Abstract

Eight-channel 56-Gbit/s direct four-level pulse-ampli-tude modulation is demonstrated using a 1.3-μm wavelength-division-multiplexing (WDM) photonic integrated circuit (PIC) transmitter, consisting of membrane distributed-reflector lasers heterogeneously fabricated on Si and a SiN arrayed-waveguide-grating multiplexer. Direct bonding, epitaxial regrowth, and low-temperature SiN-waveguide fabrication technologies are employed for the integration on Si. Using a nonlinear equalizer, we operated the fabricated WDM PIC transmitter with a low power consumption of 403 fJ/bit for overall 448 Gbit/s signals. The total eight-channel bit-error rate was 2.7 × 10−3, which is less than the 7%-overhead hard-decision forward-error-correction limit.

© 2018 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Karinouet al., “1.55-μm long-wavelength VCSEL-based optical interconnects for short-reach networks,” J. Lightw. Technol., vol. 34, no. 12, pp. 2897–2904,  2015.
  2. N. Eiseltet al., “Experimental demonstration of 84 Gbit/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1525 nm,” J. Lightw. Technol., vol. 35, no. 8, pp. 1342–1349,  2017.
  3. P. Wölfet al., “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3 μm wafer-fusion VCSELs for optical interconnects,” ACS Photon., vol. 4, no. 8, pp. 2018–2024, 2017.
  4. A. Abbasiet al., “Direct and electroabsorption modulation of a III-V-on-silicon DFB laser at 56 Gb/s,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, Nov./Dec. 2017, Art. no. 1501307.
  5. G. De Valicourtet al., “Photonic integrated circuit based on hybrid III–V/silicon integration,” J. Lightw. Technol., vol. 36, no. 2, pp. 265–273,  2018.
  6. D. Inoueet al., “Directly modulated 13 μm quantum dot lasers epitaxially grown on silicon,” Opt. Express, vol. 26, no. 6, pp. 7022–7033, 2018.
  7. C. Zhanget al., “8 × 8 × 40  Gbps fully integrated silicon photonic network on chip,” Optica, vol. 3, no. 7, pp. 785–786, 2016.
  8. K. Chenet al., “Wavelength-multiplexed duplex transceiver based on III-V/Si hybrid integration for off-chip and on-chip optical interconnects,” IEEE Photon. J., vol. 8, no. 1,  2016, Art. no. 7900910.
  9. L. Chenet al., “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” Opt. Express, vol. 19, no. 26, pp. B946–B951, 2011.
  10. S. Matsuoet al., “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express, vol. 22, no. 10, pp. 12139–12147, 2014.
  11. Fujii et al., “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in Proc. ECOC, Dusseldorf, 2016, paper Th3A2.
  12. H. Nishiet al., “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express, vol. 24, no. 16, pp. 18346–18352, 2016.
  13. T. Fujiiet al., “Heterogeneously integrated membrane lasers on Si substrate for low-operating energy optical links,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 1,  2017, Art. no. 15004081.
  14. IEEE 802.3bs Ethernet Task Force, 2017. [Online]. Available: http://www.ieee802.org/3/bs/
  15. H. Nishiet al., “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J., vol. 7, no. 5,  2015, Art. no. 4900308.
  16. G. Roelkenset al., “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. vol. 4, no. 6, pp. 751–779, 2010.
  17. M. Pileset al., “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III-V/silicon photodetectors,” IEEE J. Lightw. Technol., vol. 32, no. 4, pp. 817–823,  2014.
  18. G. Duanet al., “New advances on heterogeneous integration of III–V on silicon,” IEEE J. Lightw. Technol., vol. 33, no. 5, pp. 976–983,  2015.
  19. K. Okazakiet al., “Optical coupling between SiOxNy waveguide and Ge mesa structures for bulk-silicon photonics platform,” in Proc. IEEE Group IV Photon., Vancouver, BC, Canada, 2015, paper no. WP43.
  20. H. Nishiet al., “Optical nonlinear ity of InP waveguide at 1550-nm band,” to be submitted.
  21. W. Bogaertset al., “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1394–1401,  2006.
  22. T. Hirakiet al., “Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters,” IEEE Photon. J., vol. 9, no. 5,  2017, Art. no. 2500207.
  23. N. P. Diamantopouloset al., “Energy-efficient 120-Gbps DMT transmission using a 1.3-μm membrane laser on Si,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, paper no. M2D.5.
  24. N. P. Diamantopouloset al., “56-Gb/s VSB-PAM-4 over 80-km transmission using 1.55-mm EA-DFB laser and reduced-complexity nonlinear equalization,” in Proc. Eur. Conf. Opt. Commun., Roma, Italy, 2017, paper no. SC5.5.
  25. N. P. Diamantopouloset al., “On the complexity reduction of the 2nd-order Volterra nonlinear equalizer for IM/DD systems,” J. Lightw. Technol., submitted.
  26. Y. Matsuiet al., “55 GHz bandwidth distributed reflector laser,” J. Lightw. Technol., vol. 35, no. 3, pp. 397–403,  2017.
  27. OIF Technical options 400G-0.10, Fremont, CA 94538, 2015.
  28. OIF FEC 100G-0.10, Fremont, CA 94538, 2012.

2018 (2)

G. De Valicourtet al., “Photonic integrated circuit based on hybrid III–V/silicon integration,” J. Lightw. Technol., vol. 36, no. 2, pp. 265–273,  2018.

D. Inoueet al., “Directly modulated 13 μm quantum dot lasers epitaxially grown on silicon,” Opt. Express, vol. 26, no. 6, pp. 7022–7033, 2018.

2017 (6)

N. Eiseltet al., “Experimental demonstration of 84 Gbit/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1525 nm,” J. Lightw. Technol., vol. 35, no. 8, pp. 1342–1349,  2017.

P. Wölfet al., “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3 μm wafer-fusion VCSELs for optical interconnects,” ACS Photon., vol. 4, no. 8, pp. 2018–2024, 2017.

A. Abbasiet al., “Direct and electroabsorption modulation of a III-V-on-silicon DFB laser at 56 Gb/s,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, Nov./Dec. 2017, Art. no. 1501307.

T. Fujiiet al., “Heterogeneously integrated membrane lasers on Si substrate for low-operating energy optical links,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 1,  2017, Art. no. 15004081.

T. Hirakiet al., “Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters,” IEEE Photon. J., vol. 9, no. 5,  2017, Art. no. 2500207.

Y. Matsuiet al., “55 GHz bandwidth distributed reflector laser,” J. Lightw. Technol., vol. 35, no. 3, pp. 397–403,  2017.

2016 (3)

2015 (4)

F. Karinouet al., “1.55-μm long-wavelength VCSEL-based optical interconnects for short-reach networks,” J. Lightw. Technol., vol. 34, no. 12, pp. 2897–2904,  2015.

H. Nishiet al., “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J., vol. 7, no. 5,  2015, Art. no. 4900308.

OIF Technical options 400G-0.10, Fremont, CA 94538, 2015.

G. Duanet al., “New advances on heterogeneous integration of III–V on silicon,” IEEE J. Lightw. Technol., vol. 33, no. 5, pp. 976–983,  2015.

2014 (2)

M. Pileset al., “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III-V/silicon photodetectors,” IEEE J. Lightw. Technol., vol. 32, no. 4, pp. 817–823,  2014.

S. Matsuoet al., “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express, vol. 22, no. 10, pp. 12139–12147, 2014.

2012 (1)

OIF FEC 100G-0.10, Fremont, CA 94538, 2012.

2011 (1)

2010 (1)

G. Roelkenset al., “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. vol. 4, no. 6, pp. 751–779, 2010.

2006 (1)

W. Bogaertset al., “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1394–1401,  2006.

Abbasi, A.

A. Abbasiet al., “Direct and electroabsorption modulation of a III-V-on-silicon DFB laser at 56 Gb/s,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, Nov./Dec. 2017, Art. no. 1501307.

Bogaerts, W.

W. Bogaertset al., “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1394–1401,  2006.

Chen, K.

K. Chenet al., “Wavelength-multiplexed duplex transceiver based on III-V/Si hybrid integration for off-chip and on-chip optical interconnects,” IEEE Photon. J., vol. 8, no. 1,  2016, Art. no. 7900910.

Chen, L.

De Valicourt, G.

G. De Valicourtet al., “Photonic integrated circuit based on hybrid III–V/silicon integration,” J. Lightw. Technol., vol. 36, no. 2, pp. 265–273,  2018.

Diamantopoulos, N. P.

N. P. Diamantopouloset al., “Energy-efficient 120-Gbps DMT transmission using a 1.3-μm membrane laser on Si,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, paper no. M2D.5.

N. P. Diamantopouloset al., “56-Gb/s VSB-PAM-4 over 80-km transmission using 1.55-mm EA-DFB laser and reduced-complexity nonlinear equalization,” in Proc. Eur. Conf. Opt. Commun., Roma, Italy, 2017, paper no. SC5.5.

N. P. Diamantopouloset al., “On the complexity reduction of the 2nd-order Volterra nonlinear equalizer for IM/DD systems,” J. Lightw. Technol., submitted.

Duan, G.

G. Duanet al., “New advances on heterogeneous integration of III–V on silicon,” IEEE J. Lightw. Technol., vol. 33, no. 5, pp. 976–983,  2015.

Eiselt, N.

N. Eiseltet al., “Experimental demonstration of 84 Gbit/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1525 nm,” J. Lightw. Technol., vol. 35, no. 8, pp. 1342–1349,  2017.

Fujii, T.

T. Fujiiet al., “Heterogeneously integrated membrane lasers on Si substrate for low-operating energy optical links,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 1,  2017, Art. no. 15004081.

Hiraki, T.

T. Hirakiet al., “Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters,” IEEE Photon. J., vol. 9, no. 5,  2017, Art. no. 2500207.

Inoue, D.

Karinou, F.

F. Karinouet al., “1.55-μm long-wavelength VCSEL-based optical interconnects for short-reach networks,” J. Lightw. Technol., vol. 34, no. 12, pp. 2897–2904,  2015.

Matsui, Y.

Y. Matsuiet al., “55 GHz bandwidth distributed reflector laser,” J. Lightw. Technol., vol. 35, no. 3, pp. 397–403,  2017.

Matsuo, S.

Nishi, H.

H. Nishiet al., “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express, vol. 24, no. 16, pp. 18346–18352, 2016.

H. Nishiet al., “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J., vol. 7, no. 5,  2015, Art. no. 4900308.

H. Nishiet al., “Optical nonlinear ity of InP waveguide at 1550-nm band,” to be submitted.

Okazaki, K.

K. Okazakiet al., “Optical coupling between SiOxNy waveguide and Ge mesa structures for bulk-silicon photonics platform,” in Proc. IEEE Group IV Photon., Vancouver, BC, Canada, 2015, paper no. WP43.

Piles, M.

M. Pileset al., “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III-V/silicon photodetectors,” IEEE J. Lightw. Technol., vol. 32, no. 4, pp. 817–823,  2014.

Roelkens, G.

G. Roelkenset al., “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. vol. 4, no. 6, pp. 751–779, 2010.

Wölf, P.

P. Wölfet al., “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3 μm wafer-fusion VCSELs for optical interconnects,” ACS Photon., vol. 4, no. 8, pp. 2018–2024, 2017.

Zhang, C.

ACS Photon. (1)

P. Wölfet al., “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3 μm wafer-fusion VCSELs for optical interconnects,” ACS Photon., vol. 4, no. 8, pp. 2018–2024, 2017.

IEEE J. Lightw. Technol. (2)

M. Pileset al., “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III-V/silicon photodetectors,” IEEE J. Lightw. Technol., vol. 32, no. 4, pp. 817–823,  2014.

G. Duanet al., “New advances on heterogeneous integration of III–V on silicon,” IEEE J. Lightw. Technol., vol. 33, no. 5, pp. 976–983,  2015.

IEEE J. Sel. Topics Quantum Electron. (3)

T. Fujiiet al., “Heterogeneously integrated membrane lasers on Si substrate for low-operating energy optical links,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 1,  2017, Art. no. 15004081.

A. Abbasiet al., “Direct and electroabsorption modulation of a III-V-on-silicon DFB laser at 56 Gb/s,” IEEE J. Sel. Topics Quantum Electron., vol. 23, no. 6, Nov./Dec. 2017, Art. no. 1501307.

W. Bogaertset al., “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1394–1401,  2006.

IEEE Photon. J (1)

H. Nishiet al., “Monolithic integration of InP wire and SiOx waveguides on Si platform,” IEEE Photon. J., vol. 7, no. 5,  2015, Art. no. 4900308.

IEEE Photon. J. (2)

T. Hirakiet al., “Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters,” IEEE Photon. J., vol. 9, no. 5,  2017, Art. no. 2500207.

K. Chenet al., “Wavelength-multiplexed duplex transceiver based on III-V/Si hybrid integration for off-chip and on-chip optical interconnects,” IEEE Photon. J., vol. 8, no. 1,  2016, Art. no. 7900910.

J. Lightw. Technol. (5)

G. De Valicourtet al., “Photonic integrated circuit based on hybrid III–V/silicon integration,” J. Lightw. Technol., vol. 36, no. 2, pp. 265–273,  2018.

F. Karinouet al., “1.55-μm long-wavelength VCSEL-based optical interconnects for short-reach networks,” J. Lightw. Technol., vol. 34, no. 12, pp. 2897–2904,  2015.

N. Eiseltet al., “Experimental demonstration of 84 Gbit/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1525 nm,” J. Lightw. Technol., vol. 35, no. 8, pp. 1342–1349,  2017.

N. P. Diamantopouloset al., “On the complexity reduction of the 2nd-order Volterra nonlinear equalizer for IM/DD systems,” J. Lightw. Technol., submitted.

Y. Matsuiet al., “55 GHz bandwidth distributed reflector laser,” J. Lightw. Technol., vol. 35, no. 3, pp. 397–403,  2017.

Laser Photon. Rev. (1)

G. Roelkenset al., “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. vol. 4, no. 6, pp. 751–779, 2010.

OIF FEC 100G-0.10 (1)

OIF FEC 100G-0.10, Fremont, CA 94538, 2012.

OIF Technical options 400G-0.10 (1)

OIF Technical options 400G-0.10, Fremont, CA 94538, 2015.

Opt. Express (4)

Optica (1)

Other (6)

Fujii et al., “1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si substrate,” in Proc. ECOC, Dusseldorf, 2016, paper Th3A2.

IEEE 802.3bs Ethernet Task Force, 2017. [Online]. Available: http://www.ieee802.org/3/bs/

K. Okazakiet al., “Optical coupling between SiOxNy waveguide and Ge mesa structures for bulk-silicon photonics platform,” in Proc. IEEE Group IV Photon., Vancouver, BC, Canada, 2015, paper no. WP43.

H. Nishiet al., “Optical nonlinear ity of InP waveguide at 1550-nm band,” to be submitted.

N. P. Diamantopouloset al., “Energy-efficient 120-Gbps DMT transmission using a 1.3-μm membrane laser on Si,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, paper no. M2D.5.

N. P. Diamantopouloset al., “56-Gb/s VSB-PAM-4 over 80-km transmission using 1.55-mm EA-DFB laser and reduced-complexity nonlinear equalization,” in Proc. Eur. Conf. Opt. Commun., Roma, Italy, 2017, paper no. SC5.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.