp. 1221–1225, 1949.

Abel, S.

S. Abelet al., “Large Pockelseffect in micro- and nanostructured barium titanate integrated on silicon,” Nature Mater., Nov. 12, 2018.

S. Abelet al., “A hybrid barium titanate-silicon photonics platform for ultra-efficient electro-optic tuning,” J. Lightw. Technol., vol. 34, no. 8, pp. 1688–1693,  2015.

S. Abelet al., “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nature Commun., vol. 4, pp. 1671–1671, 2013.

S. Abelet al., “Electro-optical properties of barium titanate films epitaxially grown on silicon,” Proc. SPIE, vol. 8263, 2012, Paper no. 82630Y.

S. Abel and J. Fompeyrine, “Electro-optically active oxides on silicon for photonics,” in Thin Films on Silicon (Materials and Energy), vol. 8. Singapore: World Scientific, 2016, pp. 455–501.

Adamiecki, A.

X. Chen, S. Chandrasekhar, G. R. S. Olsson, J. Cho, A. Adamiecki, and P. Winzer, “Generation and intradyne detection of single-wavelength 1.61-Tb/s using an all-electronic digital band interleaved transmitter,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Th4C.

Alexei, H.

C. Charlotte, S. Thiemo, B. Naoufal, H. Alexei, and G. Torsten, “Broadband characterization of congruent lithium niobate from mHz to optical frequencies,” J. Phys. D, Appl. Phys., vol. 50, no. 36, 2017, Paper no. 36LT01.

Alloatti, L.

L. Alloattiet al., “100 GHz silicon–organic hybrid modulator,” Light: Sci. Appl., vol. 3, no. 5, 2014, Paper no. e173.

Andreani, L. C.

Ayata, M.

M. Ayataet al., “High-speed plasmonic modulator in a single metal layer,” Science, vol. 358, no. 6363, pp. 630–632,  2017.

T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightw. Technol., vol. 35, no. 21, pp. 4663–4669, 2017.

Baeuerle, B.

B. Baeuerleet al., “Driver-less sub 1 Vpp operation of a plasmonic-organic hybrid modulator at 100 GBd NRZ,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper M3G.

Billinge, S. J. L.

G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, “Structures of the ferroelectric phases of barium titanate,” J. Phys. Chem., vol. 97, no. 10, pp. 2368–2377, 1993.

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev., vol. 12, 2018, Paper no. 1700256.

Bottenfield, C.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photon. J., vol. 10, no. 1,  2018, Art. no. 6600410.

Bouillet, C.

G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, and M. Trassin, “Nanoscale design of polarization in ultrathin ferroelectric heterostructures,” Nature Commun., vol. 8, no. 1,  2017, Paper no. 1419.

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev., vol. 12, 2018, Paper no. 1700256.

Bra¨uer, A.

R. Waldhaeusl, B. Schnabel, E. B. Kley, and A. Bra¨uer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–623, 1997.

Brosi, J.-M.

Cai, L.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photon. J., vol. 10, no. 1,  2018, Art. no. 6600410.

Castera, P.

P. Casteraet al., “Electro-optical modulation based on pockels effect in BaTiO3 with a multi-domain structure,” IEEE Photon. Technol. Lett., vol. 28, no. 9, pp. 990–993,  2016.

P. Castera, D. Tulli, A. M. Gutierrez, and P. Sanchis, “Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon,” Opt. Express, vol. 23, no. 12, pp. 15332–15342, 2015.

Chandrasekhar, S.

X. Chen, S. Chandrasekhar, G. R. S. Olsson, J. Cho, A. Adamiecki, and P. Winzer, “Generation and intradyne detection of single-wavelength 1.61-Tb/s using an all-electronic digital band interleaved transmitter,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Th4C.

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev., vol. 12, 2018, Paper no. 1700256.

Charlotte, C.

C. Charlotte, S. Thiemo, B. Naoufal, H. Alexei, and G. Torsten, “Broadband characterization of congruent lithium niobate from mHz to optical frequencies,” J. Phys. D, Appl. Phys., vol. 50, no. 36, 2017, Paper no. 36LT01.

Chen, P.

P. Girouard, P. Chen, Y. K. Jeong, Z. Liu, S.-T. Ho, and B. W. Wessels, “χ(2) Modulator with 40 GHz modulation utilizing BaTiO3 photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 53, no. 4,  2017, Art. no. 5200110.

Chen, X.

X. Chen, S. Chandrasekhar, G. R. S. Olsson, J. Cho, A. Adamiecki, and P. Winzer, “Generation and intradyne detection of single-wavelength 1.61-Tb/s using an all-electronic digital band interleaved transmitter,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Th4C.

Cheong, S. W.

G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, “Structures of the ferroelectric phases of barium titanate,” J. Phys. Chem., vol. 97, no. 10, pp. 2368–2377, 1993.

Chiles, J.

Cho, J.

X. Chen, S. Chandrasekhar, G. R. S. Olsson, J. Cho, A. Adamiecki, and P. Winzer, “Generation and intradyne detection of single-wavelength 1.61-Tb/s using an all-electronic digital band interleaved transmitter,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Th4C.

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev., vol. 12, 2018, Paper no. 1700256.

Daix, N.

N. Daixet al., “Towards large size substrates for III-V co-integration made by direct wafer bonding on Si,” APL Mater., vol. 2, no. 8, 2014, Paper no. 086104.

De Luca, G.

G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, and M. Trassin, “Nanoscale design of polarization in ultrathin ferroelectric heterostructures,” Nature Commun., vol. 8, no. 1,  2017, Paper no. 1419.

DiDomenico, M.

S. H. Wemple and M. DiDomenico, “Electrooptical and nonlinear optical properties of crystals,” in Applied Solid State Science, vol. 3, R. Wolfe, Ed. Amsterdam, The Netherlands: Elsevier, 1972, pp. 263–383.

Dubourdieu, C.

C. Dubourdieuet al., “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nature Nanotechnol., vol. 8, no. 10, pp. 748–54, 2013.

Eltes, F.

F. Elteset al., “A novel 25 Gbps electro-optic Pockels modulator integrated on an advanced Si photonic platform,” in Proc. 2017 IEEE Int. Electron Devices Meeting, 2017, pp. 24.5.1–24.5.4.

Emboras, A.

A. Emboraset al., “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, pp. 276–283,  2015.

Fathpour, S.

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4,  2018, Art. no. 3400114.

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express, vol. 21, no. 21, pp. 25573–25581, 2013.

Fedoryshyn, Y.

T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightw. Technol., vol. 35, no. 21, pp. 4663–4669, 2017.

Fiebig, M.

G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, and M. Trassin, “Nanoscale design of polarization in ultrathin ferroelectric heterostructures,” Nature Commun., vol. 8, no. 1,  2017, Paper no. 1419.

Fompeyrine, J.

S. Abel and J. Fompeyrine, “Electro-optically active oxides on silicon for photonics,” in Thin Films on Silicon (Materials and Energy), vol. 8. Singapore: World Scientific, 2016, pp. 455–501.

Fontana, M. D.

K. Laabidi, M. D. Fontana, M. Maglione, B. Jannot, and K. A. Müller, “Indications of two separate relaxators in the subphonon region of tetragonal BaTiO3,” Europhys. Lett., vol. 26, no. 4, 1994, Paper no. 309.

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, and P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun., vol. 92, no. 10, pp. 827–830, 1994.

Freude, W.

Girouard, P.

P. Girouard, P. Chen, Y. K. Jeong, Z. Liu, S.-T. Ho, and B. W. Wessels, “χ(2) Modulator with 40 GHz modulation utilizing BaTiO3 photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 53, no. 4,  2017, Art. no. 5200110.

Gui, L.

H. Hu, L. Gui, R. Ricken, and W. Sohler, “Towards nonlinear photonic wires in lithium niobate,” Proc. SPIE, vol. 7604, 2010, Paper no. 76040R.

Gutierrez, A. M.

Haffner, C.

C. Haffneret al., “Low-loss plasmon-assisted electro-optic modulator,” Nature, vol. 556, no. 7702, pp. 483–486, 2018.

C. Haffneret al., “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379,  2016.

C. Haffneret al., “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, no. 8, pp. 525–528, 2015.

Hamano, T.

T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett., vol. 83, no. 25, pp. 5274–5276,  2003.

Harris, D. T.

J. F. Ihlefeld, D. T. Harris, R. Keech, J. L. Jones, J.-P. Maria, and S. Trolier-McKinstry, “Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations,” J. Amer. Ceram. Soc., vol. 99, no. 8, pp. 2537–2557, 2016.

Heni, W.

W. Heniet al., “Silicon-organic and plasmonic-organic hybrid photonics,” ACS Photon., vol. 4, no. 7, pp. 1576–1590, 2017.

W. Heniet al., “100 GBd plasmonic IQ modulator,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2018, Paper no. SM1I.4.

Ho, S.-T.

P. Girouard, P. Chen, Y. K. Jeong, Z. Liu, S.-T. Ho, and B. W. Wessels, “χ(2) Modulator with 40 GHz modulation utilizing BaTiO3 photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 53, no. 4,  2017, Art. no. 5200110.

Hoessbacher, C.

Hu, H.

H. Hu, L. Gui, R. Ricken, and W. Sohler, “Towards nonlinear photonic wires in lithium niobate,” Proc. SPIE, vol. 7604, 2010, Paper no. 76040R.

Ihlefeld, J. F.

J. F. Ihlefeld, D. T. Harris, R. Keech, J. L. Jones, J.-P. Maria, and S. Trolier-McKinstry, “Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations,” J. Amer. Ceram. Soc., vol. 99, no. 8, pp. 2537–2557, 2016.

Jannot, B.

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, and P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun., vol. 92, no. 10, pp. 827–830, 1994.

K. Laabidi, M. D. Fontana, M. Maglione, B. Jannot, and K. A. Müller, “Indications of two separate relaxators in the subphonon region of tetragonal BaTiO3,” Europhys. Lett., vol. 26, no. 4, 1994, Paper no. 309.

Jeong, Y. K.

P. Girouard, P. Chen, Y. K. Jeong, Z. Liu, S.-T. Ho, and B. W. Wessels, “χ(2) Modulator with 40 GHz modulation utilizing BaTiO3 photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 53, no. 4,  2017, Art. no. 5200110.

Jones, J. L.

J. F. Ihlefeld, D. T. Harris, R. Keech, J. L. Jones, J.-P. Maria, and S. Trolier-McKinstry, “Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations,” J. Amer. Ceram. Soc., vol. 99, no. 8, pp. 2537–2557, 2016.

Jullien, P.

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, and P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun., vol. 92, no. 10, pp. 827–830, 1994.

Keech, R.

J. F. Ihlefeld, D. T. Harris, R. Keech, J. L. Jones, J.-P. Maria, and S. Trolier-McKinstry, “Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations,” J. Amer. Ceram. Soc., vol. 99, no. 8, pp. 2537–2557, 2016.

Khan, S.

Kley, E. B.

R. Waldhaeusl, B. Schnabel, E. B. Kley, and A. Bra¨uer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–623, 1997.

Koch, U.

T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightw. Technol., vol. 35, no. 21, pp. 4663–4669, 2017.

Koos, C.

Kormondy, K. J.

K. J. Kormondyet al., “Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics,” Nanotechnology, vol. 28, no. 7, 2017, Paper no. 075706.

Kwei, G. H.

G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, “Structures of the ferroelectric phases of barium titanate,” J. Phys. Chem., vol. 97, no. 10, pp. 2368–2377, 1993.

Laabidi, K.

K. Laabidi, M. D. Fontana, M. Maglione, B. Jannot, and K. A. Müller, “Indications of two separate relaxators in the subphonon region of tetragonal BaTiO3,” Europhys. Lett., vol. 26, no. 4, 1994, Paper no. 309.

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, and P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun., vol. 92, no. 10, pp. 827–830, 1994.

Lawson, A. C.

G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, “Structures of the ferroelectric phases of barium titanate,” J. Phys. Chem., vol. 97, no. 10, pp. 2368–2377, 1993.

Leuthold, J.

T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightw. Technol., vol. 35, no. 21, pp. 4663–4669, 2017.

J. Leutholdet al., “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6,  2013, Art. no. 3401413.

J. Leutholdet al., “Plasmonic communications: Light on a wire,” Opt. Photon. News, vol. 24, pp. 28–35,  2013.

J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express, vol. 16, no. 6, pp. 4177–4191, 2008.

Lianshan, Y.

S. Yongqiang, Y. Lianshan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

Lin, J.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 Gbaud 16 QAM and 70 Gbaud32 QAM,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Tu2E.

Lipson, M.

Liu, Z.

P. Girouard, P. Chen, Y. K. Jeong, Z. Liu, S.-T. Ho, and B. W. Wessels, “χ(2) Modulator with 40 GHz modulation utilizing BaTiO3 photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 53, no. 4,  2017, Art. no. 5200110.

Loncar, M.

Lorenzo, J. P.

R. A. Soref and J. P. Lorenzo, “Single-crystal silicon: A new material for 1.3 and 1.6 μm integrated-optical components,” Electron. Lett., vol. 21, no. 21, pp. 953–954, 1985.

Ma, J.

Maglione, M.

K. Laabidi, M. D. Fontana, M. Maglione, B. Jannot, and K. A. Müller, “Indications of two separate relaxators in the subphonon region of tetragonal BaTiO3,” Europhys. Lett., vol. 26, no. 4, 1994, Paper no. 309.

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, and P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun., vol. 92, no. 10, pp. 827–830, 1994.

Mahmoud, M.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photon. J., vol. 10, no. 1,  2018, Art. no. 6600410.

Manz, S.

G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, and M. Trassin, “Nanoscale design of polarization in ultrathin ferroelectric heterostructures,” Nature Commun., vol. 8, no. 1,  2017, Paper no. 1419.

Maria, J.-P.

J. F. Ihlefeld, D. T. Harris, R. Keech, J. L. Jones, J.-P. Maria, and S. Trolier-McKinstry, “Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations,” J. Amer. Ceram. Soc., vol. 99, no. 8, pp. 2537–2557, 2016.

Meier, A. L.

Melikyan, A.

A. Melikyanet al., “High-speed plasmonic phase modulators,” Nature Photon., vol. 8, no. 3, pp. 229–233,  2014.

Merz, W. J.

W. J. Merz, “The electric and optical behavior of BaTiO3 single-domain crystals,” Phys. Rev., vol. 76, no. 8, pp. 1221–1225, 1949.

Messner, A.

A. Messneret al., “Integrated ferroelectric plasmonic optical modulator,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, Los Angeles, CA, USA, 2017, Paper no. Th5C.7.

A. Messneret al., “Integrated ferroelectric BaTiO3/Si plasmonic modulator for 100 Gbit/s and beyond,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper no. M2I.6.

Miller, D. A. B.

D. A. B. Milleret al., “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173–2176,  1984.

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev., vol. 12, 2018, Paper no. 1700256.

Müller, K. A.

K. Laabidi, M. D. Fontana, M. Maglione, B. Jannot, and K. A. Müller, “Indications of two separate relaxators in the subphonon region of tetragonal BaTiO3,” Europhys. Lett., vol. 26, no. 4, 1994, Paper no. 309.

Naoufal, B.

C. Charlotte, S. Thiemo, B. Naoufal, H. Alexei, and G. Torsten, “Broadband characterization of congruent lithium niobate from mHz to optical frequencies,” J. Phys. D, Appl. Phys., vol. 50, no. 36, 2017, Paper no. 36LT01.

Nelson, L. E.

Ogiso, Y.

Y. Ogisoet al., “Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure,” J. Lightw. Technol., vol. 35, no. 8, pp. 1450–1455,  2017.

Olsson, G. R. S.

X. Chen, S. Chandrasekhar, G. R. S. Olsson, J. Cho, A. Adamiecki, and P. Winzer, “Generation and intradyne detection of single-wavelength 1.61-Tb/s using an all-electronic digital band interleaved transmitter,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Th4C.

Piazza, G.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photon. J., vol. 10, no. 1,  2018, Art. no. 6600410.

Rabe, K. M.

K. M. Rabe, Physics of Ferroelectrics: A Modern Perspective. Berlin, Germany: Springer, 2007.

Rabiei, P.

Rao, A.

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4,  2018, Art. no. 3400114.

Ricken, R.

H. Hu, L. Gui, R. Ricken, and W. Sohler, “Towards nonlinear photonic wires in lithium niobate,” Proc. SPIE, vol. 7604, 2010, Paper no. 76040R.

Rosa, A.

Rusch, L. A.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 Gbaud 16 QAM and 70 Gbaud32 QAM,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Tu2E.

Sakayori, K.-i.

K.-i. Sakayoriet al., “Curie temperature of BaTiO3,” Jpn. J. Appl. Phys., vol. 34, no. 9S, 1995, Paper no. 5443.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed.Hoboken, NJ, USA: Wiley, 2007.

Sanchis, P.

Schnabel, B.

R. Waldhaeusl, B. Schnabel, E. B. Kley, and A. Bra¨uer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–623, 1997.

Sepehrian, H.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 Gbaud 16 QAM and 70 Gbaud32 QAM,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Tu2E.

Shi, W.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 Gbaud 16 QAM and 70 Gbaud32 QAM,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Tu2E.

Sohler, W.

H. Hu, L. Gui, R. Ricken, and W. Sohler, “Towards nonlinear photonic wires in lithium niobate,” Proc. SPIE, vol. 7604, 2010, Paper no. 76040R.

Soref, R. A.

R. A. Soref and J. P. Lorenzo, “Single-crystal silicon: A new material for 1.3 and 1.6 μm integrated-optical components,” Electron. Lett., vol. 21, no. 21, pp. 953–954, 1985.

Stern, B.

Strkalj, N.

G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, and M. Trassin, “Nanoscale design of polarization in ultrathin ferroelectric heterostructures,” Nature Commun., vol. 8, no. 1,  2017, Paper no. 1419.

Tang, P.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed.Hoboken, NJ, USA: Wiley, 2007.

Thiemo, S.

C. Charlotte, S. Thiemo, B. Naoufal, H. Alexei, and G. Torsten, “Broadband characterization of congruent lithium niobate from mHz to optical frequencies,” J. Phys. D, Appl. Phys., vol. 50, no. 36, 2017, Paper no. 36LT01.

Torsten, G.

C. Charlotte, S. Thiemo, B. Naoufal, H. Alexei, and G. Torsten, “Broadband characterization of congruent lithium niobate from mHz to optical frequencies,” J. Phys. D, Appl. Phys., vol. 50, no. 36, 2017, Paper no. 36LT01.

Towner, D. J.

P. Tang, A. L. Meier, D. J. Towner, and B. W. Wessels, “BaTiO3 thin-film waveguide modulator with a low voltage-length product at near-infrared wavelengths of 0.98 and 1.55 μm,” Opt. Lett., vol. 30, no. 3, pp. 254–254, 2005.

T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett., vol. 83, no. 25, pp. 5274–5276,  2003.

Trassin, M.

G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, and M. Trassin, “Nanoscale design of polarization in ultrathin ferroelectric heterostructures,” Nature Commun., vol. 8, no. 1,  2017, Paper no. 1419.

Trolier-McKinstry, S.

J. F. Ihlefeld, D. T. Harris, R. Keech, J. L. Jones, J.-P. Maria, and S. Trolier-McKinstry, “Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations,” J. Amer. Ceram. Soc., vol. 99, no. 8, pp. 2537–2557, 2016.

Tulli, D.

Ummethala, S.

S. Ummethalaet al., “Terahertz-to-optical conversion using a plasmonic modulator,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2018, Paper no. STu3D.4.

Waldhaeusl, R.

R. Waldhaeusl, B. Schnabel, E. B. Kley, and A. Bra¨uer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–623, 1997.

Waldow, M.

Wang, C.

Watanabe, T.

T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightw. Technol., vol. 35, no. 21, pp. 4663–4669, 2017.

Wemple, S. H.

S. H. Wemple and M. DiDomenico, “Electrooptical and nonlinear optical properties of crystals,” in Applied Solid State Science, vol. 3, R. Wolfe, Ed. Amsterdam, The Netherlands: Elsevier, 1972, pp. 263–383.

Wessels, B. W.

P. Girouard, P. Chen, Y. K. Jeong, Z. Liu, S.-T. Ho, and B. W. Wessels, “χ(2) Modulator with 40 GHz modulation utilizing BaTiO3 photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 53, no. 4,  2017, Art. no. 5200110.

P. Tang, A. L. Meier, D. J. Towner, and B. W. Wessels, “BaTiO3 thin-film waveguide modulator with a low voltage-length product at near-infrared wavelengths of 0.98 and 1.55 μm,” Opt. Lett., vol. 30, no. 3, pp. 254–254, 2005.

T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett., vol. 83, no. 25, pp. 5274–5276,  2003.

Willner, A. E.

S. Yongqiang, Y. Lianshan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

Winzer, P.

X. Chen, S. Chandrasekhar, G. R. S. Olsson, J. Cho, A. Adamiecki, and P. Winzer, “Generation and intradyne detection of single-wavelength 1.61-Tb/s using an all-electronic digital band interleaved transmitter,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Th4C.

Wolf, S.

Wooten, E. L.

E. L. Wootenet al., “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 69–82,  2000.

Xiong, C.

C. Xionget al., “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett., vol. 14, no. 3, pp. 1419–1425, 2014.

Yongqiang, S.

S. Yongqiang, Y. Lianshan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

Zgonik, M.

M. Zgoniket al., “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B, vol. 50, no. 9, pp. 5941–5949, 1994.

Zhang, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express, vol. 26, no. 2, pp. 1547–1555,  2018.

M. Zhanget al., “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, San Diego, CA, USA, 2018, Paper no. Th4A.5.

ACS Photon. (1)

W. Heniet al., “Silicon-organic and plasmonic-organic hybrid photonics,” ACS Photon., vol. 4, no. 7, pp. 1576–1590, 2017.

APL Mater. (1)

N. Daixet al., “Towards large size substrates for III-V co-integration made by direct wafer bonding on Si,” APL Mater., vol. 2, no. 8, 2014, Paper no. 086104.

Appl. Phys. Lett. (1)

T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett., vol. 83, no. 25, pp. 5274–5276,  2003.

Electron. Lett. (2)

R. Waldhaeusl, B. Schnabel, E. B. Kley, and A. Bra¨uer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–623, 1997.

R. A. Soref and J. P. Lorenzo, “Single-crystal silicon: A new material for 1.3 and 1.6 μm integrated-optical components,” Electron. Lett., vol. 21, no. 21, pp. 953–954, 1985.

Europhys. Lett. (1)

K. Laabidi, M. D. Fontana, M. Maglione, B. Jannot, and K. A. Müller, “Indications of two separate relaxators in the subphonon region of tetragonal BaTiO3,” Europhys. Lett., vol. 26, no. 4, 1994, Paper no. 309.

IEEE J. Quantum Electron. (1)

P. Girouard, P. Chen, Y. K. Jeong, Z. Liu, S.-T. Ho, and B. W. Wessels, “χ(2) Modulator with 40 GHz modulation utilizing BaTiO3 photonic crystal waveguides,” IEEE J. Quantum Electron., vol. 53, no. 4,  2017, Art. no. 5200110.

IEEE J. Sel. Topics Quantum Electron. (4)

A. Emboraset al., “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, pp. 276–283,  2015.

J. Leutholdet al., “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6,  2013, Art. no. 3401413.

E. L. Wootenet al., “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 69–82,  2000.

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 4,  2018, Art. no. 3400114.

IEEE Photon. J. (1)

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photon. J., vol. 10, no. 1,  2018, Art. no. 6600410.

IEEE Photon. Technol. Lett. (1)

P. Casteraet al., “Electro-optical modulation based on pockels effect in BaTiO3 with a multi-domain structure,” IEEE Photon. Technol. Lett., vol. 28, no. 9, pp. 990–993,  2016.

J. Amer. Ceram. Soc. (1)

J. F. Ihlefeld, D. T. Harris, R. Keech, J. L. Jones, J.-P. Maria, and S. Trolier-McKinstry, “Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations,” J. Amer. Ceram. Soc., vol. 99, no. 8, pp. 2537–2557, 2016.

J. Lightw. Technol. (4)

T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, “Perpendicular grating coupler based on a blazed antiback-reflection structure,” J. Lightw. Technol., vol. 35, no. 21, pp. 4663–4669, 2017.

S. Yongqiang, Y. Lianshan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

Y. Ogisoet al., “Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure,” J. Lightw. Technol., vol. 35, no. 8, pp. 1450–1455,  2017.

S. Abelet al., “A hybrid barium titanate-silicon photonics platform for ultra-efficient electro-optic tuning,” J. Lightw. Technol., vol. 34, no. 8, pp. 1688–1693,  2015.

J. Opt. Commun. Netw. (1)

J. Phys. Chem. (1)

G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, “Structures of the ferroelectric phases of barium titanate,” J. Phys. Chem., vol. 97, no. 10, pp. 2368–2377, 1993.

J. Phys. D, Appl. Phys. (1)

C. Charlotte, S. Thiemo, B. Naoufal, H. Alexei, and G. Torsten, “Broadband characterization of congruent lithium niobate from mHz to optical frequencies,” J. Phys. D, Appl. Phys., vol. 50, no. 36, 2017, Paper no. 36LT01.

Jpn. J. Appl. Phys. (1)

K.-i. Sakayoriet al., “Curie temperature of BaTiO3,” Jpn. J. Appl. Phys., vol. 34, no. 9S, 1995, Paper no. 5443.

Laser Photon. Rev. (1)

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev., vol. 12, 2018, Paper no. 1700256.

Light: Sci. Appl. (1)

L. Alloattiet al., “100 GHz silicon–organic hybrid modulator,” Light: Sci. Appl., vol. 3, no. 5, 2014, Paper no. e173.

Nano Lett. (1)

C. Xionget al., “Active silicon integrated nanophotonics: Ferroelectric BaTiO3 devices,” Nano Lett., vol. 14, no. 3, pp. 1419–1425, 2014.

Nanotechnology (1)

K. J. Kormondyet al., “Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics,” Nanotechnology, vol. 28, no. 7, 2017, Paper no. 075706.

Nature (1)

C. Haffneret al., “Low-loss plasmon-assisted electro-optic modulator,” Nature, vol. 556, no. 7702, pp. 483–486, 2018.

Nature Commun. (2)

S. Abelet al., “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nature Commun., vol. 4, pp. 1671–1671, 2013.

G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, and M. Trassin, “Nanoscale design of polarization in ultrathin ferroelectric heterostructures,” Nature Commun., vol. 8, no. 1,  2017, Paper no. 1419.

Nature Mater. (1)

S. Abelet al., “Large Pockelseffect in micro- and nanostructured barium titanate integrated on silicon,” Nature Mater., Nov. 12, 2018.

Nature Nanotechnol. (1)

C. Dubourdieuet al., “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nature Nanotechnol., vol. 8, no. 10, pp. 748–54, 2013.

Nature Photon. (2)

A. Melikyanet al., “High-speed plasmonic phase modulators,” Nature Photon., vol. 8, no. 3, pp. 229–233,  2014.

C. Haffneret al., “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, no. 8, pp. 525–528, 2015.

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Photon. News (1)

J. Leutholdet al., “Plasmonic communications: Light on a wire,” Opt. Photon. News, vol. 24, pp. 28–35,  2013.

Phys. Rev. (1)

W. J. Merz, “The electric and optical behavior of BaTiO3 single-domain crystals,” Phys. Rev., vol. 76, no. 8, pp. 1221–1225, 1949.

Phys. Rev. B (1)

M. Zgoniket al., “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B, vol. 50, no. 9, pp. 5941–5949, 1994.

Phys. Rev. Lett. (1)

D. A. B. Milleret al., “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173–2176,  1984.

Proc. IEEE (1)

C. Haffneret al., “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379,  2016.

Proc. SPIE (2)

S. Abelet al., “Electro-optical properties of barium titanate films epitaxially grown on silicon,” Proc. SPIE, vol. 8263, 2012, Paper no. 82630Y.

H. Hu, L. Gui, R. Ricken, and W. Sohler, “Towards nonlinear photonic wires in lithium niobate,” Proc. SPIE, vol. 7604, 2010, Paper no. 76040R.

Science (1)

M. Ayataet al., “High-speed plasmonic modulator in a single metal layer,” Science, vol. 358, no. 6363, pp. 630–632,  2017.

Solid State Commun. (1)

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, and P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun., vol. 92, no. 10, pp. 827–830, 1994.

Other (13)

K. M. Rabe, Physics of Ferroelectrics: A Modern Perspective. Berlin, Germany: Springer, 2007.

S. H. Wemple and M. DiDomenico, “Electrooptical and nonlinear optical properties of crystals,” in Applied Solid State Science, vol. 3, R. Wolfe, Ed. Amsterdam, The Netherlands: Elsevier, 1972, pp. 263–383.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed.Hoboken, NJ, USA: Wiley, 2007.

A. Messneret al., “Integrated ferroelectric BaTiO3/Si plasmonic modulator for 100 Gbit/s and beyond,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, 2018, Paper no. M2I.6.

A. Messneret al., “Integrated ferroelectric plasmonic optical modulator,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, Los Angeles, CA, USA, 2017, Paper no. Th5C.7.

F. Elteset al., “A novel 25 Gbps electro-optic Pockels modulator integrated on an advanced Si photonic platform,” in Proc. 2017 IEEE Int. Electron Devices Meeting, 2017, pp. 24.5.1–24.5.4.

B. Baeuerleet al., “Driver-less sub 1 Vpp operation of a plasmonic-organic hybrid modulator at 100 GBd NRZ,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper M3G.

W. Heniet al., “100 GBd plasmonic IQ modulator,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2018, Paper no. SM1I.4.

S. Ummethalaet al., “Terahertz-to-optical conversion using a plasmonic modulator,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2018, Paper no. STu3D.4.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 Gbaud 16 QAM and 70 Gbaud32 QAM,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Tu2E.

X. Chen, S. Chandrasekhar, G. R. S. Olsson, J. Cho, A. Adamiecki, and P. Winzer, “Generation and intradyne detection of single-wavelength 1.61-Tb/s using an all-electronic digital band interleaved transmitter,” in Proc. 2018 Opt. Fiber Commun. Conf. Expo., 2018, Paper Th4C.

M. Zhanget al., “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, San Diego, CA, USA, 2018, Paper no. Th4A.5.

S. Abel and J. Fompeyrine, “Electro-optically active oxides on silicon for photonics,” in Thin Films on Silicon (Materials and Energy), vol. 8. Singapore: World Scientific, 2016, pp. 455–501.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.