Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 18,
  • pp. 4697-4702
  • (2019)

Low-Loss Random Fiber Gratings Made With an fs-IR Laser for Distributed Fiber Sensing

Not Accessible

Your library or personal account may give you access

Abstract

By using the plane-by-plane grating inscription method with an fs-IR laser, random fiber gratings with low laser-induced loss were fabricated in SMF-28 fiber for distributed temperature sensing. Compared to conventional random gratings having broadband backscattering enhancement, the demonstrated random fiber grating has a well defined narrower bandwidth of backscattering enhancement, higher laser-induced backscattering level, and lower laser-induced loss, which are critical for long-haul distributed fiber sensor systems with high measurement accuracy. Experimental results showed that by using fabricated random fiber gratings along with the technique of optical frequency-domain reflectometry, a distributed temperature fiber sensor could be realized having a gauge length of 10 mm, standard deviation of temperature measurement as low as 0.00085 °C, and laser-induced loss of 0.08 dB/m.

PDF Article
More Like This
The ROGUE: a novel, noise-generated random grating

Frédéric Monet, Sébastien Loranger, Victor Lambin-Iezzi, Antoine Drouin, Samuel Kadoury, and Raman Kashyap
Opt. Express 27(10) 13895-13909 (2019)

Low-noise Brillouin random fiber laser with a random grating-based resonator

Yanping Xu, Song Gao, Ping Lu, Stephen Mihailov, Liang Chen, and Xiaoyi Bao
Opt. Lett. 41(14) 3197-3200 (2016)

Femtosecond laser point-by-point inscription of an ultra-weak fiber Bragg grating array for distributed high-temperature sensing

Baijie Xu, Jun He, Bin Du, Xunzhou Xiao, Xizhen Xu, Cailing Fu, Jia He, Changrui Liao, and Yiping Wang
Opt. Express 29(20) 32615-32626 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.